Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 4/2015

01-04-2015

High-Pressure Double Torsion as a Severe Plastic Deformation Process: Experimental Procedure and Finite Element Modeling

Authors: Mohammad Jahedi, Marko Knezevic, Mohammad Hossein Paydar

Published in: Journal of Materials Engineering and Performance | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present study, a severe plastic deformation process of high-pressure torsion (HPT) has been modified. The new process is called high-pressure double torsion (HPDT) as both anvils of the conventional HPT process rotate in opposite directions. We manufactured sets of aluminum and pure copper samples using both the HPT process and the newly developed HPDT process to compare between microstructures and microhardness values. Our investigations showed that the copper samples processed by HPDT exhibited larger gradients in microstructure and higher values of hardness. Subsequently, we carried out a set of finite element simulations in ABAQUS/explicit to better understand the differences between the HPT process and the HPDT process. A comparison of the strain distributions of the HPT and HPDT samples revealed a decreasing trend in strain values as the radius increased at the middle surface of the samples. Analysis of the equivalent stress values revealed that stress values for the HPDT samples were higher than those of the HPT samples. Finally, the comparison of the max principal stress values indicated that in the HPDT sample, the extent of the compressive stresses was larger than those in the HPT sample.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater Sci., 2008, 53(6), p 893–979CrossRef A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater Sci., 2008, 53(6), p 893–979CrossRef
2.
go back to reference R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45(2), p 103–189CrossRef R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45(2), p 103–189CrossRef
3.
go back to reference A. Zhilyaev et al., Experimental Parameters Influencing Grain Refinement and Microstructural Evolution During High-Pressure Torsion, Acta Mater., 2003, 51(3), p 753–765CrossRef A. Zhilyaev et al., Experimental Parameters Influencing Grain Refinement and Microstructural Evolution During High-Pressure Torsion, Acta Mater., 2003, 51(3), p 753–765CrossRef
4.
go back to reference A. Zhilyaev, T. McNelley, and T. Langdon, Evolution of Microstructure and Microtexture in FCC Metals During High-Pressure Torsion, J. Mater. Sci., 2007, 42(5), p 1517–1528CrossRef A. Zhilyaev, T. McNelley, and T. Langdon, Evolution of Microstructure and Microtexture in FCC Metals During High-Pressure Torsion, J. Mater. Sci., 2007, 42(5), p 1517–1528CrossRef
5.
go back to reference C. Xu, Z. Horita, and T.G. Langdon, Evaluating the Influence of Pressure and Torsional Strain on Processing by High-Pressure Torsion, J. Mater. Sci., 2008, 43(23–24), p 7286–7292CrossRef C. Xu, Z. Horita, and T.G. Langdon, Evaluating the Influence of Pressure and Torsional Strain on Processing by High-Pressure Torsion, J. Mater. Sci., 2008, 43(23–24), p 7286–7292CrossRef
6.
go back to reference S.C. Yoon, Z. Horita, and H.S. Kim, Finite Element Analysis of Plastic Deformation Behavior During High Pressure Torsion Processing, J. Mater. Process. Technol., 2008, 201(1), p 32–36CrossRef S.C. Yoon, Z. Horita, and H.S. Kim, Finite Element Analysis of Plastic Deformation Behavior During High Pressure Torsion Processing, J. Mater. Process. Technol., 2008, 201(1), p 32–36CrossRef
7.
go back to reference M. Kawasaki, R.B. Figueiredo, and T.G. Langdon, An Investigation of Hardness Homogeneity Throughout Disks Processed by High-Pressure Torsion, Acta Mater., 2011, 59(1), p 308–316CrossRef M. Kawasaki, R.B. Figueiredo, and T.G. Langdon, An Investigation of Hardness Homogeneity Throughout Disks Processed by High-Pressure Torsion, Acta Mater., 2011, 59(1), p 308–316CrossRef
8.
go back to reference Y. Cao et al., A Visualization of Shear Strain in Processing by High-Pressure Torsion, J. Mater. Sci., 2010, 45(3), p 765–770CrossRef Y. Cao et al., A Visualization of Shear Strain in Processing by High-Pressure Torsion, J. Mater. Sci., 2010, 45(3), p 765–770CrossRef
9.
