Skip to main content
Top
Published in: The Journal of Supercomputing 2/2021

01-06-2020

High-performance and deep pedestrian detection based on estimation of different parts

Authors: Mahmoud Saeidi, Ali Ahmadi

Published in: The Journal of Supercomputing | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Pedestrian detection, despite the recent advances, still is of a great challenge to computer vision in wide range of diversified applications such as urban autonomous driving and intelligent transportation. Deep convolutional neural network has greatly contributed to the recent advances in pedestrian detection algorithms. The aim of this paper is to use modified single-shot detector (SSD) approach in pedestrian detection and then improve it by a novel deep architecture. The proposed deep architecture extracts initial Region of Interests (RoIs) using SSD approach, while it employs nine parallel fast RCNNs based on inception modules to estimate nine different parts of body. The proposed method takes the advantage of a secure border in each initial RoI to both create an Extended Region of Candidate Pedestrian (ERCP) and also to extract multi-RoIs. It then selects a number of RoIs within the ERCP as detected pedestrians which satisfy few reasonable criteria. We also propose a new training approach based on different body parts estimation which searches the best RoIs. Comprehensive experimental results demonstrate that the proposed method, deep model based on parts in pedestrian proposals, is a highly effective method that achieves very competitive performance on two most popular pedestrian detection datasets: Caltech-USA and INRIA. We have improved the log-average miss rate on the Caltech-USA and INRIA pedestrian datasets to 7.28% and 4.96%, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tian Y, Luo P, Wang X, Tang X (2015) Deep learning strong parts for pedestrian detection. In: IEEE, ICCV Tian Y, Luo P, Wang X, Tang X (2015) Deep learning strong parts for pedestrian detection. In: IEEE, ICCV
2.
go back to reference Jiang X, Pang Y, Li X, Pan J (2016) Speed up deep neural network based pedestrian detection by sharing features across multi-scale models. In: Neurocomputing, vol 185. Elsevier, pp 163–170 Jiang X, Pang Y, Li X, Pan J (2016) Speed up deep neural network based pedestrian detection by sharing features across multi-scale models. In: Neurocomputing, vol 185. Elsevier, pp 163–170
3.
go back to reference Tome D, Monti F, Baroffio L, Bondi L, Tagliasacchi M, Tubaro S (2016) Deep convolutional neural networks for pedestrian detection. Sig Process Image Commun 47:482–489CrossRef Tome D, Monti F, Baroffio L, Bondi L, Tagliasacchi M, Tubaro S (2016) Deep convolutional neural networks for pedestrian detection. Sig Process Image Commun 47:482–489CrossRef
4.
go back to reference Cai Z, Saberian M, Vasconcelos N (2015) Learning complexity-aware cascades for deep pedestrian detection. In: IEEE, ICCV Cai Z, Saberian M, Vasconcelos N (2015) Learning complexity-aware cascades for deep pedestrian detection. In: IEEE, ICCV
5.
go back to reference Zhang S, Yang J, Schiele B (2018) Occluded pedestrian detection through guided attention in cnn. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Zhang S, Yang J, Schiele B (2018) Occluded pedestrian detection through guided attention in cnn. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
6.
go back to reference Li J, Liang X, Shen Sh, Xu T, Feng J, Yan S (2018) Scale-aware fast r-cnn for pedestrian detection. IEEE Trans Multimed 20(4):985–996 Li J, Liang X, Shen Sh, Xu T, Feng J, Yan S (2018) Scale-aware fast r-cnn for pedestrian detection. IEEE Trans Multimed 20(4):985–996
7.
go back to reference Wang S, Cheng J, Liu H, Tang M (2017) PCN: part and context information for pedestrian detection with cnns. In: BMVC Wang S, Cheng J, Liu H, Tang M (2017) PCN: part and context information for pedestrian detection with cnns. In: BMVC
8.
go back to reference Lin C, Lu J, Wang G, Zhou J (2018) Graininess-aware deep feature learning for pedestrian detection. In: ECCV. Springer Lin C, Lu J, Wang G, Zhou J (2018) Graininess-aware deep feature learning for pedestrian detection. In: ECCV. Springer
10.
