Skip to main content
Top

2018 | OriginalPaper | Chapter

High-Resolution Observations of Internal Wave Turbulence in the Deep Ocean

Author : Hans van Haren

Published in: The Ocean in Motion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An overview is presented of high-resolution temperature observations above underwater topography in the deep, generally stably stratified ocean. The Eulerian mooring technique is used by typically distributing 100 sensors over lines between 40 and 400 m long. The independent sensors sample at a rate of 1 Hz for up to one year with a precision better than 0.1 mK. This precision and sampling rate are sufficient to resolve all of the internal waves and their breaking including the large, energy containing turbulent eddies above underwater topography. Under conditions of a tight temperature-density relationship, the data are used to quantify turbulent overturns. The turbulent diapycnal mixing is important for the redistribution of nutrients, heat (to maintain the stable stratification) and the resuspension of sediment. The detailed observations show two distinctive turbulence processes that are associated with different phases of large-scale carriers (which are mainly tidal but also inertial, internal gravity waves or a sub-inertial sloshing motion): (i) highly nonlinear turbulent frontal bores during the upslope propagating phase, and (ii) Kelvin-Helmholtz billows, at some distance above the slope, during the downslope phase. While the former may be associated in part with convective turbulent overturning following Rayleigh-Taylor instabilities preceding and sharpening the bores, the latter are mainly related to shear-induced instabilities. Under weaker stratified conditions, away from boundaries, free convective mixing appears more often, but a clear inertial subrange in temperature spectra is indicative of dominant shear-induced turbulence. Turbulence is seen to increase in dissipation rate and diffusivity all the way to the bottom while stratification remains constant, which challenges the idea of a homogeneous ‘well-mixed bottom boundary layer’. With a newly developed five-lines mooring the transition is demonstrated from isotropy (full turbulence) to anisotropy (stratified turbulence/internal waves).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gill, A. E. (1982). Atmosphere-ocean dynamics (p. 662). Orlando Fl, USA: Academic Press. Gill, A. E. (1982). Atmosphere-ocean dynamics (p. 662). Orlando Fl, USA: Academic Press.
2.
go back to reference Peixoto, J. P., & Oort, A. H. (1992). Physics of climate (p. 520). Melville NY, USA: AIP-Press. Peixoto, J. P., & Oort, A. H. (1992). Physics of climate (p. 520). Melville NY, USA: AIP-Press.
3.
go back to reference Munk, W., & Wunsch, C. (1998). Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45, 1977–2010.CrossRef Munk, W., & Wunsch, C. (1998). Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45, 1977–2010.CrossRef
4.
go back to reference van Haren, H., Maas, L., Zimmerman, J. T. F., Ridderinkhof, H., & Malschaert, H. (1999). Strong inertial currents and marginal internal wave stability in the central North Sea. Geophysical Reseach Letters, 26, 2993–2996.CrossRef van Haren, H., Maas, L., Zimmerman, J. T. F., Ridderinkhof, H., & Malschaert, H. (1999). Strong inertial currents and marginal internal wave stability in the central North Sea. Geophysical Reseach Letters, 26, 2993–2996.CrossRef
5.
go back to reference Bell, T. H. (1975). Topographically generated internal waves in the open ocean. Journal Geophysical Research, 80, 320–327.CrossRef Bell, T. H. (1975). Topographically generated internal waves in the open ocean. Journal Geophysical Research, 80, 320–327.CrossRef
6.
go back to reference LeBlond, P. H., & Mysak, L. A. (1978). Waves in the Ocean (p. 602). New York, USA: Elsevier. LeBlond, P. H., & Mysak, L. A. (1978). Waves in the Ocean (p. 602). New York, USA: Elsevier.
