Skip to main content
Top

2012 | OriginalPaper | Chapter

High Resolution ExitWave Restoration

Authors : Sarah J. Haigh, Angus I. Kirkland

Published in: Modeling Nanoscale Imaging in Electron Microscopy

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We review the use of restoration methods that recover the complex specimen exit wave from a suitably conditioned data set of high resolution transmission electron microscope images. Various levels of theory underlying the post-acquisition processing required are described together with the requirements for aberration measurement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The origin of the use of real space order when describing an aberration coefficient originates from the ray-optical theory of Seidel aberrations which are described in terms of displacements of ray-path intersections with the image plane. As these displacements are proportional to the gradient of the wave aberration function, an nth order Seidel aberration corresponds to a term of order n + 1 in W. As an example, the image aberration for defocus is linear in angle and is hence described as a first-order aberration, whereas the image aberration for spherical aberration is cubic in angle and is hence described as a third-order aberration.
 
2
As the apparent strength of the tilt coils is often sensitive to the condenser lens and objective lens pre-field excitation this must be constant between calibration and experiment.
 
3
Current reversal centre alignment involves reversing the current of the objective lens but is no longer practicable with the strong lenses used in modern instruments.
 
Literature
1.
go back to reference Schiske P (1968) Image reconstruction by means of focal series. Fourth Regional Congress on Electron Microscopy, Rome Schiske P (1968) Image reconstruction by means of focal series. Fourth Regional Congress on Electron Microscopy, Rome
2.
go back to reference Saxton WO (1988) Accurate atom positions from focal and tilted beam series of high resolution electron micrographs. Scanning Microsc Suppl. 2(SUPPL.):213–224 Saxton WO (1988) Accurate atom positions from focal and tilted beam series of high resolution electron micrographs. Scanning Microsc Suppl. 2(SUPPL.):213–224
3.
go back to reference Saxton WO (1994) What is the focus variation method—is it new—is it direct. Ultramicroscopy 55(2):171–181CrossRef Saxton WO (1994) What is the focus variation method—is it new—is it direct. Ultramicroscopy 55(2):171–181CrossRef
4.
go back to reference Coene WMJ, Janssen G et al (1992) Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron-microscopy. Phys Rev Lett 69(26):3743–3746CrossRef Coene WMJ, Janssen G et al (1992) Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron-microscopy. Phys Rev Lett 69(26):3743–3746CrossRef
5.
go back to reference Van Dyck D, De Beeck MO et al (1993) A new approach to object wave-function reconstruction in electron-microscopy. Optik 93(3):103–107 Van Dyck D, De Beeck MO et al (1993) A new approach to object wave-function reconstruction in electron-microscopy. Optik 93(3):103–107
6.
go back to reference op de Beeck M, Van Dyck D et al (1996) Wave function reconstruction in HRTEM: the parabola method. Ultramicroscopy 64(1–4):167–183 op de Beeck M, Van Dyck D et al (1996) Wave function reconstruction in HRTEM: the parabola method. Ultramicroscopy 64(1–4):167–183
7.
go back to reference Lichte H, Formanek P et al (2007) Electron holography: applications to materials questions. Ann Rev Mater Res 37(1):539–588CrossRef Lichte H, Formanek P et al (2007) Electron holography: applications to materials questions. Ann Rev Mater Res 37(1):539–588CrossRef
8.
go back to reference Midgley PA (2001) An introduction to off-axis electron holography. Micron 32(2):167–184CrossRef Midgley PA (2001) An introduction to off-axis electron holography. Micron 32(2):167–184CrossRef
9.
go back to reference Scherzer O (1936) Über einige Fehler von Elektronenlinsen. Zeitschrift für Physik 101:593–603CrossRef Scherzer O (1936) Über einige Fehler von Elektronenlinsen. Zeitschrift für Physik 101:593–603CrossRef
10.