go back to reference Zhang L, Lin L, Liang X, He K (2016) Is faster r-cnn doing well for pedestrian detection?. In: European Conference on Computer Vision. Springer, pp 443–457 Zhang L, Lin L, Liang X, He K (2016) Is faster r-cnn doing well for pedestrian detection?. In: European Conference on Computer Vision. Springer, pp 443–457
11.
go back to reference Tian Y, Luo P, Wang X, Tang X (2015) Pedestrian detection aided by deep learning semantic tasks. In: IEE, CVPR Tian Y, Luo P, Wang X, Tang X (2015) Pedestrian detection aided by deep learning semantic tasks. In: IEE, CVPR
12.
go back to reference Cai Z, Fan Q, Feris R, Vasconcelos N (2016) A unified multi-scale deep convolutional neural network for fast object detection. In: ECCV Cai Z, Fan Q, Feris R, Vasconcelos N (2016) A unified multi-scale deep convolutional neural network for fast object detection. In: ECCV
13.
go back to reference Song T, Sun L, Xie D, Sun H, Pu S (2018) Small-scale pedestrian detection based on topological line localization and temporal feature aggregation. In: Proceedings of the ECCV, pp 536–551 Song T, Sun L, Xie D, Sun H, Pu S (2018) Small-scale pedestrian detection based on topological line localization and temporal feature aggregation. In: Proceedings of the ECCV, pp 536–551
14.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings of the NIPS Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings of the NIPS
15.
go back to reference Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional neural networks. In: Proceedings of the ECCV Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional neural networks. In: Proceedings of the ECCV
16.
go back to reference He K, Zhang X, Ren S, et al (2014) Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Proceedings of the ECCV He K, Zhang X, Ren S, et al (2014) Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Proceedings of the ECCV
17.
go back to reference Sermanet P, Eigen D, Zhang X, et al (2017) Overfeat: integrated recognition, localization and detection using convolutional networks. In: Proceedings of the ICLR Sermanet P, Eigen D, Zhang X, et al (2017) Overfeat: integrated recognition, localization and detection using convolutional networks. In: Proceedings of the ICLR
18.
go back to reference Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Proceedings of the ICLR Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Proceedings of the ICLR
19.
go back to reference Szegedy C, Liu W, Jia Y, et al (2015) Going deeper with convolutions. In: Proceedings of the CVPR Szegedy C, Liu W, Jia Y, et al (2015) Going deeper with convolutions. In: Proceedings of the CVPR
20.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceeding of CVPR He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceeding of CVPR
21.
go back to reference Girshick R, Donahue J, Darrell T, et al (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the CVPR Girshick R, Donahue J, Darrell T, et al (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the CVPR
22.
go back to reference Girshick R (2015) Fast R-CNN. In: Proceedings of the ICCV Girshick R (2015) Fast R-CNN. In: Proceedings of the ICCV
23.
go back to reference Ren S, He K, Girshick R, et al (2015) Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of the NIPS Ren S, He K, Girshick R, et al (2015) Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of the NIPS
24.
go back to reference Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: CVPR Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: CVPR
25.
go back to reference Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) SSD: single shot multibox detector. In: ECCV, pp 21–37 Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) SSD: single shot multibox detector. In: ECCV, pp 21–37
26.
go back to reference Everingham M, Vangool L, Williams CKI, Winn J, Zisserman A (2015) The PASCAL visual object classes challenge: a retrospective. IJCV 111(1):98–136CrossRef Everingham M, Vangool L, Williams CKI, Winn J, Zisserman A (2015) The PASCAL visual object classes challenge: a retrospective. IJCV 111(1):98–136CrossRef
27.
go back to reference Dollar P, Wojek C, Schiele B, Perona P (2009) Pedestrian detection: a benchmark. In: CVPR Dollar P, Wojek C, Schiele B, Perona P (2009) Pedestrian detection: a benchmark. In: CVPR
28.
go back to reference Saeidi M, Ahmadi A (2020) A novel approach for deep pedestrian detection based on changes in camera viewing angle. In: SIVP Saeidi M, Ahmadi A (2020) A novel approach for deep pedestrian detection based on changes in camera viewing angle. In: SIVP
29.
go back to reference Saeidi M, Ahmadi A (2018) Deep learning based on parallel CNN for pedestrian detection. In: IJICT Saeidi M, Ahmadi A (2018) Deep learning based on parallel CNN for pedestrian detection. In: IJICT
30.
