Skip to main content
Top

2019 | OriginalPaper | Chapter

12. High-Performance Interface

Authors : Motoyasu Kobayashi, Atsushi Takahara

Published in: Molecular Soft-Interface Science

Publisher: Springer Japan

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-performance soft interfaces were designed by tethering various polyelectrolyte brushes with anionic, cationic, and zwitterionic functional groups on substrate surfaces using a surface-initiated controlled radical polymerization technique. Ion-containing polymer brushes afforded superhydrophilic surfaces inducing antifouling properties in water. Repeatable adhesion systems without organic solvents were achieved through oppositely charged polyelectrolyte brushes by controlling the electrostatic attractive interaction between the brushes. Environmentally friendly water lubrication systems were also demonstrated by the high-density ion-containing polymer brushes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rühe J (2004) Polymer brushes on the way to tailor-made surfaces. In: Advincula RC, Brittain WJ, Caster KC, Rühe J (eds) Polymer brushes: synthesis, characterization, applications. Wiley VCH, Weinheim, pp 1–31 Rühe J (2004) Polymer brushes on the way to tailor-made surfaces. In: Advincula RC, Brittain WJ, Caster KC, Rühe J (eds) Polymer brushes: synthesis, characterization, applications. Wiley VCH, Weinheim, pp 1–31
2.
go back to reference Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T (2006) Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. Adv Polym Sci 197:1–45CrossRef Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T (2006) Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. Adv Polym Sci 197:1–45CrossRef
3.
go back to reference Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25:677–710CrossRef Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25:677–710CrossRef
4.
go back to reference Kobayashi M, Ishikwa T, Takahara A (2013) Adhesion and tribological characteristics of ion-containing polymer brushes prepared by controlled radical polymerization. In: Zeng H (ed) Polymer adhesion, friction, and lubrication. John Wiley & Sons Inc., Hoboken, pp 59–82CrossRef Kobayashi M, Ishikwa T, Takahara A (2013) Adhesion and tribological characteristics of ion-containing polymer brushes prepared by controlled radical polymerization. In: Zeng H (ed) Polymer adhesion, friction, and lubrication. John Wiley & Sons Inc., Hoboken, pp 59–82CrossRef
5.
go back to reference Sommer S, Ekin A, Webster DC, Stafslien SJ, Daniels J, VanderWal LJ, Thompson SE, Callow ME, Callow JA (2010) A preliminary study on the properties and fouling-release performance of siloxane-polyurethane coatings prepared from poly(dimethylsiloxane) (PDMS) macromers. Biofouling 26:961–972CrossRef Sommer S, Ekin A, Webster DC, Stafslien SJ, Daniels J, VanderWal LJ, Thompson SE, Callow ME, Callow JA (2010) A preliminary study on the properties and fouling-release performance of siloxane-polyurethane coatings prepared from poly(dimethylsiloxane) (PDMS) macromers. Biofouling 26:961–972CrossRef
6.
go back to reference Krishnan S, Wang N, Ober CK, Finlay JA, Callow ME, Callow JA, Hexemer A, Sohn KE, Kramer EJ, Fischer DA (2006) Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom navicula and the green alga ulva. Biomacromol 7:1449–1462CrossRef Krishnan S, Wang N, Ober CK, Finlay JA, Callow ME, Callow JA, Hexemer A, Sohn KE, Kramer EJ, Fischer DA (2006) Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom navicula and the green alga ulva. Biomacromol 7:1449–1462CrossRef
7.
go back to reference Yarbrough JC, Rolland JP, DeSimone JM, Callow ME, Finlay JA, Callow JA (2006) Contact angle analysis, surface dynamics, and biofouling characteristics of cross-linkable, random perfluoropolyether-based graft terpolymers. Macromolecules 39:2521–2528CrossRef Yarbrough JC, Rolland JP, DeSimone JM, Callow ME, Finlay JA, Callow JA (2006) Contact angle analysis, surface dynamics, and biofouling characteristics of cross-linkable, random perfluoropolyether-based graft terpolymers. Macromolecules 39:2521–2528CrossRef
8.
go back to reference Brady RF Jr, Singer IL (2000) Mechanical factors favoring release from fouling release coatings. Biofouling 15:73–81CrossRef Brady RF Jr, Singer IL (2000) Mechanical factors favoring release from fouling release coatings. Biofouling 15:73–81CrossRef
9.
go back to reference Lejars M, Margaillan A, Bressy C (2012) Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev 112:4347–4390CrossRef Lejars M, Margaillan A, Bressy C (2012) Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev 112:4347–4390CrossRef
10.
go back to reference Krishnan S, Weinman CJ, Ober CK (2008) Advances in polymers for anti-biofouling surfaces. J Mater Chem 18:3405–3413CrossRef Krishnan S, Weinman CJ, Ober CK (2008) Advances in polymers for anti-biofouling surfaces. J Mater Chem 18:3405–3413CrossRef
11.