go back to reference Haider M, Rose H et al (1998) A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75(1):53–60CrossRef Haider M, Rose H et al (1998) A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75(1):53–60CrossRef
11.
go back to reference Rose H (1990) Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 85(1):19–24 Rose H (1990) Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 85(1):19–24
12.
go back to reference Urban K, Kabius B et al (1999) A way to higher resolution: spherical-aberration correction in a 200 kV transmission electron microscope. J Electron Microsc 48(6):821–826 Urban K, Kabius B et al (1999) A way to higher resolution: spherical-aberration correction in a 200 kV transmission electron microscope. J Electron Microsc 48(6):821–826
13.
go back to reference Hetherington CJD, Chang LYS et al (2008) High-resolution TEM and the application of direct and indirect aberration correction. Microsc Microanal 14:60–67CrossRef Hetherington CJD, Chang LYS et al (2008) High-resolution TEM and the application of direct and indirect aberration correction. Microsc Microanal 14:60–67CrossRef
14.
go back to reference Tillmann K, Thust A et al (2004) Spherical aberration correction in tandem with exit-plane wave function reconstruction: interlocking tools for the atomic scale imaging of lattice defects in GaAs. Microscopy Microanal 10(2):185–198CrossRef Tillmann K, Thust A et al (2004) Spherical aberration correction in tandem with exit-plane wave function reconstruction: interlocking tools for the atomic scale imaging of lattice defects in GaAs. Microscopy Microanal 10(2):185–198CrossRef
15.
go back to reference Hawkes PW (2007) “Aberration correction” in Science of Microscopy, Vol 1. Springer, p 696–747 Hawkes PW (2007) “Aberration correction” in Science of Microscopy, Vol 1. Springer, p 696–747
16.
go back to reference Hawkes PW, Kasper E (1989,1994) Principles of electron optics. Academic, London Hawkes PW, Kasper E (1989,1994) Principles of electron optics. Academic, London
17.
go back to reference Kirkland AI, Meyer RR et al (2006) Local measurement and computational refinement of aberrations for HRTEM. Microsc Microanal 12(6):461–468CrossRef Kirkland AI, Meyer RR et al (2006) Local measurement and computational refinement of aberrations for HRTEM. Microsc Microanal 12(6):461–468CrossRef
18.
go back to reference Krivanek OL, Dellby N et al (1999) Towards sub-angstrom electron beams. Ultramicroscopy 78(1–4):1–11CrossRef Krivanek OL, Dellby N et al (1999) Towards sub-angstrom electron beams. Ultramicroscopy 78(1–4):1–11CrossRef
19.
go back to reference Typke D, Dierksen K (1995) Determination of image aberrations in high-resolution electron microscopy using diffractogram and cross-correlation methods. Optik 99(4):155–166 Typke D, Dierksen K (1995) Determination of image aberrations in high-resolution electron microscopy using diffractogram and cross-correlation methods. Optik 99(4):155–166
20.
go back to reference Born M, Wolf E (1980) Principles of optics. Pergamon, Oxford Born M, Wolf E (1980) Principles of optics. Pergamon, Oxford
21.
go back to reference Kirkland EJ (1998) Advanced computing in electron microscopy. Plenum Press, New York and London Kirkland EJ (1998) Advanced computing in electron microscopy. Plenum Press, New York and London
22.
go back to reference Reimer L (1997, 2008) Transmission electron microscopy. Springer Reimer L (1997, 2008) Transmission electron microscopy. Springer
23.
go back to reference Frank J (1973) The envelope of electron microscopic transfer functions for partially coherent illumination. Optik 38(5):519–536 Frank J (1973) The envelope of electron microscopic transfer functions for partially coherent illumination. Optik 38(5):519–536
24.
go back to reference Hawkes PW (1978) Coherence in electron optics. Adv Opt Electron Microsc 7:101–184 Hawkes PW (1978) Coherence in electron optics. Adv Opt Electron Microsc 7:101–184
25.
