Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 4/2022

09-11-2021

High Phosphorus Pig Iron as Sacrificial Anode in Seawater

Authors: Nisheeth Kr. Prasad, A. S. Pathak, S. Kundu, Pankaj Panchal, K. Mondal

Published in: Journal of Materials Engineering and Performance | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The possibility of high phosphorus pig irons (1.5, 3.5 and 8.0 wt.%P) for their use as sacrificial anode is discussed by analyzing the electrochemical performance and measurement of anode capacity in artificial seawater for 252 days. Linear and dynamic polarization, impedance spectroscopy and impressed current test were carried out to check the electrochemical performance, whereas impressed direct current test was used to understand anode capacity, consumption rate and efficiency of the pig iron samples. Enrichment of surface with P, inhomogeneous microstructure and presence of entrapped inclusions were found to be conducive to improve the electrochemical performance of pig iron anode. The corrosion of the newly designed anodes was also found to be macroscopically uniform.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference P.R. Roberge, Handbook of Corrosion Engineering, 1st ed. McGraw-Hill, New York, 1999. P.R. Roberge, Handbook of Corrosion Engineering, 1st ed. McGraw-Hill, New York, 1999.
2.
go back to reference A.W. Peabody, Peabody’s Control of Pipeline Corrosion, 2nd ed. NACE International, 2001. A.W. Peabody, Peabody’s Control of Pipeline Corrosion, 2nd ed. NACE International, 2001.
3.
go back to reference M. Ph Refait, R. Jeannin, H.A. Sabot and S. Pineau, Corrosion and Cathodic Protection of Carbon Steel in the Tidal Zone: Products, Mechanisms, and Kinetics, Corros. Sci., 2015, 90, p 375–382.CrossRef M. Ph Refait, R. Jeannin, H.A. Sabot and S. Pineau, Corrosion and Cathodic Protection of Carbon Steel in the Tidal Zone: Products, Mechanisms, and Kinetics, Corros. Sci., 2015, 90, p 375–382.CrossRef
4.
go back to reference S.J. Kim, M. Okido and K.M. Moon, An Electrochemical Study of Cathodic Protection of Steel Used for Marine Structures, Korean J. Chem. Eng., 2003, 20, p 560–565.CrossRef S.J. Kim, M. Okido and K.M. Moon, An Electrochemical Study of Cathodic Protection of Steel Used for Marine Structures, Korean J. Chem. Eng., 2003, 20, p 560–565.CrossRef
5.
go back to reference J. Ma and J. Wen, Corrosion Analysis of Al-Zn-In-Mg-Ti-Mn Sacrificial Anode Alloy, J. Alloys Compd., 2010, 496, p 110–115.CrossRef J. Ma and J. Wen, Corrosion Analysis of Al-Zn-In-Mg-Ti-Mn Sacrificial Anode Alloy, J. Alloys Compd., 2010, 496, p 110–115.CrossRef
6.
go back to reference M.A. Jingling, W. Jiuba, L.I. Gengxin and X.V. Chunhua, The Corrosion Behavior of Al-Zn-In-Mg-Ti Alloy in NaCl Solution, Corros. Sci., 2020, 52, p 534–539.CrossRef M.A. Jingling, W. Jiuba, L.I. Gengxin and X.V. Chunhua, The Corrosion Behavior of Al-Zn-In-Mg-Ti Alloy in NaCl Solution, Corros. Sci., 2020, 52, p 534–539.CrossRef
7.
go back to reference J. Wen, J. He and X. Lu, Influence of Silicon on the Corrosion Behavior of Al-Zn-In-Mg-Ti Sacrificial Anode, Corros. Sci., 2011, 53, p 3861–3865.CrossRef J. Wen, J. He and X. Lu, Influence of Silicon on the Corrosion Behavior of Al-Zn-In-Mg-Ti Sacrificial Anode, Corros. Sci., 2011, 53, p 3861–3865.CrossRef
8.
go back to reference B.S. Boroujeny, M.R. Ghashghaei and E. Akbari, Effect of SIMA (Strain Induced Melt Activation) on Microstructure and Electrochemical Behavior of Al-Zn-In Sacrificial Anodes, J. Alloys Compd., 2018, 731, p 354–363.CrossRef B.S. Boroujeny, M.R. Ghashghaei and E. Akbari, Effect of SIMA (Strain Induced Melt Activation) on Microstructure and Electrochemical Behavior of Al-Zn-In Sacrificial Anodes, J. Alloys Compd., 2018, 731, p 354–363.CrossRef
9.
