Skip to main content
Top
Published in:

06-06-2024

High-Precision Direction of Arrival Estimation Based on LightGBM

Authors: Fuwei Wang, Xiaoyu Zhang, Lu Liu, Chen Chen, Xingrui He, Yan Zhou

Published in: Circuits, Systems, and Signal Processing | Issue 9/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Machine learning-based direction-of-arrival (DOA) estimation methods can have a good predictive ability even in complex scenarios. However, their estimation performance in the face of unknown data is poor because they rely on the generalization ability of the algorithm itself. Therefore, this paper proposes a DOA estimation method based on the Light Gradient Boosting Machine (LightGBM) algorithm. Using the histogram algorithm, gradient-based one-sided sampling and exclusive feature bundling measures, the LightGBM algorithm can reduce the time to find the best segmentation point, reduce the amount of data and the number of features in the dataset, thus reducing the model training time, and achieve high prediction accuracy. Applying the LightGBM algorithm to the DOA estimation problem and using a large dataset for training can improve the estimation accuracy while reducing the training cost. Simulation and real experimental results verify the effectiveness of the method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Show more products
Literature
1.
go back to reference A.H. El Zooghby, C.G. Christodoulou, M. Georgiopoulos, A neural network-based smart antenna for multiple source tracking. IEEE Trans. Antennas Propag. 48(5), 768–776 (2000)CrossRef A.H. El Zooghby, C.G. Christodoulou, M. Georgiopoulos, A neural network-based smart antenna for multiple source tracking. IEEE Trans. Antennas Propag. 48(5), 768–776 (2000)CrossRef
2.
go back to reference A. Faye, M. Sene, J. Ndaw, RSS-Based improved DOA estimation using SVM, in 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET) (2021), pp. 125–130 A. Faye, M. Sene, J. Ndaw, RSS-Based improved DOA estimation using SVM, in 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET) (2021), pp. 125–130
3.
go back to reference C. Feng, J. Xiong, L. Chang, et al., WiMi: Target material identification with commodity Wi-Fi devices, in 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS) (2019), pp. 700–710 C. Feng, J. Xiong, L. Chang, et al., WiMi: Target material identification with commodity Wi-Fi devices, in 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS) (2019), pp. 700–710
4.
go back to reference H. Huang, G. Gui, H. Sari, et al., Deep learning for super-resolution DOA estimation in massive MIMO systems, in 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall) (2018), pp. 1–5 H. Huang, G. Gui, H. Sari, et al., Deep learning for super-resolution DOA estimation in massive MIMO systems, in 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall) (2018), pp. 1–5
5.
go back to reference Y. Kase, T. Nishimura, T. Ohgane et al., Fundamental trial on DOA estimation with deep learning. IEICE Trans. Commun. 103(10), 1127–1135 (2020)CrossRef Y. Kase, T. Nishimura, T. Ohgane et al., Fundamental trial on DOA estimation with deep learning. IEICE Trans. Commun. 103(10), 1127–1135 (2020)CrossRef
6.
go back to reference G. Ke, Q. Meng, T. Finley, et al., Lightgbm: a highly efficient gradient boosting decision tree, in Advances in Neural Information Processing Systems vol. 30 (2017) G. Ke, Q. Meng, T. Finley, et al., Lightgbm: a highly efficient gradient boosting decision tree, in Advances in Neural Information Processing Systems vol. 30 (2017)
7.
go back to reference G. Liang, C. Li, L. Qiu et al., State-updating-based DOA estimation using sparse Bayesian learning. Appl. Acoust. 192, 108719 (2022)CrossRef G. Liang, C. Li, L. Qiu et al., State-updating-based DOA estimation using sparse Bayesian learning. Appl. Acoust. 192, 108719 (2022)CrossRef
8.
go back to reference Z. Liu, C. Zhang, S.Y. Philip, Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections. IEEE Trans. Antennas Propag. 66(12), 7315–7327 (2018)CrossRef Z. Liu, C. Zhang, S.Y. Philip, Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections. IEEE Trans. Antennas Propag. 66(12), 7315–7327 (2018)CrossRef
9.
go back to reference M. Pastorino, A. Randazzo, A smart antenna system for direction of arrival estimation based on a support vector regression. IEEE Trans. Antennas Propag. 53(7), 2161–2168 (2005)CrossRef M. Pastorino, A. Randazzo, A smart antenna system for direction of arrival estimation based on a support vector regression. IEEE Trans. Antennas Propag. 53(7), 2161–2168 (2005)CrossRef
10.
go back to reference J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer et al., Dataset Shift in Machine Learning (Mit Press, New York, 2008)CrossRef J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer et al., Dataset Shift in Machine Learning (Mit Press, New York, 2008)CrossRef
11.
go back to reference A. Randazzo, M.A. Abou-Khousa, M. Pastorino et al., Direction of arrival estimation based on support vector regression: experimental validation and comparison with MUSIC. IEEE Antennas Wirel. Propag. Lett. 6, 379–382 (2007)CrossRef A. Randazzo, M.A. Abou-Khousa, M. Pastorino et al., Direction of arrival estimation based on support vector regression: experimental validation and comparison with MUSIC. IEEE Antennas Wirel. Propag. Lett. 6, 379–382 (2007)CrossRef
12.
go back to reference R. Roy, A. Paulraj, T. Kailath, ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. Acoust. Speech Signal Process. 34(5), 1340–1342 (1986)CrossRef R. Roy, A. Paulraj, T. Kailath, ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. Acoust. Speech Signal Process. 34(5), 1340–1342 (1986)CrossRef
13.
go back to reference R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)MathSciNetCrossRef R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)MathSciNetCrossRef
14.
go back to reference P. Stoica, A. Nehorai, MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons. IEEE Trans. Acoust. Speech Signal Process. 38(12), 2140–2150 (1990)CrossRef P. Stoica, A. Nehorai, MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons. IEEE Trans. Acoust. Speech Signal Process. 38(12), 2140–2150 (1990)CrossRef
15.
go back to reference M. Sugiyama, M. Kawanabe, Machine Learning in Non-stationary Environments: Introduction to Covariate Shift Adaptation (MIT Press, New York, 2012)CrossRef M. Sugiyama, M. Kawanabe, Machine Learning in Non-stationary Environments: Introduction to Covariate Shift Adaptation (MIT Press, New York, 2012)CrossRef
16.
go back to reference X. Xiao, S. Zhao, X. Zhong, et al., A learning-based approach to direction of arrival estimation in noisy and reverberant environments, in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2015), pp. 2814–2818 X. Xiao, S. Zhao, X. Zhong, et al., A learning-based approach to direction of arrival estimation in noisy and reverberant environments, in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2015), pp. 2814–2818
17.
go back to reference H. Zheng, C. Zhou, Y. Gu, et al., Two-dimensional DOA estimation for coprime planar array: A coarray tensor-based solution, in ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2020), pp. 4562–4566 H. Zheng, C. Zhou, Y. Gu, et al., Two-dimensional DOA estimation for coprime planar array: A coarray tensor-based solution, in ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2020), pp. 4562–4566
Metadata
Title
High-Precision Direction of Arrival Estimation Based on LightGBM
Authors
Fuwei Wang
Xiaoyu Zhang
Lu Liu
Chen Chen
Xingrui He
Yan Zhou
Publication date
06-06-2024
Publisher
Springer US
Published in
Circuits, Systems, and Signal Processing / Issue 9/2024
Print ISSN: 0278-081X
Electronic ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02706-1