go back to reference Wade RH, Frank J (1977) Electron microscope transfer functions for partially coherent axial illumination and chromatic defocus spread. Optik 49:81–92 Wade RH, Frank J (1977) Electron microscope transfer functions for partially coherent axial illumination and chromatic defocus spread. Optik 49:81–92
26.
go back to reference Kirkland AI, Nellist PD et al (2008) Chapter 8 In Aberration-corrected imaging in conventional transmission electron microscopy and scanning transmission electron microscopy. Advances in imaging and electron physics, Vol 153. Elsevier, pp 283–325 Kirkland AI, Nellist PD et al (2008) Chapter 8 In Aberration-corrected imaging in conventional transmission electron microscopy and scanning transmission electron microscopy. Advances in imaging and electron physics, Vol 153. Elsevier, pp 283–325
27.
go back to reference Haigh SJ, Sawada H et al (2009) Atomic structure imaging beyond conventional resolution limits in the transmission electron microscope. Phys Rev Lett 103(12):126101–126104CrossRef Haigh SJ, Sawada H et al (2009) Atomic structure imaging beyond conventional resolution limits in the transmission electron microscope. Phys Rev Lett 103(12):126101–126104CrossRef
28.
go back to reference Haigh SJ, Sawada H et al (2009) Optimal tilt magnitude determination for aberration-corrected super resolution exit wave function reconstruction. Philos Trans R Soc Lond A 367(1903):3755–3771CrossRef Haigh SJ, Sawada H et al (2009) Optimal tilt magnitude determination for aberration-corrected super resolution exit wave function reconstruction. Philos Trans R Soc Lond A 367(1903):3755–3771CrossRef
29.
go back to reference Kirkland AI, Saxton WO et al (1997) Multiple beam tilt microscopy for super resolved imaging. J Electron Microsc 46(1):11–22 Kirkland AI, Saxton WO et al (1997) Multiple beam tilt microscopy for super resolved imaging. J Electron Microsc 46(1):11–22
30.
go back to reference Kirkland AI, Saxton WO et al (1995) Super-resolution by aperture synthesis: tilt series reconstruction in CTEM. Ultramicroscopy 57(4):355–374CrossRef Kirkland AI, Saxton WO et al (1995) Super-resolution by aperture synthesis: tilt series reconstruction in CTEM. Ultramicroscopy 57(4):355–374CrossRef
31.
go back to reference Hopkins HH (1951) The concept of partial coherence in optics. Proc R Soc Lond A Math Phys Sci 208(1093):263–277CrossRef Hopkins HH (1951) The concept of partial coherence in optics. Proc R Soc Lond A Math Phys Sci 208(1093):263–277CrossRef
32.
go back to reference Hopkins HH (1953) On the diffraction theory of optical images. Proc R Soc Lond A Math Phys Sci 217(1130):408–432CrossRef Hopkins HH (1953) On the diffraction theory of optical images. Proc R Soc Lond A Math Phys Sci 217(1130):408–432CrossRef
33.
go back to reference Hanssen KJ, Trepte L (1971) Influence of voltage and current fluctuations and of a finite energy width of electrons on contrast and resolution in electron microscopy. Optik 32(6):519 Hanssen KJ, Trepte L (1971) Influence of voltage and current fluctuations and of a finite energy width of electrons on contrast and resolution in electron microscopy. Optik 32(6):519
34.
go back to reference Ishizuka K, Fujiyoshi Y et al (1979) Effects of the envelope function on high-resolution electron-microscope images. J Electron Microsc 28(3):226–226 Ishizuka K, Fujiyoshi Y et al (1979) Effects of the envelope function on high-resolution electron-microscope images. J Electron Microsc 28(3):226–226
35.
