Skip to main content
Top
Published in: Designs, Codes and Cryptography 8/2020

03-07-2020

High dimensional affine codes whose square has a designed minimum distance

Authors: Ignacio García-Marco, Irene Márquez-Corbella, Diego Ruano

Published in: Designs, Codes and Cryptography | Issue 8/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Given a linear code \({\mathcal {C}}\), its square code \({\mathcal {C}}^{(2)}\) is the span of all component-wise products of two elements of \({\mathcal {C}}\). Motivated by applications in multi-party computation, our purpose with this work is to answer the following question: which families of affine variety codes have simultaneously high dimension \(k({\mathcal {C}})\) and high minimum distance of \({\mathcal {C}}^{(2)}\), \(d({\mathcal {C}}^{(2)})\)? More precisely, given a designed minimum distance d we compute an affine variety code \({\mathcal {C}}\) such that \(d({\mathcal {C}}^{(2)})\ge d\) and the dimension of \({\mathcal {C}}\) is high. The best constructions we propose mostly come from hyperbolic codes. Nevertheless, for small values of d, they come from weighted Reed–Muller codes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ben-Or M., Goldwasser S., Wigderson A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pp. 1–10, NY, USA (1988). Ben-Or M., Goldwasser S., Wigderson A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pp. 1–10, NY, USA (1988).
3.
go back to reference Cascudo I., Cramer R., Mirandola D., Zémor G.: Squares of random linear codes. IEEE Trans. Inf. Theory 61(3), 1159–1173 (2015).MathSciNetCrossRef Cascudo I., Cramer R., Mirandola D., Zémor G.: Squares of random linear codes. IEEE Trans. Inf. Theory 61(3), 1159–1173 (2015).MathSciNetCrossRef
4.
5.
go back to reference Chaum D., Crépeau C., Damgård I.: Multiparty unconditionally secure protocols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pp. 11–19, NY, USA (1988). Chaum D., Crépeau C., Damgård I.: Multiparty unconditionally secure protocols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pp. 11–19, NY, USA (1988).
6.
go back to reference Cramer R., Damgård I., Maurer U.: General secure multi-party computation from any linear secret-sharing scheme. In: Advances in cryptology EUROCRYPT 2000 (Bruges), volume 1807 of Lecture Notes in Comput. Sci., pp. 316–334. Springer, Berlin (2000). Cramer R., Damgård I., Maurer U.: General secure multi-party computation from any linear secret-sharing scheme. In: Advances in cryptology EUROCRYPT 2000 (Bruges), volume 1807 of Lecture Notes in Comput. Sci., pp. 316–334. Springer, Berlin (2000).
7.
go back to reference Cramer R., Damgård I., Nielsen J.B.: Secure Multiparty Computation and Secret Sharing, 1st edn. Cambridge University Press, New York (2015).CrossRef Cramer R., Damgård I., Nielsen J.B.: Secure Multiparty Computation and Secret Sharing, 1st edn. Cambridge University Press, New York (2015).CrossRef
8.
go back to reference Damgård I., Zakarias S.: Constant-overhead secure computation of boolean circuits using preprocessing. In: Proceedings of the 10th Theory of Cryptography Conference on Theory of Cryptography, TCC’13, pp. 621–641, Springer, Berlin (2013). Damgård I., Zakarias S.: Constant-overhead secure computation of boolean circuits using preprocessing. In: Proceedings of the 10th Theory of Cryptography Conference on Theory of Cryptography, TCC’13, pp. 621–641, Springer, Berlin (2013).
9.
go back to reference Damgård I., Nielsen J.B., Nielsen M., Ranellucci S.: The TinyTable protocol for 2-party secure computation, or: gate-scrambling revisited. In: Advances in cryptology CRYPTO 2017. Part I, volume 10401 of Lecture Notes in Comput. Sci., pp. 167–187. Springer, Cham (2017). Damgård I., Nielsen J.B., Nielsen M., Ranellucci S.: The TinyTable protocol for 2-party secure computation, or: gate-scrambling revisited. In: Advances in cryptology CRYPTO 2017. Part I, volume 10401 of Lecture Notes in Comput. Sci., pp. 167–187. Springer, Cham (2017).
10.