go back to reference A. Muazu and S.A. Yaro, Effects of Zinc Addition on the Performance of Aluminium as Sacrificial Anode in Seawater, J. Min. Mater. Char. Eng., 2011, 10, p 185–198. A. Muazu and S.A. Yaro, Effects of Zinc Addition on the Performance of Aluminium as Sacrificial Anode in Seawater, J. Min. Mater. Char. Eng., 2011, 10, p 185–198.
10.
go back to reference S. Khireche, D. Boughrara, A. Kadri, L. Hamadou and N. Benbrahim, Corrosion Mechanism of Al, Al-Zn and Al-Zn-Sn Alloys in 3 wt% NaCl Solution, Corros. Sci., 2014, 87, p 504–516.CrossRef S. Khireche, D. Boughrara, A. Kadri, L. Hamadou and N. Benbrahim, Corrosion Mechanism of Al, Al-Zn and Al-Zn-Sn Alloys in 3 wt% NaCl Solution, Corros. Sci., 2014, 87, p 504–516.CrossRef
11.
go back to reference W. Xiong, G.T. Qi, X.P. Guo and Z.L. Lu, Anodic Dissolution of Al Sacrificial Anodes in NaCl Solution Containing Ce, Corros. Sci., 2011, 53, p 1298–1303.CrossRef W. Xiong, G.T. Qi, X.P. Guo and Z.L. Lu, Anodic Dissolution of Al Sacrificial Anodes in NaCl Solution Containing Ce, Corros. Sci., 2011, 53, p 1298–1303.CrossRef
12.
go back to reference S.M.A. Shibli, V.S. Gireesh and S. George, Surface Catalysis Based on Ruthenium Dioxide for Effective Activation of Aluminium Sacrificial Anodes, Corros. Sci., 2004, 46, p 819–830.CrossRef S.M.A. Shibli, V.S. Gireesh and S. George, Surface Catalysis Based on Ruthenium Dioxide for Effective Activation of Aluminium Sacrificial Anodes, Corros. Sci., 2004, 46, p 819–830.CrossRef
13.
go back to reference I.-C. Park and S.-J. Kim, Determination of Corrosion Protection Current Density Requirement of Zinc Sacrificial Anode for Corrosion Protection of AA5083-H321 in Sea Water, Appl. Surf. Sci., 2020, 509, p 145346–145354.CrossRef I.-C. Park and S.-J. Kim, Determination of Corrosion Protection Current Density Requirement of Zinc Sacrificial Anode for Corrosion Protection of AA5083-H321 in Sea Water, Appl. Surf. Sci., 2020, 509, p 145346–145354.CrossRef
14.
go back to reference M.E. Parker and E.G. Peattie, Pipeline Corrosion and Cathodic Protection, 3rd ed. Gulf Publishing Company, Houston, 1999, p 245–250 M.E. Parker and E.G. Peattie, Pipeline Corrosion and Cathodic Protection, 3rd ed. Gulf Publishing Company, Houston, 1999, p 245–250
15.
go back to reference F. Wang, J. Xu, Y. Xu, L. Jiang and G. Ma, A Comparative Investigation on Cathodic Protections of Three Sacrificial Anodes on Chloride-Contaminated Reinforced Concrete, Constr. Build. Mater., 2020, 246, p 118476–118486.CrossRef F. Wang, J. Xu, Y. Xu, L. Jiang and G. Ma, A Comparative Investigation on Cathodic Protections of Three Sacrificial Anodes on Chloride-Contaminated Reinforced Concrete, Constr. Build. Mater., 2020, 246, p 118476–118486.CrossRef
16.
go back to reference D. Ferdian, Y. Pratesa, I. Togina and I. Adelia, Development of Al-Zn-Cu Alloy for Low Voltage Aluminium Sacrificial Anode, Procedia Eng., 2017, 184, p 418–422.CrossRef D. Ferdian, Y. Pratesa, I. Togina and I. Adelia, Development of Al-Zn-Cu Alloy for Low Voltage Aluminium Sacrificial Anode, Procedia Eng., 2017, 184, p 418–422.CrossRef
17.