go back to reference Saeidi M, Ahmadi A (2018) Deep learning based on CNN for pedestrian detection: an overview and analysis. In: IEEE, IST Saeidi M, Ahmadi A (2018) Deep learning based on CNN for pedestrian detection: an overview and analysis. In: IEEE, IST
31.
go back to reference Saeidi M, Ahmadi A (2018) Pedestrian detection using an extended fast RCNN based on a secure margin in RoI feature maps. In: IEEE, IST Saeidi M, Ahmadi A (2018) Pedestrian detection using an extended fast RCNN based on a secure margin in RoI feature maps. In: IEEE, IST
32.
go back to reference Viola PA, Jones M (2004) Robust real-time face detection. J Comput Vis 57(2):137–154CrossRef Viola PA, Jones M (2004) Robust real-time face detection. J Comput Vis 57(2):137–154CrossRef
33.
go back to reference Dollar P, Tu Z, Perona P, Belongie S (2009) Integral channel features. In: Proceedings of British Machine Vision Conference Dollar P, Tu Z, Perona P, Belongie S (2009) Integral channel features. In: Proceedings of British Machine Vision Conference
34.
go back to reference Wojek C, Schiele B (2008) A performance evaluation of single and multi-feature people detection. In: DAGM Symposium Pattern Recognition Wojek C, Schiele B (2008) A performance evaluation of single and multi-feature people detection. In: DAGM Symposium Pattern Recognition
35.
go back to reference Walk S, Majer N, Schindler K, Schiele B (2010) New features and insights for pedestrian detection. In CVPR Walk S, Majer N, Schindler K, Schiele B (2010) New features and insights for pedestrian detection. In CVPR
36.
go back to reference Marin, J., Vazquez, D., Lopez, A., Amores, J., Leibl, B.: Random Forest of local experts for pedestrian detection. In: ICCV. (2013) Marin, J., Vazquez, D., Lopez, A., Amores, J., Leibl, B.: Random Forest of local experts for pedestrian detection. In: ICCV. (2013)
37.
go back to reference Levi D, Silberstein S, Bar-Hillel A (2013) Fast multiple-part based object detection using kd-ferns. In: CVPR Levi D, Silberstein S, Bar-Hillel A (2013) Fast multiple-part based object detection using kd-ferns. In: CVPR
38.
go back to reference Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings of the CVPR Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings of the CVPR
39.
go back to reference Dollar P, Appel R, Belongie S, Perona P (2014) Fast feature pyramids for object detection. In: PAMI Dollar P, Appel R, Belongie S, Perona P (2014) Fast feature pyramids for object detection. In: PAMI
40.
go back to reference Nam W, Dollar P, Han JH (2014) Local decorrelation for improved pedestrian detection. In: NIPS Nam W, Dollar P, Han JH (2014) Local decorrelation for improved pedestrian detection. In: NIPS
41.
go back to reference Zhang S, Bauchhage C, Cremers AB (2014) Informed haar-like features improve pedestrian detection. In: CVPR Zhang S, Bauchhage C, Cremers AB (2014) Informed haar-like features improve pedestrian detection. In: CVPR
42.
go back to reference Paisitkriangkrai S, Shen C, Van den Hengel A (2014) Pedestrian detection with spatially pooled features and structured ensemble learning. IEEE Trans Pattern Anal Mach Intell 38(6):1243–1257CrossRef Paisitkriangkrai S, Shen C, Van den Hengel A (2014) Pedestrian detection with spatially pooled features and structured ensemble learning. IEEE Trans Pattern Anal Mach Intell 38(6):1243–1257CrossRef
43.
go back to reference Benenson R, Omran M, Hosang J, Schiele B (2014) Ten years of pedestrian detection, what have we learned. In: ECCV, CVRSUAD Workshop Benenson R, Omran M, Hosang J, Schiele B (2014) Ten years of pedestrian detection, what have we learned. In: ECCV, CVRSUAD Workshop
44.
go back to reference Yan J, Zhang X, Lei Z, Liao S, Li SZ (2013) Robust multi-resolution pedestrian detection in traffic scenes. In: CVPR Yan J, Zhang X, Lei Z, Liao S, Li SZ (2013) Robust multi-resolution pedestrian detection in traffic scenes. In: CVPR
45.