go back to reference Ishizuka K (1980) Contrast transfer of crystal images in TEM. Ultramicroscopy 5(1–3):55–65CrossRef Ishizuka K (1980) Contrast transfer of crystal images in TEM. Ultramicroscopy 5(1–3):55–65CrossRef
36.
go back to reference Meyer RR, Kirkland AI (2000) Characterisation of the signal and noise transfer of CCD cameras for electron detection. Microsc Res Tech 49(3):269–280CrossRef Meyer RR, Kirkland AI (2000) Characterisation of the signal and noise transfer of CCD cameras for electron detection. Microsc Res Tech 49(3):269–280CrossRef
37.
go back to reference Meyer RR, Kirkland AI et al (2000) Experimental characterisation of CCD cameras for HREM at 300 kV. Ultramicroscopy 85(1):9–13CrossRef Meyer RR, Kirkland AI et al (2000) Experimental characterisation of CCD cameras for HREM at 300 kV. Ultramicroscopy 85(1):9–13CrossRef
38.
go back to reference Kirkland AI, Chang LY (2005) An assessment of imaging models for exit wave restoration. Microsc Microanal 11(SupplementS02):2152–2153 Kirkland AI, Chang LY (2005) An assessment of imaging models for exit wave restoration. Microsc Microanal 11(SupplementS02):2152–2153
39.
go back to reference Coene WMJ, Thust A et al (1996) Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64(1–4):109–135CrossRef Coene WMJ, Thust A et al (1996) Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64(1–4):109–135CrossRef
40.
go back to reference Kirkland EJ (1984) Improved high resolution image processing of bright field electron micrographs. I. Theory. Ultramicroscopy 15(3):151–172CrossRef Kirkland EJ (1984) Improved high resolution image processing of bright field electron micrographs. I. Theory. Ultramicroscopy 15(3):151–172CrossRef
41.
go back to reference Kirkland EJ, Siegel BM et al (1982) Non-linear high-resolution image-processing of conventional transmission electron-micrographs. 2. Experiment. Ultramicroscopy 9(1–2):65–74 Kirkland EJ, Siegel BM et al (1982) Non-linear high-resolution image-processing of conventional transmission electron-micrographs. 2. Experiment. Ultramicroscopy 9(1–2):65–74
42.
go back to reference Cowley JM, Moodie AF (1957) The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr 10:609–619 Cowley JM, Moodie AF (1957) The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr 10:609–619
43.
go back to reference Cowley JM, Moodie AF (1962) The scattering of electrons by thin crystals. J Phys Soc Jpn 17(suppl. B.II):86–91 Cowley JM, Moodie AF (1962) The scattering of electrons by thin crystals. J Phys Soc Jpn 17(suppl. B.II):86–91
44.
go back to reference Spence JCH (1988) Experimental high resolution electron microscopy. Oxford University Press, New York Spence JCH (1988) Experimental high resolution electron microscopy. Oxford University Press, New York
45.
go back to reference Grinton GR, Cowley JM (1971) Phase and amplitude contrast in electron micrographs of biological materials. Optik - Int J Light Electron Opt 34:221 Grinton GR, Cowley JM (1971) Phase and amplitude contrast in electron micrographs of biological materials. Optik - Int J Light Electron Opt 34:221
46.
go back to reference Yoshioka H (1957) The effect of inelastic waves on electron diffraction. J Phys Soc Jpn 12:618CrossRef Yoshioka H (1957) The effect of inelastic waves on electron diffraction. J Phys Soc Jpn 12:618CrossRef
47.
go back to reference Li FH (1998) Image processing based on the combination of high-resolution electron microscopy and electron diffraction. Microsc Res Tech 40(2):86–100CrossRef Li FH (1998) Image processing based on the combination of high-resolution electron microscopy and electron diffraction. Microsc Res Tech 40(2):86–100CrossRef
48.