go back to reference E. Mottin, C. Caplat, T. Latire, A. Mottier, M.-L. Mahaut, K. Costil, D. Barillier, J.-M. Lebel and A. Serpentini, Effect of Zinc Sacrificial Anode Degradation on the Defence System of the Pacific Oyster, Crassostrea Gigas; Chronic and Acute Exposures, Mar. Pollut. Bull., 2012, 64, p 1911–1920.CrossRef E. Mottin, C. Caplat, T. Latire, A. Mottier, M.-L. Mahaut, K. Costil, D. Barillier, J.-M. Lebel and A. Serpentini, Effect of Zinc Sacrificial Anode Degradation on the Defence System of the Pacific Oyster, Crassostrea Gigas; Chronic and Acute Exposures, Mar. Pollut. Bull., 2012, 64, p 1911–1920.CrossRef
18.
go back to reference T. Kaewmaneekul and G. Lothongkum, Effect of Aluminium on the Passivation of Zinc-Aluminium Alloys in Artificial Seawater at 80 °C, Corros. Sci., 2013, 66, p 67–77.CrossRef T. Kaewmaneekul and G. Lothongkum, Effect of Aluminium on the Passivation of Zinc-Aluminium Alloys in Artificial Seawater at 80 °C, Corros. Sci., 2013, 66, p 67–77.CrossRef
19.
go back to reference S. Thomas, N. Birbilis, M.S. Venkatraman and I.S. Cole, Corrosion of Zinc as a Function of pH, Corrosion, 2012, 68, p 150091–150099.CrossRef S. Thomas, N. Birbilis, M.S. Venkatraman and I.S. Cole, Corrosion of Zinc as a Function of pH, Corrosion, 2012, 68, p 150091–150099.CrossRef
20.
go back to reference K. Sarkar, P.K. Rai, P.K. Katiyar, B. Satapathy, A.S. Pathak, M. Dutta, A. Banerjee and K. Mondal, Composite (Glass + Crystalline) Coatings from Blast Furnace Pig Iron by High Velocity Oxy-Fuel (HVOF) Process and Their Electrochemical Behavior, Surf. Coat. Tech., 2019, 372, p 72–83.CrossRef K. Sarkar, P.K. Rai, P.K. Katiyar, B. Satapathy, A.S. Pathak, M. Dutta, A. Banerjee and K. Mondal, Composite (Glass + Crystalline) Coatings from Blast Furnace Pig Iron by High Velocity Oxy-Fuel (HVOF) Process and Their Electrochemical Behavior, Surf. Coat. Tech., 2019, 372, p 72–83.CrossRef
21.
go back to reference R. Balasubramaniam and A.V. Ramesh Kumar, Characterization of Delhi Iron Pillar rust by X-ray Diffraction, Fourier Transform Infrared Spectroscopy and Mossbauer Spectroscopy, Curr. Sci., 2002, 82, p 1357–1365. R. Balasubramaniam and A.V. Ramesh Kumar, Characterization of Delhi Iron Pillar rust by X-ray Diffraction, Fourier Transform Infrared Spectroscopy and Mossbauer Spectroscopy, Curr. Sci., 2002, 82, p 1357–1365.
22.
go back to reference R. Balasubramaniam, On the Corrosion Resistance of the Delhi Iron Pillar, Corros. Sci., 2000, 42, p 2103–2129.CrossRef R. Balasubramaniam, On the Corrosion Resistance of the Delhi Iron Pillar, Corros. Sci., 2000, 42, p 2103–2129.CrossRef
23.
go back to reference R. Balasubramaniam and A.V.R. Kumar, Corrosion Resistance of the Dhar Iron Pillar, Corros. Sci., 2003, 45, p 2451–2465.CrossRef R. Balasubramaniam and A.V.R. Kumar, Corrosion Resistance of the Dhar Iron Pillar, Corros. Sci., 2003, 45, p 2451–2465.CrossRef
24.