go back to reference Dalsin JL, Messersmith PB (2005) Bioinspired antifouling polymers. Mater Today 8:38–46CrossRef Dalsin JL, Messersmith PB (2005) Bioinspired antifouling polymers. Mater Today 8:38–46CrossRef
12.
go back to reference Hucknall A, Rangarajan S, Chilkoti A (2009) In pursuit of zero: polymer brushes that resist the adsorption of proteins. Adv Mater 21:2441–2446CrossRef Hucknall A, Rangarajan S, Chilkoti A (2009) In pursuit of zero: polymer brushes that resist the adsorption of proteins. Adv Mater 21:2441–2446CrossRef
13.
go back to reference Tripathi BP, Dubey NC, Choudhury S, Stamm M (2012) Antifouling and tunable amino functionalized porous membranes for filtration applications. J Mater Chem 22:19981–19992CrossRef Tripathi BP, Dubey NC, Choudhury S, Stamm M (2012) Antifouling and tunable amino functionalized porous membranes for filtration applications. J Mater Chem 22:19981–19992CrossRef
14.
go back to reference Li GZ, Cheng G, Xue H, Chen S, Zhang F, Jiang S (2008) Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials 29:4592–4597CrossRef Li GZ, Cheng G, Xue H, Chen S, Zhang F, Jiang S (2008) Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials 29:4592–4597CrossRef
15.
go back to reference Higaki Y, Nishida J, Takenaka A, Yoshimatsu R, Kobayashi M, Takahara A (2015) Versatile inhibition of marine organism settlement by zwitterionic polymer brushes. Polym J 47:811–818CrossRef Higaki Y, Nishida J, Takenaka A, Yoshimatsu R, Kobayashi M, Takahara A (2015) Versatile inhibition of marine organism settlement by zwitterionic polymer brushes. Polym J 47:811–818CrossRef
16.
go back to reference Holmlin RE, Chen X, Chapman RG, Takayama S, Whitesides GM (2001) Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 17:2841–2850CrossRef Holmlin RE, Chen X, Chapman RG, Takayama S, Whitesides GM (2001) Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 17:2841–2850CrossRef
17.
go back to reference Jiang S, Cao Z (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932CrossRef Jiang S, Cao Z (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932CrossRef
18.
go back to reference Ederth T, Ekblad T, Pettitt ME, Conlan SL, Du CX, Callow ME, Callow JA, Mutton R, Clare AS, D’Souza F, Donnelly G, Bruin A, Willemsen PR, Su XJ, Wang S, Zhao Q, Hederos M, Konradsson P, Liedberg B (2011) Resistance of galactoside-terminated alkanethiol self-assembled monolayers to marine fouling organisms. ACS Appl Mater Interfaces 3:3890–3901CrossRef Ederth T, Ekblad T, Pettitt ME, Conlan SL, Du CX, Callow ME, Callow JA, Mutton R, Clare AS, D’Souza F, Donnelly G, Bruin A, Willemsen PR, Su XJ, Wang S, Zhao Q, Hederos M, Konradsson P, Liedberg B (2011) Resistance of galactoside-terminated alkanethiol self-assembled monolayers to marine fouling organisms. ACS Appl Mater Interfaces 3:3890–3901CrossRef
19.
go back to reference Luk YY, Kato M, Mrksich M (2000) Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16:9604–9608CrossRef Luk YY, Kato M, Mrksich M (2000) Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16:9604–9608CrossRef
20.
go back to reference Chelmowski R, Köster SD, Kerstan A, Prekelt A, Grunwald C, Winkler T, Metzler-Nolte N, Terfort A, Wöll C (2008) Peptide-based SAMs that resist the adsorption of proteins. J Am Chem Soc 130:14952–14953CrossRef Chelmowski R, Köster SD, Kerstan A, Prekelt A, Grunwald C, Winkler T, Metzler-Nolte N, Terfort A, Wöll C (2008) Peptide-based SAMs that resist the adsorption of proteins. J Am Chem Soc 130:14952–14953CrossRef
21.
go back to reference Statz AR, Meagher RJ, Barron AE, Messersmith PB (2005) New peptidomimetic polymers for antifouling surfaces. J Am Chem Soc 127:7972–7973CrossRef Statz AR, Meagher RJ, Barron AE, Messersmith PB (2005) New peptidomimetic polymers for antifouling surfaces. J Am Chem Soc 127:7972–7973CrossRef
22.
go back to reference Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–5620CrossRef Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–5620CrossRef
23.
go back to reference Kobayashi M, Terayama Y, Yamaguchi H, Terada M, Murakami D, Ishihara K, Takahara A (2012) Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir 28:7212–7222CrossRef Kobayashi M, Terayama Y, Yamaguchi H, Terada M, Murakami D, Ishihara K, Takahara A (2012) Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir 28:7212–7222CrossRef
24.
go back to reference Murakami D, Kobayashi M, Moriwaki T, Ikemoto Y, Jinnai H, Takahara A (2013) Spreading and structuring of water on superhydrophilic polyelectrolyte brush surfaces. Langmuir 29:1148–1151CrossRef Murakami D, Kobayashi M, Moriwaki T, Ikemoto Y, Jinnai H, Takahara A (2013) Spreading and structuring of water on superhydrophilic polyelectrolyte brush surfaces. Langmuir 29:1148–1151CrossRef
25.