go back to reference Z. Horita and T.G. Langdon, Microstructures and Microhardness of an Aluminum Alloy and Pure Copper After Processing by High-Pressure Torsion, Mater. Sci. Eng. A, 2005, 410, p 422–425CrossRef Z. Horita and T.G. Langdon, Microstructures and Microhardness of an Aluminum Alloy and Pure Copper After Processing by High-Pressure Torsion, Mater. Sci. Eng. A, 2005, 410, p 422–425CrossRef
10.
go back to reference F. Wetscher, A. Vorhauer, and R. Pippan, Strain Hardening During High Pressure Torsion Deformation, Mater. Sci. Eng. A, 2005, 410, p 213–216CrossRef F. Wetscher, A. Vorhauer, and R. Pippan, Strain Hardening During High Pressure Torsion Deformation, Mater. Sci. Eng. A, 2005, 410, p 213–216CrossRef
11.
go back to reference H.S. Kim et al., Deformation Behavior of Copper During a High Pressure Torsion Process, J. Mater. Process. Technol., 2003, 142(2), p 334–337CrossRef H.S. Kim et al., Deformation Behavior of Copper During a High Pressure Torsion Process, J. Mater. Process. Technol., 2003, 142(2), p 334–337CrossRef
12.
go back to reference A. Zhilyaev et al., Influence of the High Pressure Torsion Die Geometry on the Allotropic Phase Transformations in Pure Zr, Mater. Sci. Eng. A, 2010, 527(16), p 3918–3928CrossRef A. Zhilyaev et al., Influence of the High Pressure Torsion Die Geometry on the Allotropic Phase Transformations in Pure Zr, Mater. Sci. Eng. A, 2010, 527(16), p 3918–3928CrossRef
13.
go back to reference R. Lapovok et al., Severe plastic Deformation Processes for Thin Samples, J. Mater. Sci., 2010, 45(17), p 4554–4560CrossRef R. Lapovok et al., Severe plastic Deformation Processes for Thin Samples, J. Mater. Sci., 2010, 45(17), p 4554–4560CrossRef
14.
go back to reference O. Bouaziz, Y. Estrin, and H.S. Kim, A New Technique for Severe Plastic Deformation: The Cone-Cone Method, Adv. Eng. Mater., 2009, 11(12), p 982–985 O. Bouaziz, Y. Estrin, and H.S. Kim, A New Technique for Severe Plastic Deformation: The Cone-Cone Method, Adv. Eng. Mater., 2009, 11(12), p 982–985
15.
go back to reference K. Edalati and Z. Horita, Continuous High-Pressure Torsion, J. Mater. Sci., 2010, 45(17), p 4578–4582CrossRef K. Edalati and Z. Horita, Continuous High-Pressure Torsion, J. Mater. Sci., 2010, 45(17), p 4578–4582CrossRef
16.
go back to reference M. Jahedi et al., Texture Evolution and Enhanced Grain Refinement Under High-Pressure-Double-Torsion, Mater. Sci. Eng. A, 2014, 611, p 29–36CrossRef M. Jahedi et al., Texture Evolution and Enhanced Grain Refinement Under High-Pressure-Double-Torsion, Mater. Sci. Eng. A, 2014, 611, p 29–36CrossRef
17.
go back to reference M. Knezevic et al., Modeling Bending of α-Titanium with Embedded Polycrystal Plasticity in Implicit Finite Elements, Mater. Sci. Eng. A, 2013, 564, p 116–126CrossRef M. Knezevic et al., Modeling Bending of α-Titanium with Embedded Polycrystal Plasticity in Implicit Finite Elements, Mater. Sci. Eng. A, 2013, 564, p 116–126CrossRef
18.
go back to reference M. Knezevic, H.F. Al-Harbi, and S.R. Kalidindi, Crystal Plasticity Simulations Using Discrete Fourier Transforms, Acta Mater., 2009, 57(6), p 1777–1784CrossRef M. Knezevic, H.F. Al-Harbi, and S.R. Kalidindi, Crystal Plasticity Simulations Using Discrete Fourier Transforms, Acta Mater., 2009, 57(6), p 1777–1784CrossRef
19.