go back to reference H.J. Krautschick, H.J. Grabke and W. Diekmann, The Effect of Phosphorus on the Mechanism of Intergranular Stress Corrosion Cracking of Mild Steels in Nitrate Solutions, Corros. Sci., 1988, 28, p 251–258.CrossRef H.J. Krautschick, H.J. Grabke and W. Diekmann, The Effect of Phosphorus on the Mechanism of Intergranular Stress Corrosion Cracking of Mild Steels in Nitrate Solutions, Corros. Sci., 1988, 28, p 251–258.CrossRef
25.
go back to reference N.K. Prasad, S. Kundu and K. Mondal, Possibility of High Phosphorus Pig Iron as Sacrificial Anode, J. Mater. Eng. Perform., 2018, 27, p 3335–3349.CrossRef N.K. Prasad, S. Kundu and K. Mondal, Possibility of High Phosphorus Pig Iron as Sacrificial Anode, J. Mater. Eng. Perform., 2018, 27, p 3335–3349.CrossRef
26.
go back to reference N.K. Prasad, A.S. Pathak, S. Kundu, P. Panchal and K. Mondal, On the Novel Approach of Cathodic Protection of Mild Steel in Simulated Concrete Pore Solution and Concrete Mortar Using High Phosphorus Pig Iron Sacrificial Anodes, J. Mater. Res. Technol., 2021, 14, p 582–608.CrossRef N.K. Prasad, A.S. Pathak, S. Kundu, P. Panchal and K. Mondal, On the Novel Approach of Cathodic Protection of Mild Steel in Simulated Concrete Pore Solution and Concrete Mortar Using High Phosphorus Pig Iron Sacrificial Anodes, J. Mater. Res. Technol., 2021, 14, p 582–608.CrossRef
28.
go back to reference Standard Practice for the Preparation of Substitute Ocean Water, ASTM D1141-98, ASTM International, West Conshohocken, PA (2013) Standard Practice for the Preparation of Substitute Ocean Water, ASTM D1141-98, ASTM International, West Conshohocken, PA (2013)
29.
go back to reference Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM G102-89, ASTM International, West Conshohocken, PA (2015) Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM G102-89, ASTM International, West Conshohocken, PA (2015)
30.
go back to reference Standard Practice for Preparing, Cleaning and Evaluating Corrosion Test Specimens, ASTM G1-03, ASTM International, West Conshohocken, PA (2017) Standard Practice for Preparing, Cleaning and Evaluating Corrosion Test Specimens, ASTM G1-03, ASTM International, West Conshohocken, PA (2017)
31.
go back to reference Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM G31-72, ASTM International, West Conshohocken, PA (2004) Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM G31-72, ASTM International, West Conshohocken, PA (2004)
32.
go back to reference N. Mahata, A. Banerjee, P.K. Rai, P. Bijalwan, A.S. Pathak, S. Kundu, M. Dutta and K. Mondal, Glassy Blast Furnace Pig Iron and Design of Other Glassy Compositions Using Thermodynamic Calculations, J. Non-Cryst. Solids, 2018, 484, p 95–104.CrossRef N. Mahata, A. Banerjee, P.K. Rai, P. Bijalwan, A.S. Pathak, S. Kundu, M. Dutta and K. Mondal, Glassy Blast Furnace Pig Iron and Design of Other Glassy Compositions Using Thermodynamic Calculations, J. Non-Cryst. Solids, 2018, 484, p 95–104.CrossRef
33.
go back to reference R. Balasubramaniam, A.V.R. Kumar and P. Dillmann, Characterization of Rust on Ancient INDIAN Iron, Curr. Sci., 2003, 85, p 1546–1555. R. Balasubramaniam, A.V.R. Kumar and P. Dillmann, Characterization of Rust on Ancient INDIAN Iron, Curr. Sci., 2003, 85, p 1546–1555.
34.
go back to reference P.K. Rai, S. Shekhar, M. Nakatani, M. Ota, S.K. Vajpai, K. Ameyama and K. Mondal, Effect of Harmonic Microstructure on the Corrosion Behavior of SUS304L Austenitic Stainless Steel, Metall. Mater. Trans. A, 2016, 47, p 6259–6269.CrossRef P.K. Rai, S. Shekhar, M. Nakatani, M. Ota, S.K. Vajpai, K. Ameyama and K. Mondal, Effect of Harmonic Microstructure on the Corrosion Behavior of SUS304L Austenitic Stainless Steel, Metall. Mater. Trans. A, 2016, 47, p 6259–6269.CrossRef
35.