go back to reference Yamaguchi H, Honda K, Kobayashi M, Morita M, Masunaga H, Sakata O, Sasaki S, Takahara A (2008) Molecular aggregation state of surface-grafted poly{2-(perfluorooctyl)ethyl acrylate} thin film analyzed by grazing incidence x-ray diffraction. Polym J 40:854–860CrossRef Yamaguchi H, Honda K, Kobayashi M, Morita M, Masunaga H, Sakata O, Sasaki S, Takahara A (2008) Molecular aggregation state of surface-grafted poly{2-(perfluorooctyl)ethyl acrylate} thin film analyzed by grazing incidence x-ray diffraction. Polym J 40:854–860CrossRef
26.
go back to reference Yamaguchi H, Kikuchi M, Kobayashi M, Ogawa H, Masunaga H, Sakata O, Takahara A (2012) Influence of molecular weight dispersity of poly{2-(perfluorooctyl)ethyl acrylate} brushes on their molecular aggregation states and wetting behavior. Macromolecules 45:1509–1516CrossRef Yamaguchi H, Kikuchi M, Kobayashi M, Ogawa H, Masunaga H, Sakata O, Takahara A (2012) Influence of molecular weight dispersity of poly{2-(perfluorooctyl)ethyl acrylate} brushes on their molecular aggregation states and wetting behavior. Macromolecules 45:1509–1516CrossRef
27.
go back to reference Kobayashi M, Terada M, Terayama Y, Kikuchi M, Takahara A (2010) Direct synthesis of well-defined poly[{2-(methacryloyloxy)ethyl}trimethylammonium chloride] brush via surface-initiated atom transfer radical polymerization in fluoroalcohol. Macromolecules 43:8408–8415CrossRef Kobayashi M, Terada M, Terayama Y, Kikuchi M, Takahara A (2010) Direct synthesis of well-defined poly[{2-(methacryloyloxy)ethyl}trimethylammonium chloride] brush via surface-initiated atom transfer radical polymerization in fluoroalcohol. Macromolecules 43:8408–8415CrossRef
28.
go back to reference Kobayashi M, Terayama Y, Hosaka N, Kaido M, Suzuki A, Yamada N, Torikai N, Ishihara K, Takahara A (2007) Friction behavior of high-density poly(2-methacryloyloxyethyl phosphorylcholine) brush in aqueous media. Soft Matter 3:740–746CrossRef Kobayashi M, Terayama Y, Hosaka N, Kaido M, Suzuki A, Yamada N, Torikai N, Ishihara K, Takahara A (2007) Friction behavior of high-density poly(2-methacryloyloxyethyl phosphorylcholine) brush in aqueous media. Soft Matter 3:740–746CrossRef
29.
go back to reference Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747CrossRef Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747CrossRef
30.
go back to reference Kobayashi M, Matsugi T, Saito J, Imuta J, Kashiwa N, Takahara A (2013) Direct modification of polyolefin films by surfaceinitiated polymerization of a phosphobetaine monomer. Polym Chem 4:731–739CrossRef Kobayashi M, Matsugi T, Saito J, Imuta J, Kashiwa N, Takahara A (2013) Direct modification of polyolefin films by surfaceinitiated polymerization of a phosphobetaine monomer. Polym Chem 4:731–739CrossRef
31.
go back to reference Chen KS, Uyama Y, Ikada Y (1994) Adhesive interaction between polymer surfaces grafted with water soluble polymer chains. Langmuir 10:1319–1322CrossRef Chen KS, Uyama Y, Ikada Y (1994) Adhesive interaction between polymer surfaces grafted with water soluble polymer chains. Langmuir 10:1319–1322CrossRef
32.
go back to reference Thünemann AF, Müller M, Dautzenberg H, Joanny JF, Löwen H (2004) Polyelectrolyte complexes. Adv Polym Sci 166:113–171CrossRef Thünemann AF, Müller M, Dautzenberg H, Joanny JF, Löwen H (2004) Polyelectrolyte complexes. Adv Polym Sci 166:113–171CrossRef
33.
go back to reference LaSpina R, Tomlinson MR, Ruiz-Pérez L, Chiche A, Langridge S, Geoghegan M (2007) Controlling netweork-brush interactions to achieve switchable adhesion. Angew Chem Int Ed 46:6460–6463CrossRef LaSpina R, Tomlinson MR, Ruiz-Pérez L, Chiche A, Langridge S, Geoghegan M (2007) Controlling netweork-brush interactions to achieve switchable adhesion. Angew Chem Int Ed 46:6460–6463CrossRef
34.
go back to reference Sudre G, Olanier L, Tran Y, Hourdet D, Creton C (2012) Reversible adhesion between a hydrogel and a polymer brush. Soft Matter 8:8184–8193CrossRef Sudre G, Olanier L, Tran Y, Hourdet D, Creton C (2012) Reversible adhesion between a hydrogel and a polymer brush. Soft Matter 8:8184–8193CrossRef
35.