go back to reference Tang D, Li FH (1988) A method of image-restoration for pseudo-weak-phase objects. Ultramicroscopy 25(1):61–67CrossRef Tang D, Li FH (1988) A method of image-restoration for pseudo-weak-phase objects. Ultramicroscopy 25(1):61–67CrossRef
49.
go back to reference Honda T, Tomita T et al (1994) Field emission ultrahigh-resolution analytical electron microscope. Ultramicroscopy 54(2–4):132–144CrossRef Honda T, Tomita T et al (1994) Field emission ultrahigh-resolution analytical electron microscope. Ultramicroscopy 54(2–4):132–144CrossRef
50.
go back to reference Otten MT, Coene WMJ (1993) High-resolution imaging on a field emission TEM. Ultramicroscopy 48(1–2):77–91CrossRef Otten MT, Coene WMJ (1993) High-resolution imaging on a field emission TEM. Ultramicroscopy 48(1–2):77–91CrossRef
51.
go back to reference Erasmus S, Smith K (1982) An automatic focusing and astigmatism correction system for the SEM and CTEM. J Microsc 127:185–199CrossRef Erasmus S, Smith K (1982) An automatic focusing and astigmatism correction system for the SEM and CTEM. J Microsc 127:185–199CrossRef
52.
go back to reference Saxton WO, Smith DJ et al (1983) Procedures for focusing, stigmating and alignment in high-resolution electron-microscopy. J Microsc 130(MAY):187–201CrossRef Saxton WO, Smith DJ et al (1983) Procedures for focusing, stigmating and alignment in high-resolution electron-microscopy. J Microsc 130(MAY):187–201CrossRef
53.
go back to reference Fu Q, Lichte H et al (1991) Correction of aberrations of an electron microscope by means of electron holography. Phys Rev Lett 67(17):2319–2322CrossRef Fu Q, Lichte H et al (1991) Correction of aberrations of an electron microscope by means of electron holography. Phys Rev Lett 67(17):2319–2322CrossRef
54.
go back to reference Tang D, Zandbergen HW et al (1996) Fine-tuning of the focal residue in exit-wave reconstruction. Ultramicroscopy 64(1–4):265–276CrossRef Tang D, Zandbergen HW et al (1996) Fine-tuning of the focal residue in exit-wave reconstruction. Ultramicroscopy 64(1–4):265–276CrossRef
55.
go back to reference Lehmann M (2000) Determination and correction of the coherent wave aberration from a single off-axis electron hologram by means of a genetic algorithm. Ultramicroscopy 85(3):165–182CrossRef Lehmann M (2000) Determination and correction of the coherent wave aberration from a single off-axis electron hologram by means of a genetic algorithm. Ultramicroscopy 85(3):165–182CrossRef
56.
go back to reference Koster AJ, van den Bos A et al (1987) An autofocus method for a TEM. Ultramicroscopy 21(3):209–221CrossRef Koster AJ, van den Bos A et al (1987) An autofocus method for a TEM. Ultramicroscopy 21(3):209–221CrossRef
57.
go back to reference Koster AJ (1989) Practical autotuning of a transmission electron microscope. Ultramicroscopy 31(4):473–474CrossRef Koster AJ (1989) Practical autotuning of a transmission electron microscope. Ultramicroscopy 31(4):473–474CrossRef
58.
go back to reference Saxton WO, Chand G et al (1994) Accurate determination and compensation of lens aberrations in high resolution EM. Electron Microscopy 1994, Vol 1—Interdisciplinary Developments and Tools: 203–204 Saxton WO, Chand G et al (1994) Accurate determination and compensation of lens aberrations in high resolution EM. Electron Microscopy 1994, Vol 1—Interdisciplinary Developments and Tools: 203–204
59.
go back to reference Krivanek OL, Leber ML (1994). Autotuning for 1 angstrom resolution. Electron Microsc 1:157–158 Krivanek OL, Leber ML (1994). Autotuning for 1 angstrom resolution. Electron Microsc 1:157–158
60.