go back to reference P.K. Rai, D. Naidu, B. Satapathy, K. Sarkar, A.S. Pathak, P. Bijalwan, M. Dutta, A. Banerjee and K. Mondal, Amorphous/Nanocrystalline Composite Coatings Using Blast Furnace Pig Iron Composition by Atmospheric Plasma Spray and Their Electrochemical Response, J. Therm. Spray Techn., 2020, 29, p 843–856.CrossRef P.K. Rai, D. Naidu, B. Satapathy, K. Sarkar, A.S. Pathak, P. Bijalwan, M. Dutta, A. Banerjee and K. Mondal, Amorphous/Nanocrystalline Composite Coatings Using Blast Furnace Pig Iron Composition by Atmospheric Plasma Spray and Their Electrochemical Response, J. Therm. Spray Techn., 2020, 29, p 843–856.CrossRef
36.
go back to reference C.F. Windish, D.R. Baer, R.H. Jones and M.H. Anglehard, The Influence of Phosphorus on the Corrosion of Iron in Calcium Nitrate, J. Electrochem. Soc., 1992, 139, p 390–398.CrossRef C.F. Windish, D.R. Baer, R.H. Jones and M.H. Anglehard, The Influence of Phosphorus on the Corrosion of Iron in Calcium Nitrate, J. Electrochem. Soc., 1992, 139, p 390–398.CrossRef
37.
go back to reference P.H. Lo, W.T. Tsai, J.T. Lee and M.P. Hung, Role of P in the Electrochemical Behavior of Electroless Ni-P Alloys in 3.5wt% NaCl Solution, Surf. Coat. Tech., 1994, 67, p 27–34.CrossRef P.H. Lo, W.T. Tsai, J.T. Lee and M.P. Hung, Role of P in the Electrochemical Behavior of Electroless Ni-P Alloys in 3.5wt% NaCl Solution, Surf. Coat. Tech., 1994, 67, p 27–34.CrossRef
38.
go back to reference J. Flis and D.J. Duquette, Effect of Phosphorus on Anodic Dissolution and Passivation of Nickel in Near Neutral Solutions, Corrosion, 1985, 41, p 700–706.CrossRef J. Flis and D.J. Duquette, Effect of Phosphorus on Anodic Dissolution and Passivation of Nickel in Near Neutral Solutions, Corrosion, 1985, 41, p 700–706.CrossRef
39.
go back to reference P.K. Rai, B. Satapathy, K. Sarkar, P. Bijalwan, M. Dutta, A. Banerjee and K. Mondal, Experimental Validation of Glass Forming Ability of Melt Spun Ribbons of Pig Iron and Its Derivative Compositions and Their Corrosion Behavior, J. Non-Cryst. Solids, 2020, 532, p 119883–119895.CrossRef P.K. Rai, B. Satapathy, K. Sarkar, P. Bijalwan, M. Dutta, A. Banerjee and K. Mondal, Experimental Validation of Glass Forming Ability of Melt Spun Ribbons of Pig Iron and Its Derivative Compositions and Their Corrosion Behavior, J. Non-Cryst. Solids, 2020, 532, p 119883–119895.CrossRef
40.
go back to reference J. Yang, Y. Lu, Z. Guo, J. Gu and C. Gu, Corrosion Behavior of a Quenched and Partitioned Medium Carbon Steel in 3.5wt% NaCl Solution, Corros. Sci., 2018, 130, p 64–75.CrossRef J. Yang, Y. Lu, Z. Guo, J. Gu and C. Gu, Corrosion Behavior of a Quenched and Partitioned Medium Carbon Steel in 3.5wt% NaCl Solution, Corros. Sci., 2018, 130, p 64–75.CrossRef
41.
go back to reference W.R. Osorio, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto and A. Garcia, Electrochemical Corrosion Behavior of Gas Atomized Al-Ni Alloy Powders, Electrochim. Acta, 2012, 69, p 371–378.CrossRef W.R. Osorio, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto and A. Garcia, Electrochemical Corrosion Behavior of Gas Atomized Al-Ni Alloy Powders, Electrochim. Acta, 2012, 69, p 371–378.CrossRef
42.