go back to reference Kobayashi M, Terada M, Takahara A (2011) Reversible adhesive-free nanoscale adhesion utilizing oppositely charged polyelectrolyte brushes. Soft Matter 7:5717–5722CrossRef Kobayashi M, Terada M, Takahara A (2011) Reversible adhesive-free nanoscale adhesion utilizing oppositely charged polyelectrolyte brushes. Soft Matter 7:5717–5722CrossRef
36.
go back to reference Li ZF, Kang ET, Neoh KG, Tan KL, Huang CC, Liaw DJ (1997) Surface structures and adhesive-free adhesion characteristics of polyaniline films after modification by graft copolymerization. Macromolecules 30:3354–3362CrossRef Li ZF, Kang ET, Neoh KG, Tan KL, Huang CC, Liaw DJ (1997) Surface structures and adhesive-free adhesion characteristics of polyaniline films after modification by graft copolymerization. Macromolecules 30:3354–3362CrossRef
37.
go back to reference Kang ET, Shi JL, Neoh KG, Tan KL, Liaw DJ (1998) Surface modification of polytetrafluoroethylene films via graft copolymerization for auto-adhesion. J Polym Sci Part A Polym Chem 36:3107–3114CrossRef Kang ET, Shi JL, Neoh KG, Tan KL, Liaw DJ (1998) Surface modification of polytetrafluoroethylene films via graft copolymerization for auto-adhesion. J Polym Sci Part A Polym Chem 36:3107–3114CrossRef
38.
go back to reference Han HS, Tan KL, Kang ET, Neoh KG (1998) Low-temperature graft copolymerization of 1-vinyl imidazole on low-density polyethylene films with simultaneous lamination of copper foils. J Appl Polym Sci 70:1977–1983CrossRef Han HS, Tan KL, Kang ET, Neoh KG (1998) Low-temperature graft copolymerization of 1-vinyl imidazole on low-density polyethylene films with simultaneous lamination of copper foils. J Appl Polym Sci 70:1977–1983CrossRef
39.
go back to reference Wang T, Kang ET, Neoh KG, Tan KL, Liaw DJ (1998) Surface modification of low-density polyethylene films by UV-induced graft copolymerization and its relevance to photolamination. Langmuir 14:921–927CrossRef Wang T, Kang ET, Neoh KG, Tan KL, Liaw DJ (1998) Surface modification of low-density polyethylene films by UV-induced graft copolymerization and its relevance to photolamination. Langmuir 14:921–927CrossRef
40.
go back to reference Chen W, Neoh KG, Kang ET, Tan KL, Liaw DJ, Huang CC (1998) Surface modification and adhesion characteristics of polycarbonate films after graft copolymerization. J Polym Sci Part A Polym Chem 36:357–366CrossRef Chen W, Neoh KG, Kang ET, Tan KL, Liaw DJ, Huang CC (1998) Surface modification and adhesion characteristics of polycarbonate films after graft copolymerization. J Polym Sci Part A Polym Chem 36:357–366CrossRef
41.
go back to reference Kang ET, Neoh KG, Li ZF, Tan KL, Liaw DJ (1998) Surface modification of polymer films by graft copolymerization for adhesive-free adhesion. Polymer 39:2429–2436CrossRef Kang ET, Neoh KG, Li ZF, Tan KL, Liaw DJ (1998) Surface modification of polymer films by graft copolymerization for adhesive-free adhesion. Polymer 39:2429–2436CrossRef
42.
go back to reference Ma ZH, Han HS, Tan KL, Kang ET, Neoh KG (1999) Surface graft copolymerization induced adhesion of polyaniline film to polytetra-fluoroethylene film and copper foil. Eur Polym J 35:1279–1288CrossRef Ma ZH, Han HS, Tan KL, Kang ET, Neoh KG (1999) Surface graft copolymerization induced adhesion of polyaniline film to polytetra-fluoroethylene film and copper foil. Eur Polym J 35:1279–1288CrossRef
43.
go back to reference Liu YX, Kang ET, Neoh KG, Tan KL, Huang CC, Liaw DJ (1999) Lamination of polytetrafluoroethylene films via surface thermal graft copolymerization with ionic and zwitterionic monomers. J Appl Polym Sci 74:816–824CrossRef Liu YX, Kang ET, Neoh KG, Tan KL, Huang CC, Liaw DJ (1999) Lamination of polytetrafluoroethylene films via surface thermal graft copolymerization with ionic and zwitterionic monomers. J Appl Polym Sci 74:816–824CrossRef
44.
go back to reference Ma ZH, Han HS, Tan KL, Kang ET, Neoh KG (1999) Thermally induced surface graft copolymerization with concurrent lamination of polyaniline films under atmospheric conditions. Int J Adhes Adhes 19:359–365CrossRef Ma ZH, Han HS, Tan KL, Kang ET, Neoh KG (1999) Thermally induced surface graft copolymerization with concurrent lamination of polyaniline films under atmospheric conditions. Int J Adhes Adhes 19:359–365CrossRef
45.