go back to reference Ouyang W, Wang X (2013) Single-pedestrian detection aided by multi-pedestrian detection. In: CVPR Ouyang W, Wang X (2013) Single-pedestrian detection aided by multi-pedestrian detection. In: CVPR
46.
go back to reference Park D, Ramanan D, Fowlkes C (2010) Mltiresolution models for object detection. In: ECCV Park D, Ramanan D, Fowlkes C (2010) Mltiresolution models for object detection. In: ECCV
47.
go back to reference Felzenszwalb P, McAllester D, Ramanan D (2008) A discriminatively trained, multiscale, deformable part model. In: CVPR Felzenszwalb P, McAllester D, Ramanan D (2008) A discriminatively trained, multiscale, deformable part model. In: CVPR
48.
go back to reference Felzenszwalb P, Girshick R, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. In: PAMI Felzenszwalb P, Girshick R, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. In: PAMI
49.
go back to reference Zhang S, Benenson R, Schiele B (2015) Filtered channel features for pedestrian detection. In: CVPR Zhang S, Benenson R, Schiele B (2015) Filtered channel features for pedestrian detection. In: CVPR
50.
go back to reference Park D, Zitnick CL, Ramanan D, Dollar P (2013) Exploring weak stabilization for motion feature extraction. In: CVPR Park D, Zitnick CL, Ramanan D, Dollar P (2013) Exploring weak stabilization for motion feature extraction. In: CVPR
51.
go back to reference Costea AD, Nedevschi S (2014) Word channel based multiscale pedestrian detection without image resizing and using only one classifier. In: CVPR Costea AD, Nedevschi S (2014) Word channel based multiscale pedestrian detection without image resizing and using only one classifier. In: CVPR
52.
go back to reference Benenson R, Mathias M, Tuytelaars T, Van Gool L (2013) Seeking the strongest rigid detector. In: CVPR Benenson R, Mathias M, Tuytelaars T, Van Gool L (2013) Seeking the strongest rigid detector. In: CVPR
53.
go back to reference Dollar P, Wojek C, Schiele B, Perona P (2012) Pedestrian detection: an evaluation of the state of the art. In: PAMI, vol 34 Dollar P, Wojek C, Schiele B, Perona P (2012) Pedestrian detection: an evaluation of the state of the art. In: PAMI, vol 34
54.
go back to reference Alexe B, Deselares T, Ferrari V (2012) Measuring the objectness of image windows. In: TPAMI Alexe B, Deselares T, Ferrari V (2012) Measuring the objectness of image windows. In: TPAMI
55.
go back to reference Uijlings J, Sande K, Gevers T, Smeulders A (2013) Selective search for object recognition. In: IJCV Uijlings J, Sande K, Gevers T, Smeulders A (2013) Selective search for object recognition. In: IJCV
56.
go back to reference Endres I, Hoiem D (2010) Category independent object proposals. In: ECCV Endres I, Hoiem D (2010) Category independent object proposals. In: ECCV
57.
go back to reference Cheng MM, Zhang Z, Lin WY, et al (2014) BING: binarized normed gradients for objectness estimation at 300fps. In: Proceedings of the CVPR Cheng MM, Zhang Z, Lin WY, et al (2014) BING: binarized normed gradients for objectness estimation at 300fps. In: Proceedings of the CVPR
58.
go back to reference Zitnick CL, Dollar P (2014) Edge boxes: locating object proposals from edges. In: Proceedings of the ECCV Zitnick CL, Dollar P (2014) Edge boxes: locating object proposals from edges. In: Proceedings of the ECCV
59.
go back to reference Cortes C, Vapnik V (1995) Support-vector networks. In: Machine Learning, pp 237–297 Cortes C, Vapnik V (1995) Support-vector networks. In: Machine Learning, pp 237–297
60.
go back to reference Laptev I (2009) Improving object detection with boosted histograms. In: Image and vision computing, vol 27. Elsevier, pp 535–544 Laptev I (2009) Improving object detection with boosted histograms. In: Image and vision computing, vol 27. Elsevier, pp 535–544
62.