go back to reference Thon F (1966) Imaging properties of the electron microscope near the theoretical limit of resolution. 6th Intern. congr. on electron microscopy, Kyoto Thon F (1966) Imaging properties of the electron microscope near the theoretical limit of resolution. 6th Intern. congr. on electron microscopy, Kyoto
61.
go back to reference Coene WMJ, Denteneer TJJ (1991) Improved methods for the determination of the spherical-aberration coefficient in high-resolution electron-microscopy from micrographs of an amorphous object. Ultramicroscopy 38(3–4):225–233CrossRef Coene WMJ, Denteneer TJJ (1991) Improved methods for the determination of the spherical-aberration coefficient in high-resolution electron-microscopy from micrographs of an amorphous object. Ultramicroscopy 38(3–4):225–233CrossRef
62.
go back to reference Krivanek OL (1976) Method for determining coefficient of spherical aberration from a single electron micrograph. Optik 45(1):97–101 Krivanek OL (1976) Method for determining coefficient of spherical aberration from a single electron micrograph. Optik 45(1):97–101
63.
go back to reference Typke D, Köstler D (1977) Determination of the wave aberration of electron lenses from superposition diffractograms of images with differently tilted illumination. Ultramicroscopy 2:285–295CrossRef Typke D, Köstler D (1977) Determination of the wave aberration of electron lenses from superposition diffractograms of images with differently tilted illumination. Ultramicroscopy 2:285–295CrossRef
64.
go back to reference Zemlin F, Weiss K et al (1978) Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3:49–60CrossRef Zemlin F, Weiss K et al (1978) Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3:49–60CrossRef
65.
go back to reference Smith DJ, Saxton WO et al (1983) The importance of beam alignment and crystal tilt in high-resolution electron-microscopy. Ultramicroscopy 11(4):263–281CrossRef Smith DJ, Saxton WO et al (1983) The importance of beam alignment and crystal tilt in high-resolution electron-microscopy. Ultramicroscopy 11(4):263–281CrossRef
66.
go back to reference Meyer RR, Kirkland AI et al (2002) A new method for the determination of the wave aberration function for high resolution TEM 1. Measurement of the symmetric aberrations. Ultramicroscopy 92(2):89–109 Meyer RR, Kirkland AI et al (2002) A new method for the determination of the wave aberration function for high resolution TEM 1. Measurement of the symmetric aberrations. Ultramicroscopy 92(2):89–109
67.
go back to reference Meyer RR, Kirkland AI et al (2004) A new method for the determination of the wave aberration function for high-resolution TEM. 2. Measurement of the antisymmetric aberrations. Ultramicroscopy 99(2–3):115–123 Meyer RR, Kirkland AI et al (2004) A new method for the determination of the wave aberration function for high-resolution TEM. 2. Measurement of the antisymmetric aberrations. Ultramicroscopy 99(2–3):115–123
68.
go back to reference Saxton WO (1995) Observation of lens aberrations for very high-resolution electron-microscopy. 1. Theory. J Microsc 179:201–213CrossRef Saxton WO (1995) Observation of lens aberrations for very high-resolution electron-microscopy. 1. Theory. J Microsc 179:201–213CrossRef
69.
go back to reference Baba N, Oho E, Kanaya K (1987) An algorithm for online digital image processing for assisting automatic focussing and astigmatism correction in electron microscopy. Scanning Microscopy 1(4):1507–1514 Baba N, Oho E, Kanaya K (1987) An algorithm for online digital image processing for assisting automatic focussing and astigmatism correction in electron microscopy. Scanning Microscopy 1(4):1507–1514
70.
go back to reference Fan G, Krivanek O (1990) Computer controlled HREM alignment using automated diffractogram analysis. In: Peachy L, Williams DJS (ed) 12th ICEM, Vol 1. San Francisco Press, Seattle, pp 332–333 Fan G, Krivanek O (1990) Computer controlled HREM alignment using automated diffractogram analysis. In: Peachy L, Williams DJS (ed) 12th ICEM, Vol 1. San Francisco Press, Seattle, pp 332–333
71.