7.
go back to reference Morozov, E. G. (1995). Semidiurnal internal wave global field. Deep Sea Research Part I: Oceanographic Research Papers, 42, 135–148.CrossRef Morozov, E. G. (1995). Semidiurnal internal wave global field. Deep Sea Research Part I: Oceanographic Research Papers, 42, 135–148.CrossRef
8.
go back to reference Eriksen, C. C. (1982). Observations of internal wave reflection off sloping bottoms. Journal Geophysical Research, 87, 525–538.CrossRef Eriksen, C. C. (1982). Observations of internal wave reflection off sloping bottoms. Journal Geophysical Research, 87, 525–538.CrossRef
9.
go back to reference Thorpe, S. A. (1987). Current and temperature variability on the continental slope. Philosophical Transactions of the Royal Society of London A, 323, 471–517.CrossRef Thorpe, S. A. (1987). Current and temperature variability on the continental slope. Philosophical Transactions of the Royal Society of London A, 323, 471–517.CrossRef
10.
go back to reference Davies, A. M., Xing, J. (2005). The effect of a bottom shelf front upon the generation and propagation of near-inertial internal waves in the coastal ocean. Journal of Physical Oceanography, 35, 976–990. Davies, A. M., Xing, J. (2005). The effect of a bottom shelf front upon the generation and propagation of near-inertial internal waves in the coastal ocean. Journal of Physical Oceanography, 35, 976–990.
11.
go back to reference Turner, J. S. (1979). Buoyancy effects in fluids (p. 368). Cambridge, UK: Cambridge University Press. Turner, J. S. (1979). Buoyancy effects in fluids (p. 368). Cambridge, UK: Cambridge University Press.
12.
go back to reference Sharp, D. H. (1984). An overview of Rayleigh-Taylor instability. Physica D, 12, 3–18.CrossRef Sharp, D. H. (1984). An overview of Rayleigh-Taylor instability. Physica D, 12, 3–18.CrossRef
13.
go back to reference Marshall, J., & Schott, F. (1999). Open-ocean convection: Observations, theory and models. Reviews of Geophysics, 37, 1–64.CrossRef Marshall, J., & Schott, F. (1999). Open-ocean convection: Observations, theory and models. Reviews of Geophysics, 37, 1–64.CrossRef
16.
17.
go back to reference Klymak, J. M., Legg, S., & Pinkel, R. (2010). A simple parameterization of turbulent tidal mixing near supercritical topography. Journal of Physical Oceanography, 40, 2059–2074.CrossRef Klymak, J. M., Legg, S., & Pinkel, R. (2010). A simple parameterization of turbulent tidal mixing near supercritical topography. Journal of Physical Oceanography, 40, 2059–2074.CrossRef
18.
go back to reference Cimatoribus, A. A., & van Haren, H. (2015). Temperature statistics above a deep-ocean sloping boundary. Journal of Fluid Mechanics, 775, 415–435.CrossRef Cimatoribus, A. A., & van Haren, H. (2015). Temperature statistics above a deep-ocean sloping boundary. Journal of Fluid Mechanics, 775, 415–435.CrossRef
20.
go back to reference Dauxois, T., Didier, A., & Falcon, E. (2004). Observation of near-critical reflection of internal waves in a stably stratified fluid. Physics of Fluids, 16, 1936–1941.CrossRef Dauxois, T., Didier, A., & Falcon, E. (2004). Observation of near-critical reflection of internal waves in a stably stratified fluid. Physics of Fluids, 16, 1936–1941.CrossRef
21.
go back to reference Ivey, G. N., & Nokes, R. I. (1989). Vertical mixing due to the breaking of critical internal waves on sloping boundaries. Journal of Fluid Mechanics, 204, 479–500.CrossRef Ivey, G. N., & Nokes, R. I. (1989). Vertical mixing due to the breaking of critical internal waves on sloping boundaries. Journal of Fluid Mechanics, 204, 479–500.CrossRef
22.
go back to reference van Haren, H., Groenewegen, R., Laan, M., & Koster, B. (2005). High sampling rate thermistor string observations at the slope of Great Meteor Seamount. Ocean Science, 1, 17–28.CrossRef van Haren, H., Groenewegen, R., Laan, M., & Koster, B. (2005). High sampling rate thermistor string observations at the slope of Great Meteor Seamount. Ocean Science, 1, 17–28.CrossRef
24.
go back to reference Munk, W. (1966). Abyssal recipes. Deep-Sea Research, 13, 707–730. Munk, W. (1966). Abyssal recipes. Deep-Sea Research, 13, 707–730.