go back to reference Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102:4177–4189CrossRef Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102:4177–4189CrossRef
46.
go back to reference Lowe AB, McCormick CL (2006) Synthesis aqueous solution properties, and biomedical application of polymeric betaines. In: Lowe AB, McCormick CL (eds) Polyelectrolytes and polyzwitterions: synthesis, properties, and applications. ACS Books, Washington DC, pp 65–78CrossRef Lowe AB, McCormick CL (2006) Synthesis aqueous solution properties, and biomedical application of polymeric betaines. In: Lowe AB, McCormick CL (eds) Polyelectrolytes and polyzwitterions: synthesis, properties, and applications. ACS Books, Washington DC, pp 65–78CrossRef
47.
go back to reference Chen S, Jiang S (2008) An new avenue to nonfouling materials. Adv Mater 20:335–338CrossRef Chen S, Jiang S (2008) An new avenue to nonfouling materials. Adv Mater 20:335–338CrossRef
48.
go back to reference West SL, Salvage JP, Lobb EJ, Armes SP, Billingham NC, Lewis AL, Hanlon GW, Lloyd AW (2004) The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines. Biomaterials 25:1195–1204CrossRef West SL, Salvage JP, Lobb EJ, Armes SP, Billingham NC, Lewis AL, Hanlon GW, Lloyd AW (2004) The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines. Biomaterials 25:1195–1204CrossRef
49.
go back to reference Zhang Z, Zhang M, Chen S, Horbett TA, Ratner BD, Jiang S (2008) The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials 29:4719–4725CrossRef Zhang Z, Zhang M, Chen S, Horbett TA, Ratner BD, Jiang S (2008) The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials 29:4719–4725CrossRef
50.
go back to reference Ladd J, Zhang Z, Chen S, Hower JC, Jiang S (2008) Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromol 9:1357–1361CrossRef Ladd J, Zhang Z, Chen S, Hower JC, Jiang S (2008) Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromol 9:1357–1361CrossRef
51.
go back to reference Kobayashi M, Takahara A (2013) Environmentally friendly repeatable adhesion using a sulfobetaine-type polyzwitterion brush. Polym Chem 4:4987–4992CrossRef Kobayashi M, Takahara A (2013) Environmentally friendly repeatable adhesion using a sulfobetaine-type polyzwitterion brush. Polym Chem 4:4987–4992CrossRef
52.
go back to reference Schulz DN, Peiffer DG, Agarwal PK, Larabee J, Kaladas JJ, Soni L, Handwerker B, Garner RT (1986) Phase behaviour and solution properties of sulphobetaine polymers. Polymer 27:1734–1742CrossRef Schulz DN, Peiffer DG, Agarwal PK, Larabee J, Kaladas JJ, Soni L, Handwerker B, Garner RT (1986) Phase behaviour and solution properties of sulphobetaine polymers. Polymer 27:1734–1742CrossRef
53.
go back to reference Chen L, Honma Y, Mizutani T, Liaw DJ, Gong JP, Osada Y (2000) Effects of polyelectrolyte complexation on the UCST of zwitterionic polymer. Polymer 41:141–147CrossRef Chen L, Honma Y, Mizutani T, Liaw DJ, Gong JP, Osada Y (2000) Effects of polyelectrolyte complexation on the UCST of zwitterionic polymer. Polymer 41:141–147CrossRef
54.
go back to reference Klein J (2001) Interactions friction and lubrication between polymer-bearing surfaces In: Bhushan B (ed) Fundamentals of tribology and bridging the gap between the macro- and micro/nanoscales. Kluwer Academic Publishers, Dordrecht, pp 177–198CrossRef Klein J (2001) Interactions friction and lubrication between polymer-bearing surfaces In: Bhushan B (ed) Fundamentals of tribology and bridging the gap between the macro- and micro/nanoscales. Kluwer Academic Publishers, Dordrecht, pp 177–198CrossRef
55.
go back to reference Klein J, Perahia D, Warburg S (1991) Forces between polymer-bearing surfaces undergoing shear. Nature 352:143–145CrossRef Klein J, Perahia D, Warburg S (1991) Forces between polymer-bearing surfaces undergoing shear. Nature 352:143–145CrossRef
56.
go back to reference Klein J, Kumacheva E, Mahalu D, Perahia D, Fetters LJ (1994) Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature 370:634–636CrossRef Klein J, Kumacheva E, Mahalu D, Perahia D, Fetters LJ (1994) Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature 370:634–636CrossRef
57.
go back to reference Kampf N, Gohy JF, Jerome R, Klein J (2005) Normal and shear forces between a polyelectrolyte brush and a solid surface. J Polym Sci Part B Polym Phys 43:193–204CrossRef Kampf N, Gohy JF, Jerome R, Klein J (2005) Normal and shear forces between a polyelectrolyte brush and a solid surface. J Polym Sci Part B Polym Phys 43:193–204CrossRef
58.