go back to reference Uhlemann S, Haider M (1998) Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72(3–4):109–119CrossRef Uhlemann S, Haider M (1998) Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72(3–4):109–119CrossRef
72.
go back to reference Van Heel M, Schatz M et al (1992) Correlation-functions revisited. Ultramicroscopy 46(1–4):307–316CrossRef Van Heel M, Schatz M et al (1992) Correlation-functions revisited. Ultramicroscopy 46(1–4):307–316CrossRef
73.
go back to reference Kuglin CD, Hines DC (1975) The phase correlation image alignment method. Proceedings of the IEEE 1975 International Conference on Cybernetics and Society, New York Kuglin CD, Hines DC (1975) The phase correlation image alignment method. Proceedings of the IEEE 1975 International Conference on Cybernetics and Society, New York
74.
go back to reference Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series. Wiley, New York Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series. Wiley, New York
75.
go back to reference Meyer RR, Kirkland AI (1998) The effects of electron and photon scattering on signal and noise transfer properties of scintillators in CCD cameras used for electron detection. Ultramicroscopy 75(1):23–33CrossRef Meyer RR, Kirkland AI (1998) The effects of electron and photon scattering on signal and noise transfer properties of scintillators in CCD cameras used for electron detection. Ultramicroscopy 75(1):23–33CrossRef
76.
go back to reference Hashimoto H, Endoh H et al (1998) Pseudo-aberration free focus condition for atomic resolution electron microscope images. Micron 29(2–3):113–121CrossRef Hashimoto H, Endoh H et al (1998) Pseudo-aberration free focus condition for atomic resolution electron microscope images. Micron 29(2–3):113–121CrossRef
77.
go back to reference O’Keefe MA, Nelson EC et al (2001) Sub-angstrom resolution of atomistic structures below 0.8 angstrom. Philos Mag B 81(11):1861–1878 O’Keefe MA, Nelson EC et al (2001) Sub-angstrom resolution of atomistic structures below 0.8 angstrom. Philos Mag B 81(11):1861–1878
78.
go back to reference Chang LY, Kirkland AI (2006) Comparisons of linear and nonlinear image restoration. Microsc Microanal 12(6):469–475CrossRef Chang LY, Kirkland AI (2006) Comparisons of linear and nonlinear image restoration. Microsc Microanal 12(6):469–475CrossRef
79.
go back to reference Allen LJ, McBride W et al (2004) Exit wave reconstruction at atomic resolution. Ultramicroscopy 100(1–2):91–104CrossRef Allen LJ, McBride W et al (2004) Exit wave reconstruction at atomic resolution. Ultramicroscopy 100(1–2):91–104CrossRef
80.
go back to reference Allen LJ, McBride W et al (2004) Investigation of the effects of partial coherence on exit wave reconstruction. J Microsc 216:70–75CrossRef Allen LJ, McBride W et al (2004) Investigation of the effects of partial coherence on exit wave reconstruction. J Microsc 216:70–75CrossRef
81.
go back to reference Chang LY, Meyer RR et al (2005) Calculation of HREM image intensity using Monte Carlo integration. Ultramicroscopy 104:271–280CrossRef Chang LY, Meyer RR et al (2005) Calculation of HREM image intensity using Monte Carlo integration. Ultramicroscopy 104:271–280CrossRef
82.
go back to reference Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numercial recipes in C\(++\): The art of scientific computing. Cambridge University Press, Cambridge. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numercial recipes in C\(++\): The art of scientific computing. Cambridge University Press, Cambridge.