25.
go back to reference Armi, L. (1979). Effects of variations in eddy diffusivity on property distributions in the oceans. Journal of Marine Research, 37, 515–530. Armi, L. (1979). Effects of variations in eddy diffusivity on property distributions in the oceans. Journal of Marine Research, 37, 515–530.
26.
go back to reference Garrett, C. (1990). The role of secondary circulation in boundary mixing. Journal Geophysical Research, 95, 3181–3188.CrossRef Garrett, C. (1990). The role of secondary circulation in boundary mixing. Journal Geophysical Research, 95, 3181–3188.CrossRef
27.
go back to reference Ekman, V. W. (1905). On the influence of the Earth’s rotation on ocean-currents. Arkiv för Matematik, Astronomi och Fysik, 2(11), 1–52. Ekman, V. W. (1905). On the influence of the Earth’s rotation on ocean-currents. Arkiv för Matematik, Astronomi och Fysik, 2(11), 1–52.
28.
go back to reference Weatherly, G. L., & Martin, P. J. (1978). On the structure and dynamics of the oceanic bottom boundary layer. Journal of Physical Oceanography, 8, 557–570.CrossRef Weatherly, G. L., & Martin, P. J. (1978). On the structure and dynamics of the oceanic bottom boundary layer. Journal of Physical Oceanography, 8, 557–570.CrossRef
29.
go back to reference Dewey, R. K., Crawford, W. R., Gargett, A. E., & Oakey, N. S. (1987). A microstructure instrument for profiling oceanic turbulence in coastal bottom boundary layers. Journal of Atmospheric and Oceanic Technology, 4, 288–297.CrossRef Dewey, R. K., Crawford, W. R., Gargett, A. E., & Oakey, N. S. (1987). A microstructure instrument for profiling oceanic turbulence in coastal bottom boundary layers. Journal of Atmospheric and Oceanic Technology, 4, 288–297.CrossRef
30.
go back to reference van Haren, H., Oakey, N., Garrett, C. (1994). Measurements of internal wave band eddy fluxes above a sloping bottom. Journal of Marine Research, 52, 909–946. van Haren, H., Oakey, N., Garrett, C. (1994). Measurements of internal wave band eddy fluxes above a sloping bottom. Journal of Marine Research, 52, 909–946.
31.
go back to reference Polzin, K. L., Toole, J. M., Ledwell, J. R., Schmitt, R. W. (1997). Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93–96. Polzin, K. L., Toole, J. M., Ledwell, J. R., Schmitt, R. W. (1997). Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93–96.
32.
go back to reference van Haren, H., & Gostiaux, L. (2012). Detailed internal wave mixing observed above a deep-ocean slope. Journal of Marine Research, 70, 173–197.CrossRef van Haren, H., & Gostiaux, L. (2012). Detailed internal wave mixing observed above a deep-ocean slope. Journal of Marine Research, 70, 173–197.CrossRef
34.
go back to reference Ferrari, R., Mashayek, A., McDougall, T. J., Nikurashin, M., & Campin, J. (2016). Turning ocean mixing upside down. Journal of Atmospheric and Oceanic Technology, 46, 2239–2261. Ferrari, R., Mashayek, A., McDougall, T. J., Nikurashin, M., & Campin, J. (2016). Turning ocean mixing upside down. Journal of Atmospheric and Oceanic Technology, 46, 2239–2261.
35.
go back to reference Tennekes, H., & Lumley, J. L. (1972). A first course in turbulence (p. 293). Cambridge, MA USA: MIT Press. Tennekes, H., & Lumley, J. L. (1972). A first course in turbulence (p. 293). Cambridge, MA USA: MIT Press.