go back to reference Raviv U, Giasson S, Kamph N, Gohy JF, Jérôme R, Klein J (2003) Lubrication by charged polymers. Nature 425:163–165CrossRef Raviv U, Giasson S, Kamph N, Gohy JF, Jérôme R, Klein J (2003) Lubrication by charged polymers. Nature 425:163–165CrossRef
59.
go back to reference Nomura A, Okayasu K, Ohono K, Fukuda T, Tsujii Y (2011) Lubrication mechanism of concentrated polymer brushes in solvents: effect of solvent quality and thereby swelling state. Macromolecules 44:5013–5019CrossRef Nomura A, Okayasu K, Ohono K, Fukuda T, Tsujii Y (2011) Lubrication mechanism of concentrated polymer brushes in solvents: effect of solvent quality and thereby swelling state. Macromolecules 44:5013–5019CrossRef
60.
go back to reference Ruhe J, Ballauff M, Biesalski M, Dziezok P, Gröhn F, Johannsmann D, Houbenov N, Hugenberg N, Konradi R, Minko S, Motornov M, Netz RR, Schmidt M, Seidel C, Stamm M, Stephan T, Usov D, Zhang H (2004) Adv Polym Sci 165–166:79–150CrossRef Ruhe J, Ballauff M, Biesalski M, Dziezok P, Gröhn F, Johannsmann D, Houbenov N, Hugenberg N, Konradi R, Minko S, Motornov M, Netz RR, Schmidt M, Seidel C, Stamm M, Stephan T, Usov D, Zhang H (2004) Adv Polym Sci 165–166:79–150CrossRef
61.
go back to reference Luzinov I, Minko S, Tsukruk VV (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci 29:635–698CrossRef Luzinov I, Minko S, Tsukruk VV (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci 29:635–698CrossRef
62.
go back to reference Miklavic SJ, Marčelja S (1988) Interaction of surfaces carrying grafted polyelectrolytes. J Phys Chem 92:6718–6722CrossRef Miklavic SJ, Marčelja S (1988) Interaction of surfaces carrying grafted polyelectrolytes. J Phys Chem 92:6718–6722CrossRef
63.
go back to reference Klein J, Raviv U, Perkin S, Kampf N, Chai L, Giasson S (2004) Fluidity of water and of hydrated ions confined between solid surfaces to molecularly thin films. J Phys Condens Matter 16:S5437–S5448CrossRef Klein J, Raviv U, Perkin S, Kampf N, Chai L, Giasson S (2004) Fluidity of water and of hydrated ions confined between solid surfaces to molecularly thin films. J Phys Condens Matter 16:S5437–S5448CrossRef
64.
go back to reference Raviv U, Klein J (2002) Fluidity of bound hydration layers. Science 297:1540–1543CrossRef Raviv U, Klein J (2002) Fluidity of bound hydration layers. Science 297:1540–1543CrossRef
65.
go back to reference Israels R, Leermakers FAM, Fleer GJ, Zhulina EB (1994) Charged polymeric brushes: structure and scaling relations. Macromolecules 27:3249–3261CrossRef Israels R, Leermakers FAM, Fleer GJ, Zhulina EB (1994) Charged polymeric brushes: structure and scaling relations. Macromolecules 27:3249–3261CrossRef
66.
go back to reference Lyatskaya YV, Leermakers FAM, Fleer GJ, Zhulina EB, Birshtein TM (1995) Analytical self-consistent-field model of weak polyacid brushes. Macromolecules 28:3562–3569CrossRef Lyatskaya YV, Leermakers FAM, Fleer GJ, Zhulina EB, Birshtein TM (1995) Analytical self-consistent-field model of weak polyacid brushes. Macromolecules 28:3562–3569CrossRef
67.
go back to reference Zhulina EB, Wolterink JK, Borisov OV (2000) Screening effects in a polyelectrolyte brush: self-consistent-field theory. Macromolecules 33:4945–4953CrossRef Zhulina EB, Wolterink JK, Borisov OV (2000) Screening effects in a polyelectrolyte brush: self-consistent-field theory. Macromolecules 33:4945–4953CrossRef
68.
go back to reference Pincus P (1991) Colloid stabilization with grafted polyelectrolytes. Macromolecules 24:2912–2919CrossRef Pincus P (1991) Colloid stabilization with grafted polyelectrolytes. Macromolecules 24:2912–2919CrossRef
69.
go back to reference Ross RS, Pincus P (1992) The polyelectrolyte brush: poor solvent. Macromolecules 25:2177–2183CrossRef Ross RS, Pincus P (1992) The polyelectrolyte brush: poor solvent. Macromolecules 25:2177–2183CrossRef
70.
go back to reference Pryamitsyn VA, Leermakers FAM, Fleer GJ, Zhulina EB (1996) Theory of the collapse of the polyelectrolyte brush. Macromolecules 29:8260–8270CrossRef Pryamitsyn VA, Leermakers FAM, Fleer GJ, Zhulina EB (1996) Theory of the collapse of the polyelectrolyte brush. Macromolecules 29:8260–8270CrossRef
71.