go back to reference I.B. Singh, D.P. Mandal, M. Singh and S. Das, Influence of SiC Particles Addition on the Corrosion Behavior of 2014 Al-Cu Alloy in 3.5% NaCl Solution, Corros. Sci., 2009, 51, p 234–241.CrossRef I.B. Singh, D.P. Mandal, M. Singh and S. Das, Influence of SiC Particles Addition on the Corrosion Behavior of 2014 Al-Cu Alloy in 3.5% NaCl Solution, Corros. Sci., 2009, 51, p 234–241.CrossRef
43.
go back to reference J. He, J. Wen and X. Li, Effects of Precipitates on the Electrochemical Performance of Al Sacrificial Anode, Corros. Sci., 2011, 53, p 1948–1953.CrossRef J. He, J. Wen and X. Li, Effects of Precipitates on the Electrochemical Performance of Al Sacrificial Anode, Corros. Sci., 2011, 53, p 1948–1953.CrossRef
44.
go back to reference R.M. Cornell and U. Schwertmann, The Iron Oxides, Structure, Properties, Occurrences and Uses, VCH, Weinheim, 1996. R.M. Cornell and U. Schwertmann, The Iron Oxides, Structure, Properties, Occurrences and Uses, VCH, Weinheim, 1996.
45.
go back to reference J. Alcantara, B. Chico, J. Simancas, I. Diaz, D. Fuente and M. Morcillo, An Attempt to Classify the Morphologies Presented by Different Rust Phases Formed During the Exposure of Carbon Steel to Marine Atmospheres, Mater. Charact., 2016, 118, p 65–78.CrossRef J. Alcantara, B. Chico, J. Simancas, I. Diaz, D. Fuente and M. Morcillo, An Attempt to Classify the Morphologies Presented by Different Rust Phases Formed During the Exposure of Carbon Steel to Marine Atmospheres, Mater. Charact., 2016, 118, p 65–78.CrossRef
46.
go back to reference A. Raman and S. Nasrazadani, Morphology of Rust Phases Formed on Weathering Steels in Various Laboratory Corrosion Test, Metallography, 1989, 22, p 79–96.CrossRef A. Raman and S. Nasrazadani, Morphology of Rust Phases Formed on Weathering Steels in Various Laboratory Corrosion Test, Metallography, 1989, 22, p 79–96.CrossRef
47.
go back to reference T. Misawa, T. Kyuno, W. Suetaka and S. Shimodaira, The Mechanism of Atmospheric Rusting and the Effect of Cu and P on the Rust Formation of Low Alloy Steels, Corros. Sci., 1971, 11, p 35–48.CrossRef T. Misawa, T. Kyuno, W. Suetaka and S. Shimodaira, The Mechanism of Atmospheric Rusting and the Effect of Cu and P on the Rust Formation of Low Alloy Steels, Corros. Sci., 1971, 11, p 35–48.CrossRef
48.
go back to reference J. Dunnwald and A. Otto, An Investigation of Phase Transitions in Rust Layers Using Raman Spectroscopy, Corros. Sci., 1989, 29, p 1167–1176.CrossRef J. Dunnwald and A. Otto, An Investigation of Phase Transitions in Rust Layers Using Raman Spectroscopy, Corros. Sci., 1989, 29, p 1167–1176.CrossRef
49.
go back to reference D. Neff, L.B. Gurlet, P. Dillmann, S. Reguer and L. Legrand, Raman Imaging of Ancient Rust Scales on Archaeological Iron Artefacts For Long-Term Atmospheric Corrosion Mechanisms Study, J. Raman Spectrosc., 2006, 37, p 1228–1237.CrossRef D. Neff, L.B. Gurlet, P. Dillmann, S. Reguer and L. Legrand, Raman Imaging of Ancient Rust Scales on Archaeological Iron Artefacts For Long-Term Atmospheric Corrosion Mechanisms Study, J. Raman Spectrosc., 2006, 37, p 1228–1237.CrossRef
50.
go back to reference R.L. Frost, R. Scholz and A. Lopez, A Raman and Infrared Spectroscopic Study of the Phosphate Mineral Laueite, Vib. Spectrosc., 2016, 82, p 31–36.CrossRef R.L. Frost, R. Scholz and A. Lopez, A Raman and Infrared Spectroscopic Study of the Phosphate Mineral Laueite, Vib. Spectrosc., 2016, 82, p 31–36.CrossRef
51.