36.
go back to reference Thorpe, S. A. (1977). Turbulence and mixing in a Scottish loch. Philosophical Transactions of the Royal Society of London A, 286, 125–181.CrossRef Thorpe, S. A. (1977). Turbulence and mixing in a Scottish loch. Philosophical Transactions of the Royal Society of London A, 286, 125–181.CrossRef
37.
go back to reference Dillon, T. M. (1982). Vertical overturns: A comparison of Thorpe and Ozmidov length scales. Journal Geophysical Research, 87, 9601–9613.CrossRef Dillon, T. M. (1982). Vertical overturns: A comparison of Thorpe and Ozmidov length scales. Journal Geophysical Research, 87, 9601–9613.CrossRef
38.
go back to reference Mater, B. D., Venayagamoorthy, S. K., St. Laurent, L., & Moum, J. N. (2015). Biases in Thorpe scale estimates of turbulence dissipation. Part I: Assessments from large-scale overturns in oceanographic data. Journal of Physical Oceanography, 45, 2497–2521. Mater, B. D., Venayagamoorthy, S. K., St. Laurent, L., & Moum, J. N. (2015). Biases in Thorpe scale estimates of turbulence dissipation. Part I: Assessments from large-scale overturns in oceanographic data. Journal of Physical Oceanography, 45, 2497–2521.
39.
go back to reference Oakey, N. S. (1982). Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. Journal of Physical Oceanography, 12, 256–271.CrossRef Oakey, N. S. (1982). Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. Journal of Physical Oceanography, 12, 256–271.CrossRef
40.
go back to reference Osborn, T. R. (1980). Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography, 10, 83–89.CrossRef Osborn, T. R. (1980). Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography, 10, 83–89.CrossRef
41.
go back to reference Galbraith, P. S., & Kelley, D. E. (1996). Identifying overturns in CTD profiles. Journal of Atmospheric and Oceanic Technology, 13, 688–702.CrossRef Galbraith, P. S., & Kelley, D. E. (1996). Identifying overturns in CTD profiles. Journal of Atmospheric and Oceanic Technology, 13, 688–702.CrossRef
42.
go back to reference Gargett, A. E., & Garner, T. (2008). Determining Thorpe scales from ship-lowered CTD density profiles. Journal of Atmospheric and Oceanic Technology, 25, 1657–1670.CrossRef Gargett, A. E., & Garner, T. (2008). Determining Thorpe scales from ship-lowered CTD density profiles. Journal of Atmospheric and Oceanic Technology, 25, 1657–1670.CrossRef
43.
go back to reference Stansfield, K., Garrett, C., & Dewey, R. (2001). The probability distribution of the Thorpe displacement within overturns in Juan de Fuca Strait. Journal of Physical Oceanography, 31, 3421–3434.CrossRef Stansfield, K., Garrett, C., & Dewey, R. (2001). The probability distribution of the Thorpe displacement within overturns in Juan de Fuca Strait. Journal of Physical Oceanography, 31, 3421–3434.CrossRef
44.
go back to reference van Haren, H., & Gostiaux, L. (2014). Characterizing turbulent overturns in CTD-data. Dynamics of Atmospheres and Oceans, 66, 58–76.CrossRef van Haren, H., & Gostiaux, L. (2014). Characterizing turbulent overturns in CTD-data. Dynamics of Atmospheres and Oceans, 66, 58–76.CrossRef
45.
go back to reference Fer, I., & Paskyabi, M. (2014). Autonomous ocean turbulence measurements using shear probes on a moored instrument. Journal of Atmospheric and Oceanic Technology, 31, 474–490.CrossRef Fer, I., & Paskyabi, M. (2014). Autonomous ocean turbulence measurements using shear probes on a moored instrument. Journal of Atmospheric and Oceanic Technology, 31, 474–490.CrossRef
46.
go back to reference Lohrmann, A., Hackett, B., & Røed, L. P. (1990). High resolution measurements of turbulence, velocity and stress using a pulse-to-pulse coherent sonar. Journal of Atmospheric and Oceanic Technology, 7, 19–37.CrossRef Lohrmann, A., Hackett, B., & Røed, L. P. (1990). High resolution measurements of turbulence, velocity and stress using a pulse-to-pulse coherent sonar. Journal of Atmospheric and Oceanic Technology, 7, 19–37.CrossRef
47.