go back to reference Taunton HJ, Toprakcioglu C, Fetters LJ, Klein J (1988) Forcers between surfaces bearing terminally anchored polymer chains in good solvents. Nature 332:712–714CrossRef Taunton HJ, Toprakcioglu C, Fetters LJ, Klein J (1988) Forcers between surfaces bearing terminally anchored polymer chains in good solvents. Nature 332:712–714CrossRef
72.
go back to reference Eiser E, Klein J, Witten TA, Fetters LJ (1999) Shear of telechelic brushes. Phys Rev Lett 82:5076–5079CrossRef Eiser E, Klein J, Witten TA, Fetters LJ (1999) Shear of telechelic brushes. Phys Rev Lett 82:5076–5079CrossRef
73.
go back to reference Hayashi S, Abe T, Higashi N, Niwa M, Kurihara K (2002) Polyelectrolyte brush layers studied by surface forces measurement: dependence on ph and salt concentrations and scaling. Langmuir 18:3932–3944CrossRef Hayashi S, Abe T, Higashi N, Niwa M, Kurihara K (2002) Polyelectrolyte brush layers studied by surface forces measurement: dependence on ph and salt concentrations and scaling. Langmuir 18:3932–3944CrossRef
74.
go back to reference Kampf N, Ben-Yaakov D, Andelman D, Safran SA, Klein J (2009) Direct measurement of sub-debye-length attraction between oppositely charged surfaces. Phys Rev Lett 103:118304CrossRef Kampf N, Ben-Yaakov D, Andelman D, Safran SA, Klein J (2009) Direct measurement of sub-debye-length attraction between oppositely charged surfaces. Phys Rev Lett 103:118304CrossRef
75.
go back to reference Kelley TW, Shorr PA, Kristin DJ, Tirrell M, Frisbie CD (1998) Direct force measurements at polymer brush surfaces by atomic force microscopy. Macromolecules 31:4297–4300CrossRef Kelley TW, Shorr PA, Kristin DJ, Tirrell M, Frisbie CD (1998) Direct force measurements at polymer brush surfaces by atomic force microscopy. Macromolecules 31:4297–4300CrossRef
76.
go back to reference Kobayashi M, Takahara A (2010) Tribological properties of hydrophilic polymer brushes under wet conditions. Chem Record 10:208–216CrossRef Kobayashi M, Takahara A (2010) Tribological properties of hydrophilic polymer brushes under wet conditions. Chem Record 10:208–216CrossRef
77.
go back to reference Ishikawa T, Kobayashi M, Takahara A (2010) Macroscopic frictional properties of poly(1-(2-methacryloyloxy)ethyl-3-butyl Imidazolium Bis(trifluoromethanesulfonyl)imide) brush surfaces in an ionic liquid. Appl Mat Interfaces 2:1120–1128CrossRef Ishikawa T, Kobayashi M, Takahara A (2010) Macroscopic frictional properties of poly(1-(2-methacryloyloxy)ethyl-3-butyl Imidazolium Bis(trifluoromethanesulfonyl)imide) brush surfaces in an ionic liquid. Appl Mat Interfaces 2:1120–1128CrossRef
78.
go back to reference Sakata H, Kobayashi M, Otsuka H, Takahara A (2005) Tribological properties of poly(methyl methacrylate) brushes prepared by surface-initiated atom transfer radical polymerization. Polym J 37:767–775CrossRef Sakata H, Kobayashi M, Otsuka H, Takahara A (2005) Tribological properties of poly(methyl methacrylate) brushes prepared by surface-initiated atom transfer radical polymerization. Polym J 37:767–775CrossRef
79.
go back to reference Kobayashi M, Takahara A (2005) Synthesis and frictional properties of poly(2,3-dihydroxypropyl methacrylate) brush prepared by surface-initiated atom transfer radical polymerization. Chem Lett 34:1582–1583CrossRef Kobayashi M, Takahara A (2005) Synthesis and frictional properties of poly(2,3-dihydroxypropyl methacrylate) brush prepared by surface-initiated atom transfer radical polymerization. Chem Lett 34:1582–1583CrossRef
80.
go back to reference Kobayashi M, Terada M, Ishikawa T, Takahara A (2013) Tribological behavior of ionic polymer brushes in aqueous environment. In: Biresaw G, Mittal KL (eds) Surfactants in tribology, vol 3. CRC Press, Boca Raton, pp 75–92CrossRef Kobayashi M, Terada M, Ishikawa T, Takahara A (2013) Tribological behavior of ionic polymer brushes in aqueous environment. In: Biresaw G, Mittal KL (eds) Surfactants in tribology, vol 3. CRC Press, Boca Raton, pp 75–92CrossRef
81.