go back to reference T. Kamimura, S. Hara, H. Miyuki, M. Yamashita and H. Uchida, Composition and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments, Corros. Sci., 2006, 48, p 2799–2812.CrossRef T. Kamimura, S. Hara, H. Miyuki, M. Yamashita and H. Uchida, Composition and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments, Corros. Sci., 2006, 48, p 2799–2812.CrossRef
52.
go back to reference Impressed current laboratory testing of aluminium and zinc alloy anodes, NACE TM0190, NACE International, Houston (2017), pp. 1–13 Impressed current laboratory testing of aluminium and zinc alloy anodes, NACE TM0190, NACE International, Houston (2017), pp. 1–13
53.
go back to reference A. Farooq, M. Hamza, Q. Ahmed and K.M. Deen, Evaluating the Performance of Zinc and Aluminium Sacrificial Anodes in Artificial Seawater, Electrochim. Acta, 2019, 314, p 135–141.CrossRef A. Farooq, M. Hamza, Q. Ahmed and K.M. Deen, Evaluating the Performance of Zinc and Aluminium Sacrificial Anodes in Artificial Seawater, Electrochim. Acta, 2019, 314, p 135–141.CrossRef
54.
go back to reference T. Misawa, K. Hashimoto and S. Shimodaira, The Mechanism of Formation Of iron Oxide and Oxyhydroxides in Aqueous Solutions at Room Temperature, Corros. Sci., 1974, 14, p 131–149.CrossRef T. Misawa, K. Hashimoto and S. Shimodaira, The Mechanism of Formation Of iron Oxide and Oxyhydroxides in Aqueous Solutions at Room Temperature, Corros. Sci., 1974, 14, p 131–149.CrossRef
55.
go back to reference S. Reguer, P. Dillmann and F. Mirambet, Buried Iron Archaeological Artefacts; Corrosion Mechanisms Related to the Presence of Cl Containing Phases, Corros. Sci., 2007, 49, p 2726–2744.CrossRef S. Reguer, P. Dillmann and F. Mirambet, Buried Iron Archaeological Artefacts; Corrosion Mechanisms Related to the Presence of Cl Containing Phases, Corros. Sci., 2007, 49, p 2726–2744.CrossRef
56.
go back to reference S. Choudhary, A. Garg and K. Mondal, Relation Between Open Circuit Potential and Polarization Resistance with Rust and Corrosion Monitoring of Mild Steel, J. Mater. Eng. Perform., 2016, 25, p 2969–2976.CrossRef S. Choudhary, A. Garg and K. Mondal, Relation Between Open Circuit Potential and Polarization Resistance with Rust and Corrosion Monitoring of Mild Steel, J. Mater. Eng. Perform., 2016, 25, p 2969–2976.CrossRef
57.
go back to reference H. Kihira, S. Ito and T. Murata, The Behavior of Phosphorus During Passivation of Weathering Steel by Protective Patina Formation, Corros. Sci., 1990, 31, p 383–388.CrossRef H. Kihira, S. Ito and T. Murata, The Behavior of Phosphorus During Passivation of Weathering Steel by Protective Patina Formation, Corros. Sci., 1990, 31, p 383–388.CrossRef
58.
go back to reference Cathodic Protection Technologist Course Manual, NACE international, Houston (2008) Cathodic Protection Technologist Course Manual, NACE international, Houston (2008)
59.
go back to reference Cathodic Protection Design, DNV-RPB401, Det Norske Veritas (2010) Cathodic Protection Design, DNV-RPB401, Det Norske Veritas (2010)
60.
go back to reference R. Baboian, NACE Corrosion Engineers’s Reference Book, 3rd ed. NACE International, Houston, 2002. R. Baboian, NACE Corrosion Engineers’s Reference Book, 3rd ed. NACE International, Houston, 2002.
Metadata
Title
High Phosphorus Pig Iron as Sacrificial Anode in Seawater
Authors
Nisheeth Kr. Prasad
A. S. Pathak
S. Kundu
Pankaj Panchal
K. Mondal
Publication date
09-11-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 4/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06397-6

Other articles of this Issue 4/2022

Journal of Materials Engineering and Performance 4/2022 Go to the issue

Premium Partners