83.
go back to reference Teague MR (1983) Deterministic phase retrieval—a green-function solution. J Opt Soc Am 73(11):1434–1441CrossRef Teague MR (1983) Deterministic phase retrieval—a green-function solution. J Opt Soc Am 73(11):1434–1441CrossRef
84.
go back to reference Nugent KA, Gureyev TE et al (1996) Quantitative phase imaging using hard X-rays. Phys Rev Lett 77(14):2961–2964CrossRef Nugent KA, Gureyev TE et al (1996) Quantitative phase imaging using hard X-rays. Phys Rev Lett 77(14):2961–2964CrossRef
85.
go back to reference Paganin D, Mayo SC et al (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206:33–40CrossRef Paganin D, Mayo SC et al (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206:33–40CrossRef
86.
go back to reference Streibl N (1985) Three-dimensional imaging by a microscope. J Opt Soc Am A 2(2):121–127CrossRef Streibl N (1985) Three-dimensional imaging by a microscope. J Opt Soc Am A 2(2):121–127CrossRef
87.
go back to reference McMahon PJ, Barone-Nugent ED et al (2002) Quantitative phase-amplitude microscopy II: differential interference contrast imaging for biological TEM. J Microsc 206(3):204–208CrossRef McMahon PJ, Barone-Nugent ED et al (2002) Quantitative phase-amplitude microscopy II: differential interference contrast imaging for biological TEM. J Microsc 206(3):204–208CrossRef
88.
go back to reference Bajt S, Barty A et al (2000) Quantitative phase-sensitive imaging in a transmission electron microscope. Ultramicroscopy 83(1–2):67–73CrossRef Bajt S, Barty A et al (2000) Quantitative phase-sensitive imaging in a transmission electron microscope. Ultramicroscopy 83(1–2):67–73CrossRef
89.
go back to reference Beleggia M, Schofield MA et al (2004) On the transport of intensity technique for phase retrieval. Ultramicroscopy 102(1):37–49CrossRef Beleggia M, Schofield MA et al (2004) On the transport of intensity technique for phase retrieval. Ultramicroscopy 102(1):37–49CrossRef
90.
go back to reference Martin AV, Chen FR et al (2006) Spatial incoherence in phase retrieval based on focus variation. Ultramicroscopy 106(10):914–924CrossRef Martin AV, Chen FR et al (2006) Spatial incoherence in phase retrieval based on focus variation. Ultramicroscopy 106(10):914–924CrossRef
91.
go back to reference Ishizuka K, Allman B (2005) Phase measurement of atomic resolution image using transport of intensity equation. J Electron Microsc 54(3):191–197CrossRef Ishizuka K, Allman B (2005) Phase measurement of atomic resolution image using transport of intensity equation. J Electron Microsc 54(3):191–197CrossRef
92.
go back to reference Hsieh WK, Chen FR et al (2004) Resolution extension and exit wave reconstruction in complex HREM. Ultramicroscopy 98(2–4):99–114CrossRef Hsieh WK, Chen FR et al (2004) Resolution extension and exit wave reconstruction in complex HREM. Ultramicroscopy 98(2–4):99–114CrossRef
93.
go back to reference Chang LY, Kirkland AI et al (2006) On the importance of fifth-order spherical aberration for a fully corrected electron microscope. Ultramicroscopy 106(4–5):301–306CrossRef Chang LY, Kirkland AI et al (2006) On the importance of fifth-order spherical aberration for a fully corrected electron microscope. Ultramicroscopy 106(4–5):301–306CrossRef
94.
go back to reference Petersen TC, Keast VJ (2007) Astigmatic intensity equation for electron microscopy based phase retrieval. Ultramicroscopy 107(8):635–643CrossRef Petersen TC, Keast VJ (2007) Astigmatic intensity equation for electron microscopy based phase retrieval. Ultramicroscopy 107(8):635–643CrossRef
Metadata
Title
High Resolution ExitWave Restoration
Authors
Sarah J. Haigh
Angus I. Kirkland
Copyright Year
2012
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4614-2191-7_3

Premium Partners