go back to reference Kobayashi M, Wang Z, Matsuda Y, Kaido M, Suzuki A, Takahara A (2009) Tribological behavior of polymer brush prepared by the “grafting-from” method. In: Kumar SS (ed) Polymer Tribology. Imperial College Press, UK, pp 582–602CrossRef Kobayashi M, Wang Z, Matsuda Y, Kaido M, Suzuki A, Takahara A (2009) Tribological behavior of polymer brush prepared by the “grafting-from” method. In: Kumar SS (ed) Polymer Tribology. Imperial College Press, UK, pp 582–602CrossRef
82.
go back to reference Spikes HA (1993) Boundary lubrication and boundary films. In: Dowson D, Talor CM, Childs THC, Godet M, Dalmz G (eds) Thin films in tribology. Elsevier, New York, pp 331–346 Spikes HA (1993) Boundary lubrication and boundary films. In: Dowson D, Talor CM, Childs THC, Godet M, Dalmz G (eds) Thin films in tribology. Elsevier, New York, pp 331–346
83.
go back to reference Kobayashi M, Tanaka H, Minn M, Sugimura J, Takahara A (2014) Interferometry study of aqueous lubrication on the surface of polyelectrolyte brush. ACS Appl Mater Interfaces 6: 20365–20371CrossRef Kobayashi M, Tanaka H, Minn M, Sugimura J, Takahara A (2014) Interferometry study of aqueous lubrication on the surface of polyelectrolyte brush. ACS Appl Mater Interfaces 6: 20365–20371CrossRef
84.
go back to reference Bielecki RM, Crobu M, Spencer ND (2013) Polymer-Brush lubrication in oil: sliding beyond the stribeck curve. Tribol Lett 49:263–272CrossRef Bielecki RM, Crobu M, Spencer ND (2013) Polymer-Brush lubrication in oil: sliding beyond the stribeck curve. Tribol Lett 49:263–272CrossRef
85.
go back to reference Ishihara K, Ueda T, Nakabayashi N (1990) Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J 22:355–360CrossRef Ishihara K, Ueda T, Nakabayashi N (1990) Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J 22:355–360CrossRef
86.
go back to reference Matsuda Y, Kobayashi M, Annaka M, Ishihara K, Takahara A (2008) Dimensions of a free linear polymer and polymer immobilized on silica nanoparticles of a zwitterionic polymer in aqueous solutions with various ionic strengths. Langmuir 24:8772–8778CrossRef Matsuda Y, Kobayashi M, Annaka M, Ishihara K, Takahara A (2008) Dimensions of a free linear polymer and polymer immobilized on silica nanoparticles of a zwitterionic polymer in aqueous solutions with various ionic strengths. Langmuir 24:8772–8778CrossRef
87.
go back to reference Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N (1998) Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res 39:323–330CrossRef Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N (1998) Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res 39:323–330CrossRef
88.
go back to reference Chen M, Briscoe WH, Armes SP, Klein J (2009) Lubrication at physiological pressures by polyzwitterionic brushes. Science 323:1698–1701CrossRef Chen M, Briscoe WH, Armes SP, Klein J (2009) Lubrication at physiological pressures by polyzwitterionic brushes. Science 323:1698–1701CrossRef
89.
go back to reference Chen M, Briscoe WH, Armes SP, Cohen H, Klein J (2011) Polyzwitterionic brushes: extreme lubrication by design. Eur Polym J 47:511–523CrossRef Chen M, Briscoe WH, Armes SP, Cohen H, Klein J (2011) Polyzwitterionic brushes: extreme lubrication by design. Eur Polym J 47:511–523CrossRef
90.
go back to reference Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, Chung U, Nakamura K, Kawaguchi H (2004) Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nature Mater 3:829–836CrossRef Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, Chung U, Nakamura K, Kawaguchi H (2004) Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nature Mater 3:829–836CrossRef
91.
go back to reference Moro T, Kawaguchi H, Ishihara K, Kyomoto M, Karita T, Ito H, Nakamura K, Takatori Y (2009) Wear resistance of artificial hip joints with poly(2-methacryloyloxyethyl phosphorylcholine) grafted polyethylene: Comparisons with the effect of polyethylene cross-linking and ceramic femoral heads. Biomaterials 30:2995–3001CrossRef Moro T, Kawaguchi H, Ishihara K, Kyomoto M, Karita T, Ito H, Nakamura K, Takatori Y (2009) Wear resistance of artificial hip joints with poly(2-methacryloyloxyethyl phosphorylcholine) grafted polyethylene: Comparisons with the effect of polyethylene cross-linking and ceramic femoral heads. Biomaterials 30:2995–3001CrossRef
92.
go back to reference Kobayashi M, Takahara A (2012) Polyelectrolyte brushes: a novel stable lubrication system in aqueous conditions. Faraday Discuss 156:403–412CrossRef Kobayashi M, Takahara A (2012) Polyelectrolyte brushes: a novel stable lubrication system in aqueous conditions. Faraday Discuss 156:403–412CrossRef
Metadata
Title
High-Performance Interface
Authors
Motoyasu Kobayashi
Atsushi Takahara
Copyright Year
2019
Publisher
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-56877-3_12

Premium Partners