go back to reference M. Knezevic, S.R. Kalidindi, and D. Fullwood, Computationally Efficient Database and Spectral Interpolation for Fully Plastic Taylor-Type Crystal Plasticity Calculations of Face-Centered Cubic Polycrystals, Int. J. Plast., 2008, 24(7), p 1264–1276CrossRef M. Knezevic, S.R. Kalidindi, and D. Fullwood, Computationally Efficient Database and Spectral Interpolation for Fully Plastic Taylor-Type Crystal Plasticity Calculations of Face-Centered Cubic Polycrystals, Int. J. Plast., 2008, 24(7), p 1264–1276CrossRef
20.
go back to reference M. Ardeljan, I.J. Beyerlein, and M. Knezevic, A Dislocation Density Based Crystal Plasticity Finite Element Model: Application to a Two-Phase Polycrystalline HCP/BCC Composites, J. Mech. Phys. Solids, 2014, 66, p 16–31CrossRef M. Ardeljan, I.J. Beyerlein, and M. Knezevic, A Dislocation Density Based Crystal Plasticity Finite Element Model: Application to a Two-Phase Polycrystalline HCP/BCC Composites, J. Mech. Phys. Solids, 2014, 66, p 16–31CrossRef
21.
go back to reference M. Knezevic et al., Texture Evolution in Two-Phase Zr/Nb Lamellar Composites During Accumulative Roll Bonding, Int. J. Plast., 2014, 57, p 16–28CrossRef M. Knezevic et al., Texture Evolution in Two-Phase Zr/Nb Lamellar Composites During Accumulative Roll Bonding, Int. J. Plast., 2014, 57, p 16–28CrossRef
22.
go back to reference ABAQUS, Reference Manuals, Dassault Systèemes, Providence, 2013 ABAQUS, Reference Manuals, Dassault Systèemes, Providence, 2013
23.
go back to reference V.I. Levitas, High-Pressure Mechanochemistry: Conceptual Multiscale Theory and Interpretation of Experiments, Phys. Rev. B, 2004, 70(18), p 184118CrossRef V.I. Levitas, High-Pressure Mechanochemistry: Conceptual Multiscale Theory and Interpretation of Experiments, Phys. Rev. B, 2004, 70(18), p 184118CrossRef
24.
go back to reference H.S. Kim, Finite Element Analysis of High Pressure Torsion Processing, J. Mater. Process. Technol., 2001, 113(1), p 617–621CrossRef H.S. Kim, Finite Element Analysis of High Pressure Torsion Processing, J. Mater. Process. Technol., 2001, 113(1), p 617–621CrossRef
25.
go back to reference V.I. Levitas and O.M. Zarechnyy, Numerical Study of Stress and Plastic Strain Evolution Under Compression and Shear of a Sample in a Rotational Anvil Cell, High Pressure Res., 2010, 30(4), p 653–669CrossRef V.I. Levitas and O.M. Zarechnyy, Numerical Study of Stress and Plastic Strain Evolution Under Compression and Shear of a Sample in a Rotational Anvil Cell, High Pressure Res., 2010, 30(4), p 653–669CrossRef
26.
go back to reference B. Feng and V.I. Levitas, Coupled Phase Transformations and Plastic Flows Under Torsion at High Pressure in Rotational Diamond Anvil Cell: Effect of Contact Sliding, J. Appl. Phys., 2013, 114(21), p 213514CrossRef B. Feng and V.I. Levitas, Coupled Phase Transformations and Plastic Flows Under Torsion at High Pressure in Rotational Diamond Anvil Cell: Effect of Contact Sliding, J. Appl. Phys., 2013, 114(21), p 213514CrossRef
27.
go back to reference R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Technol., 2004, 152(2), p 136–143CrossRef R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Technol., 2004, 152(2), p 136–143CrossRef
28.
