Skip to main content
Top

2024 | OriginalPaper | Chapter

High Frequency Weighted Resolvent Estimates for the Dirichlet Laplacian in the Exterior Domain

Authors : Vladimir Georgiev, Mario Rastrelli

Published in: New Trends in the Applications of Differential Equations in Sciences

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we want to present several resolvent estimates for the Dirichlet Laplacian in exterior domain. The estimates evaluate a weighted \(L^2\) norm with a weight measured by a negative power of the distance from the boundary. We consider an exterior domain \(\varOmega \), that is the complementary of a compact in \(\textbf{R}^n\), and the inhomogeneous Helmotz equation on it. If the exterior domain is non-trapping, there are cut-off resolvent estimates without weights. Our main result is that we can improve the estimates putting the weights. The main idea is the polar change of coordinates, where \(r=d(x,\partial \varOmega )\), that allows us to use the Hardy inequality close to the boundary of the domain. Kato smoothing estimate is obtained as a consequence of the weighted cut-off resolvent estimates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abou Shakra, F.: On 2D nonlinear Schrödinger equation on non-trapping exterior domains, Rev. Mat. Iberoam. 31, no. 2, 657–680 (2015). Abou Shakra, F.: On 2D nonlinear Schrödinger equation on non-trapping exterior domains, Rev. Mat. Iberoam. 31, no. 2, 657–680 (2015).
2.
go back to reference Anton, R.: Global existence for defocusing cubic NLS and Gross-Pitaevskii equations in three dimensional exterior domains, J. Math. Pures Appl. (9) 89, no. 4, 335–354 (2008). Anton, R.: Global existence for defocusing cubic NLS and Gross-Pitaevskii equations in three dimensional exterior domains, J. Math. Pures Appl. (9) 89, no. 4, 335–354 (2008).
3.
go back to reference Blair, M. D.: On refined local smoothing estimates for the Schrödinger equation in exterior domains, Comm. Partial Differential Equations 39, no. 5, 781–805 (2014). Blair, M. D.: On refined local smoothing estimates for the Schrödinger equation in exterior domains, Comm. Partial Differential Equations 39, no. 5, 781–805 (2014).
4.
go back to reference Blair, M. D., Smith, H. F., Sogge, C. D. : Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary, Math. Ann. 354, no. 4, 1397–1430 (2012). Blair, M. D., Smith, H. F., Sogge, C. D. : Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary, Math. Ann. 354, no. 4, 1397–1430 (2012).
5.
go back to reference Blair, M. D.,Smith, H. F., Sogge,C. D. : On Strichartz estimates for Schrödinger operators in compact manifolds with boundary, Proc. Amer. Math. Soc. 136 , no. 1, 247–256 (2008). MR2350410 Blair, M. D.,Smith, H. F., Sogge,C. D. : On Strichartz estimates for Schrödinger operators in compact manifolds with boundary, Proc. Amer. Math. Soc. 136 , no. 1, 247–256 (2008). MR2350410
8.
go back to reference Cardoso, F., Vodev, G.: High frequency resolvent estimates and energy decay of solutions to the wave equation. Mat. Contemp. 26, 15–22 (2004). Cardoso, F., Vodev, G.: High frequency resolvent estimates and energy decay of solutions to the wave equation. Mat. Contemp. 26, 15–22 (2004).
9.
go back to reference Georgiev, V., Rastrelli, M.: On the square of Laplacian with inverse square potential. New trends in the applications of differential equations in sciences, Springer Proc. Math. Stat., 412, Springer, 199–207 (2023). Georgiev, V., Rastrelli, M.: On the square of Laplacian with inverse square potential. New trends in the applications of differential equations in sciences, Springer Proc. Math. Stat., 412, Springer, 199–207 (2023).
10.
go back to reference Georgiev, V., Li, C.: On the scattering problem for the nonlinear Schrödinger equation with a potential in 2D. Phys. D 398, 208–218 (2019). Georgiev, V., Li, C.: On the scattering problem for the nonlinear Schrödinger equation with a potential in 2D. Phys. D 398, 208–218 (2019).
11.
go back to reference Georgiev, V., Taniguchi, K.: On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete Contin. Dyn. Syst. 39, no. 2, 1101–1115 (2019). Georgiev, V., Taniguchi, K.: On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete Contin. Dyn. Syst. 39, no. 2, 1101–1115 (2019).
12.
go back to reference Ivanovici, O.: On the Schrödinger equation outside strictly convex obstacles, Anal. PDE 3, no. 3, 261-293 (2010). Ivanovici, O.: On the Schrödinger equation outside strictly convex obstacles, Anal. PDE 3, no. 3, 261-293 (2010).
13.
go back to reference Ivanovici, O., Lebeau, G.: Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples, C. R. Math. Acad. Sci. Paris 355, no. 7, 774–779 (2017). Ivanovici, O., Lebeau, G.: Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples, C. R. Math. Acad. Sci. Paris 355, no. 7, 774–779 (2017).
14.
go back to reference Karmous, M.: Strichartz estimates for regularized Schrödinger equations in exterior domains, J.K15 Abstr. Differ. Equ. Appl. 6, no. 1, 37–51 (2015). Karmous, M.: Strichartz estimates for regularized Schrödinger equations in exterior domains, J.K15 Abstr. Differ. Equ. Appl. 6, no. 1, 37–51 (2015).
15.
go back to reference Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann., 162, 258–279, (1965/1966). Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann., 162, 258–279, (1965/1966).
16.
go back to reference Killip, R., Visan, M.,Zhang, X.: The focusing cubic NLS on exterior domains in three dimensions, Appl. Math. Res. Express. AMRX 1, 146–180 (2016). Killip, R., Visan, M.,Zhang, X.: The focusing cubic NLS on exterior domains in three dimensions, Appl. Math. Res. Express. AMRX 1, 146–180 (2016).
17.
go back to reference Killip, R.,Visan, M., Zhang, X.: Quintic NLS in the exterior of a strictly convex obstacle, Amer. J. Math. 138, no. 5, 1193–1346 (2016). Killip, R.,Visan, M., Zhang, X.: Quintic NLS in the exterior of a strictly convex obstacle, Amer. J. Math. 138, no. 5, 1193–1346 (2016).
21.
go back to reference Reed, M., Barry S.: Methods of modern mathematical physics. IV. Analysis of operators. Academic Press , (1978). Reed, M., Barry S.: Methods of modern mathematical physics. IV. Analysis of operators. Academic Press , (1978).
22.
go back to reference Yang, K.: The focusing NLS on exterior domains in three dimensions, Commun. Pure Appl.Yan17 Anal. 16, no. 6, 2269–2297 (2017). Yang, K.: The focusing NLS on exterior domains in three dimensions, Commun. Pure Appl.Yan17 Anal. 16, no. 6, 2269–2297 (2017).
Metadata
Title
High Frequency Weighted Resolvent Estimates for the Dirichlet Laplacian in the Exterior Domain
Authors
Vladimir Georgiev
Mario Rastrelli
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_9

Premium Partner