go back to reference Feng G.-L., Rao T.R.N.: Improved geometric Goppa codes. I. Basic theory. Special issue on algebraic geometry codes. IEEE Trans. Inf. Theory 41(6), 1678–1693 (1995).CrossRef Feng G.-L., Rao T.R.N.: Improved geometric Goppa codes. I. Basic theory. Special issue on algebraic geometry codes. IEEE Trans. Inf. Theory 41(6), 1678–1693 (1995).CrossRef
11.
go back to reference Fitzgerald J., Lax R.F.: Decoding affine variety codes using Gröbner bases. Des. Codes Cryptogr. 13, 147–158 (1998).MathSciNetCrossRef Fitzgerald J., Lax R.F.: Decoding affine variety codes using Gröbner bases. Des. Codes Cryptogr. 13, 147–158 (1998).MathSciNetCrossRef
12.
go back to reference Galindo C., Hernando F., Ruano D.: Stabilizer quantum codes from \(J\)-affine variety codes and a new Steane-like enlargement. Quantum Inf. Process. 14(9), 3211–3231 (2015).MathSciNetCrossRef Galindo C., Hernando F., Ruano D.: Stabilizer quantum codes from \(J\)-affine variety codes and a new Steane-like enlargement. Quantum Inf. Process. 14(9), 3211–3231 (2015).MathSciNetCrossRef
13.
14.
go back to reference Geil O., Høholdt T.: Footprints or generalized Bezout’s theorem. IEEE Trans. Inf. Theory 46(2), 635–641 (2000).MathSciNetCrossRef Geil O., Høholdt T.: Footprints or generalized Bezout’s theorem. IEEE Trans. Inf. Theory 46(2), 635–641 (2000).MathSciNetCrossRef
15.
go back to reference Geil O., Høholdt T.: On hyperbolic codes. Applied algebra, algebraic algorithms and error-correcting codes (Melbourne, 2001), pp. 159–171, Lecture Notes in Comput. Sci., 2227, Springer, Berlin (2001). Geil O., Høholdt T.: On hyperbolic codes. Applied algebra, algebraic algorithms and error-correcting codes (Melbourne, 2001), pp. 159–171, Lecture Notes in Comput. Sci., 2227, Springer, Berlin (2001).
16.
go back to reference Martínez-Bernal J., Pitones Y., Villarreal R.H.: Minimum distance functions of complete intersections. J. Algebra Appl. 17(11), 1850204 (2018).MathSciNetCrossRef Martínez-Bernal J., Pitones Y., Villarreal R.H.: Minimum distance functions of complete intersections. J. Algebra Appl. 17(11), 1850204 (2018).MathSciNetCrossRef
17.
go back to reference Pellikaan R.: On decoding by error location and dependent sets of error positions. Discret. Math. 106–107, 369–381 (1992).MathSciNetCrossRef Pellikaan R.: On decoding by error location and dependent sets of error positions. Discret. Math. 106–107, 369–381 (1992).MathSciNetCrossRef
18.
go back to reference Randriambololona H.: Asymptotically good binary linear codes with asymptotically good self-intersection spans. IEEE Trans. Inf. Theory 59(5), 3038–3045 (2013).MathSciNetCrossRef Randriambololona H.: Asymptotically good binary linear codes with asymptotically good self-intersection spans. IEEE Trans. Inf. Theory 59(5), 3038–3045 (2013).MathSciNetCrossRef
19.
go back to reference Randriambololona H.: On products and powers of linear codes under component wise multiplication. In: Algorithmic Arithmetic, Geometry and Coding Theory, volume 637 of Contemp. Math., pp. 3-78, Amer. Math. Soc., Providence, RI (2015). Randriambololona H.: On products and powers of linear codes under component wise multiplication. In: Algorithmic Arithmetic, Geometry and Coding Theory, volume 637 of Contemp. Math., pp. 3-78, Amer. Math. Soc., Providence, RI (2015).
20.
go back to reference Sørensen A.B.: Weighted Reed-Muller codes and algebraic-geometric codes. IEEE Trans. Inf. Theory 38(6), 1821–1826 (1992).MathSciNetCrossRef Sørensen A.B.: Weighted Reed-Muller codes and algebraic-geometric codes. IEEE Trans. Inf. Theory 38(6), 1821–1826 (1992).MathSciNetCrossRef
Metadata
Title
High dimensional affine codes whose square has a designed minimum distance
Authors
Ignacio García-Marco
Irene Márquez-Corbella
Diego Ruano
Publication date
03-07-2020
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 8/2020
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-020-00764-5

Other articles of this Issue 8/2020

Designs, Codes and Cryptography 8/2020 Go to the issue

Premium Partner