go back to reference Cui H, Ganger GR, Gibbons PB (2015) Scalable deep learning on distributed GPUs with a GPU-specialized parameter server. CMU-PDL-15-107 Cui H, Ganger GR, Gibbons PB (2015) Scalable deep learning on distributed GPUs with a GPU-specialized parameter server. CMU-PDL-15-107
63.
go back to reference Cai C, Gao J, Minjie B, Zhang P, Gao H (2015) Fast pedestrian detection with adaboost algorithm using GPU. Int J Database Theory Appl 8(6):125–132CrossRef Cai C, Gao J, Minjie B, Zhang P, Gao H (2015) Fast pedestrian detection with adaboost algorithm using GPU. Int J Database Theory Appl 8(6):125–132CrossRef
64.
go back to reference Benenson R, Mathias M, Timofte R, Gool L (2012) Pedestrian detection at 100 frames per second. In: CVPR Benenson R, Mathias M, Timofte R, Gool L (2012) Pedestrian detection at 100 frames per second. In: CVPR
65.
go back to reference Machida T, Naito T (2011) GPU & CPU cooperative accelerated pedestrian and vehicle detection. In: Proceeding of IEEE ICCV Workshops Machida T, Naito T (2011) GPU & CPU cooperative accelerated pedestrian and vehicle detection. In: Proceeding of IEEE ICCV Workshops
66.
go back to reference Fukui H, Yamashita T, Yamauchi Y, Fujiyoshi H, Murase H (2015) Pedestrian detection based on deep convolutional neural network with ensemble inference network. In: IEEE Intelligent Vehicle Symposium (IV) Fukui H, Yamashita T, Yamauchi Y, Fujiyoshi H, Murase H (2015) Pedestrian detection based on deep convolutional neural network with ensemble inference network. In: IEEE Intelligent Vehicle Symposium (IV)
67.
go back to reference Shakeri A, Moshiri B, Garakani HG (2018) Pedestrian detection using image fusion and stereo vision in autonomous vehicles. In: IEEE, IST Shakeri A, Moshiri B, Garakani HG (2018) Pedestrian detection using image fusion and stereo vision in autonomous vehicles. In: IEEE, IST
68.
go back to reference Russakovsky O, Deng J, Su H, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet large scale visual recognition challenge. In: IJCV Russakovsky O, Deng J, Su H, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet large scale visual recognition challenge. In: IJCV
69.
go back to reference Zhang S, Benenson R, Schiele B (2017) A diverse dataset for pedestrian detection. In: CVPR Zhang S, Benenson R, Schiele B (2017) A diverse dataset for pedestrian detection. In: CVPR
70.
go back to reference Kingma D, Ba J (2015) Adam: a method for stochastic optimization. In: ICLR Kingma D, Ba J (2015) Adam: a method for stochastic optimization. In: ICLR
71.
go back to reference Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: AISTATS Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: AISTATS
72.
go back to reference Ess A, Leibe B, Schindler K, Van Gool L (2008) A mobile vision system for robust multi-person tracking. In: CVPR, IEEE Press Ess A, Leibe B, Schindler K, Van Gool L (2008) A mobile vision system for robust multi-person tracking. In: CVPR, IEEE Press
73.
go back to reference Wojek C, Walk S, Schiele B (2009) Multi-cue onboard pedestrian detection. In: CVPR Wojek C, Walk S, Schiele B (2009) Multi-cue onboard pedestrian detection. In: CVPR
74.
go back to reference Viola P, Jones M, Snow D (2003) Detecting pedestrians using patterns of motion and appearance. In: CVPR Viola P, Jones M, Snow D (2003) Detecting pedestrians using patterns of motion and appearance. In: CVPR
75.
go back to reference Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR
76.
go back to reference Park D, Ramanan D, Fowlkes C (2010) Multiresolution models for object detection. In: ECCV Park D, Ramanan D, Fowlkes C (2010) Multiresolution models for object detection. In: ECCV
Metadata
Title
High-performance and deep pedestrian detection based on estimation of different parts
Authors
Mahmoud Saeidi
Ali Ahmadi
Publication date
01-06-2020
Publisher
Springer US
Published in
The Journal of Supercomputing / Issue 2/2021
Print ISSN: 0920-8542
Electronic ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-020-03345-4

Other articles of this Issue 2/2021

The Journal of Supercomputing 2/2021 Go to the issue

Premium Partner