go back to reference N. Bay, Friction Stress and Normal Stress in Bulk Metal-Forming Processes, J. Mech. Work. Technol., 1987, 14(2), p 203–223CrossRef N. Bay, Friction Stress and Normal Stress in Bulk Metal-Forming Processes, J. Mech. Work. Technol., 1987, 14(2), p 203–223CrossRef
29.
go back to reference K. Edalati, Z. Horita, and T.G. Langdon, The Significance of Slippage in Processing by High-Pressure Torsion, Scripta Mater., 2009, 60(1), p 9–12CrossRef K. Edalati, Z. Horita, and T.G. Langdon, The Significance of Slippage in Processing by High-Pressure Torsion, Scripta Mater., 2009, 60(1), p 9–12CrossRef
30.
go back to reference R.B. Figueiredo et al., Using Finite Element Modeling to Examine the Temperature Distribution in Quasi-constrained High-Pressure Torsion, Acta Mater., 2012, 60(6), p 3190–3198CrossRef R.B. Figueiredo et al., Using Finite Element Modeling to Examine the Temperature Distribution in Quasi-constrained High-Pressure Torsion, Acta Mater., 2012, 60(6), p 3190–3198CrossRef
31.
go back to reference R.B. Figueiredo, P.R. Cetlin, and T.G. Langdon, Using Finite Element Modeling to Examine the Flow Processes in Quasi-constrained High-Pressure Torsion, Mater. Sci. Eng. A, 2011, 528(28), p 8198–8204CrossRef R.B. Figueiredo, P.R. Cetlin, and T.G. Langdon, Using Finite Element Modeling to Examine the Flow Processes in Quasi-constrained High-Pressure Torsion, Mater. Sci. Eng. A, 2011, 528(28), p 8198–8204CrossRef
32.
go back to reference A. Eivani and A. Karimi, Taheri, An Upper Bound Solution of ECAE Process with Outer Curved Corner, J. Mater. Process. Technol., 2007, 182(1), p 555–563CrossRef A. Eivani and A. Karimi, Taheri, An Upper Bound Solution of ECAE Process with Outer Curved Corner, J. Mater. Process. Technol., 2007, 182(1), p 555–563CrossRef
33.
go back to reference B. Mani, M. Jahedi, and M.H. Paydar, A Modification on ECAP Process by Incorporating Torsional Deformation, Mater. Sci. Eng. A, 2011, 528(12), p 4159–4165CrossRef B. Mani, M. Jahedi, and M.H. Paydar, A Modification on ECAP Process by Incorporating Torsional Deformation, Mater. Sci. Eng. A, 2011, 528(12), p 4159–4165CrossRef
34.
go back to reference M. Jahedi and M.H. Paydar, Three-Dimensional Finite Element Analysis of Torsion Extrusion (TE) as an SPD Process, Mater. Sci. Eng. A, 2011, 528(29), p 8742–8749CrossRef M. Jahedi and M.H. Paydar, Three-Dimensional Finite Element Analysis of Torsion Extrusion (TE) as an SPD Process, Mater. Sci. Eng. A, 2011, 528(29), p 8742–8749CrossRef
35.
go back to reference N. Pardis and R. Ebrahimi, Different Processing Routes for Deformation Via Simple Shear Extrusion (SSE), Mater. Sci. Eng. A, 2010, 527(23), p 6153–6156CrossRef N. Pardis and R. Ebrahimi, Different Processing Routes for Deformation Via Simple Shear Extrusion (SSE), Mater. Sci. Eng. A, 2010, 527(23), p 6153–6156CrossRef
36.
go back to reference H. Jiang et al., Microstructural Evolution, Microhardness and Thermal Stability of HPT-Processed Cu, Mater. Sci. Eng. A, 2000, 290(1), p 128–138CrossRef H. Jiang et al., Microstructural Evolution, Microhardness and Thermal Stability of HPT-Processed Cu, Mater. Sci. Eng. A, 2000, 290(1), p 128–138CrossRef
37.