go back to reference Rippeth, T. P., Williams, E., & Simpson, J. H. (2002). Reynolds stress and turbulent energy production in a tidal channel. Journal of Physical Oceanography, 32, 1242–1251.CrossRef Rippeth, T. P., Williams, E., & Simpson, J. H. (2002). Reynolds stress and turbulent energy production in a tidal channel. Journal of Physical Oceanography, 32, 1242–1251.CrossRef
48.
go back to reference Gemmrich, J. R., & van Haren, H. (2002). Internal wave band eddy fluxes in the bottom boundary layer above a continental slope. Journal of Marine Research, 60, 227–253.CrossRef Gemmrich, J. R., & van Haren, H. (2002). Internal wave band eddy fluxes in the bottom boundary layer above a continental slope. Journal of Marine Research, 60, 227–253.CrossRef
49.
go back to reference van Haren, H., Laan, M., Buijsman, D.-J., Gostiaux, L., Smit, M. G., & Keijzer, E. (2009). NIOZ3: Independent temperature sensors sampling yearlong data at a rate of 1 Hz. IEEE Journal of Oceanic Engineering, 34, 315–322.CrossRef van Haren, H., Laan, M., Buijsman, D.-J., Gostiaux, L., Smit, M. G., & Keijzer, E. (2009). NIOZ3: Independent temperature sensors sampling yearlong data at a rate of 1 Hz. IEEE Journal of Oceanic Engineering, 34, 315–322.CrossRef
50.
go back to reference IOC, SCOR, & IAPSO. (2010). The international thermodynamic equation of seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO, Paris, France, p. 196 IOC, SCOR, & IAPSO. (2010). The international thermodynamic equation of seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO, Paris, France, p. 196
51.
go back to reference van Haren, H., Greinert, J. (2016). Turbulent high-latitude oceanic intrusions – details of non-smooth apparent isopycnal transport West of Svalbard. Ocean Dynamics, 66, 785–794. van Haren, H., Greinert, J. (2016). Turbulent high-latitude oceanic intrusions – details of non-smooth apparent isopycnal transport West of Svalbard. Ocean Dynamics, 66, 785–794.
52.
go back to reference Gregg, M. C. (1989). Scaling turbulent dissipation in the thermocline. Journal Geophysical Research, 94, 9686–9698.CrossRef Gregg, M. C. (1989). Scaling turbulent dissipation in the thermocline. Journal Geophysical Research, 94, 9686–9698.CrossRef
53.
go back to reference Alford, M. H., & Pinkel, R. (2000). Observations of overturning in the thermocline: The context of ocean mixing. Journal of Physical Oceanography, 30, 805–832.CrossRef Alford, M. H., & Pinkel, R. (2000). Observations of overturning in the thermocline: The context of ocean mixing. Journal of Physical Oceanography, 30, 805–832.CrossRef
54.
go back to reference Marmorino, G. O. (1987). Observations of small-scale mixing processes in the seasonal thermocline. Part II: Wave breaking. Journal of Physical Oceanography, 17, 1348–1355.CrossRef Marmorino, G. O. (1987). Observations of small-scale mixing processes in the seasonal thermocline. Part II: Wave breaking. Journal of Physical Oceanography, 17, 1348–1355.CrossRef
56.
go back to reference Munk, W. (1981). Internal waves and small-scale processes. In B. A. Warren & C. Wunsch (Eds.), Evolution of physical oceanography (pp. 264–291). Cambridge MA, USA: MIT Press. Munk, W. (1981). Internal waves and small-scale processes. In B. A. Warren & C. Wunsch (Eds.), Evolution of physical oceanography (pp. 264–291). Cambridge MA, USA: MIT Press.