go back to reference K. Edalati, T. Fujioka, and Z. Horita, Microstructure and Mechanical Properties of Pure Cu Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2008, 497(1), p 168–173CrossRef K. Edalati, T. Fujioka, and Z. Horita, Microstructure and Mechanical Properties of Pure Cu Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2008, 497(1), p 168–173CrossRef
38.
go back to reference M. Kawasaki et al., The Development of Hardness Homogeneity in Pure Aluminum and Aluminum Alloy Disks Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2011, 529, p 345–351CrossRef M. Kawasaki et al., The Development of Hardness Homogeneity in Pure Aluminum and Aluminum Alloy Disks Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2011, 529, p 345–351CrossRef
39.
go back to reference Y. Cao et al., Three-Dimensional Shear-Strain Patterns Induced by High-Pressure Torsion and Their Impact on Hardness Evolution, Acta Mater., 2011, 59(10), p 3903–3914CrossRef Y. Cao et al., Three-Dimensional Shear-Strain Patterns Induced by High-Pressure Torsion and Their Impact on Hardness Evolution, Acta Mater., 2011, 59(10), p 3903–3914CrossRef
40.
go back to reference C.I. Chang, C.J. Lee, and J.C. Huang, Relationship Between Grain Size and Zener-Holloman Parameter During Friction Stir Processing in AZ31 Mg Alloys, Scripta Mater., 2004, 51(6), p 509–514CrossRef C.I. Chang, C.J. Lee, and J.C. Huang, Relationship Between Grain Size and Zener-Holloman Parameter During Friction Stir Processing in AZ31 Mg Alloys, Scripta Mater., 2004, 51(6), p 509–514CrossRef
41.
go back to reference A. Zhilyaev et al., Orientation Imaging Microscopy of Ultrafine-Grained Nickel, Scripta Mater., 2002, 46(8), p 575–580CrossRef A. Zhilyaev et al., Orientation Imaging Microscopy of Ultrafine-Grained Nickel, Scripta Mater., 2002, 46(8), p 575–580CrossRef
42.
go back to reference M. Zehetbauer and R.Z. Valiev, Nanomaterials by Severe Plastic Deformation, Wiley Online Library, Weinham, 2004CrossRef M. Zehetbauer and R.Z. Valiev, Nanomaterials by Severe Plastic Deformation, Wiley Online Library, Weinham, 2004CrossRef
43.
go back to reference Z. Horita et al., Observations of Grain Boundary Structure in Submicrometer-Grained Cu and Ni Using High-Resolution Electron Microscopy, J. Mater. Res., 1998, 13(2), p 446–450CrossRef Z. Horita et al., Observations of Grain Boundary Structure in Submicrometer-Grained Cu and Ni Using High-Resolution Electron Microscopy, J. Mater. Res., 1998, 13(2), p 446–450CrossRef
44.
go back to reference M. Jahedi and M.H. Paydar, Study on the Feasibility of the Torsion Extrusion (TE) Process as a Severe Plastic Deformation Method for Consolidation of Al Powder, Mater. Sci. Eng. A, 2010, 527(20), p 5273–5279CrossRef M. Jahedi and M.H. Paydar, Study on the Feasibility of the Torsion Extrusion (TE) Process as a Severe Plastic Deformation Method for Consolidation of Al Powder, Mater. Sci. Eng. A, 2010, 527(20), p 5273–5279CrossRef
45.
go back to reference A. Nagasekhar et al., Stress and Strain Histories in Equal Channel Angular Extrusion/Pressing, Mater. Sci. Eng. A, 2006, 423(1), p 143–147CrossRef A. Nagasekhar et al., Stress and Strain Histories in Equal Channel Angular Extrusion/Pressing, Mater. Sci. Eng. A, 2006, 423(1), p 143–147CrossRef
Metadata
Title
High-Pressure Double Torsion as a Severe Plastic Deformation Process: Experimental Procedure and Finite Element Modeling
Authors
Mohammad Jahedi
Marko Knezevic
Mohammad Hossein Paydar
Publication date
01-04-2015
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 4/2015
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1426-0

Other articles of this Issue 4/2015

Journal of Materials Engineering and Performance 4/2015 Go to the issue

Premium Partners