57.
go back to reference Cyr, F., & van Haren, H. (2016). Observations of small-scale secondary instabilities during the shoaling of internal bores on a deep-ocean slope. Journal of Physical Oceanography, 46, 219–231.CrossRef Cyr, F., & van Haren, H. (2016). Observations of small-scale secondary instabilities during the shoaling of internal bores on a deep-ocean slope. Journal of Physical Oceanography, 46, 219–231.CrossRef
61.
go back to reference van Haren, H. (2017). Exploring the vertical extent of breaking internal wave turbulence above deep-sea topography. Dynamics of Atmospheres and Oceans, 77, 89–99.CrossRef van Haren, H. (2017). Exploring the vertical extent of breaking internal wave turbulence above deep-sea topography. Dynamics of Atmospheres and Oceans, 77, 89–99.CrossRef
63.
go back to reference Thorpe, S. A. (1973). Experiments on instability and turbulence in a stratified shear flow. Journal of Fluid Mechanics, 61, 731–751.CrossRef Thorpe, S. A. (1973). Experiments on instability and turbulence in a stratified shear flow. Journal of Fluid Mechanics, 61, 731–751.CrossRef
64.
go back to reference Klaassen, G. P., & Peltier, W. R. (1985). The onset of turbulence in finite-amplitude Kelvin-Helmholtz billow. Journal of Fluid Mechanics, 155, 1–35.CrossRef Klaassen, G. P., & Peltier, W. R. (1985). The onset of turbulence in finite-amplitude Kelvin-Helmholtz billow. Journal of Fluid Mechanics, 155, 1–35.CrossRef
65.
go back to reference Woods, J. D. (1968). Wave-induced shear instability in the summer thermocline. Journal of Fluid Mechanics, 32, 791–800.CrossRef Woods, J. D. (1968). Wave-induced shear instability in the summer thermocline. Journal of Fluid Mechanics, 32, 791–800.CrossRef
66.
go back to reference Moum, J. M., Farmer, D. M., Smyth, W. D., Armi, L., & Vagle, S. (2003). Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. Journal of Physical Oceanography, 33, 2093–2112.CrossRef Moum, J. M., Farmer, D. M., Smyth, W. D., Armi, L., & Vagle, S. (2003). Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. Journal of Physical Oceanography, 33, 2093–2112.CrossRef
68.
go back to reference Thurnherr, A. M., Richards, K. J., German, C. R., Lane-Serff, G. F., & Speer, K. G. (2002). Flow and mixing in the Rift Valley of the Mid-Atlantic Ridge. Journal of Physical Oceanography, 32, 1763–1778.CrossRef Thurnherr, A. M., Richards, K. J., German, C. R., Lane-Serff, G. F., & Speer, K. G. (2002). Flow and mixing in the Rift Valley of the Mid-Atlantic Ridge. Journal of Physical Oceanography, 32, 1763–1778.CrossRef
69.
go back to reference Melet, A., Hallberg, R., Legg, S., & Nikurashin, M. (2014). Sensivity of the ocean state to lee-wave driven mixing. Journal of Physical Oceanography, 40, 900–921.CrossRef Melet, A., Hallberg, R., Legg, S., & Nikurashin, M. (2014). Sensivity of the ocean state to lee-wave driven mixing. Journal of Physical Oceanography, 40, 900–921.CrossRef
70.
go back to reference Cacchione, D. A., & Drake, D. E. (1986). Nepheloid layers and internal waves over continental shelves and slopes. Geo-Marine Letters, 16, 147–152.CrossRef Cacchione, D. A., & Drake, D. E. (1986). Nepheloid layers and internal waves over continental shelves and slopes. Geo-Marine Letters, 16, 147–152.CrossRef
72.
go back to reference Tsuchiya, M., Talley, L. D., & McCartney, M. S. (1992). An eastern Atlantic section from Iceland southward across the equator. Deep Sea Research Part A. Oceanographic Research Papers, 39, 1885–1917.CrossRef Tsuchiya, M., Talley, L. D., & McCartney, M. S. (1992). An eastern Atlantic section from Iceland southward across the equator. Deep Sea Research Part A. Oceanographic Research Papers, 39, 1885–1917.CrossRef
Metadata
Title
High-Resolution Observations of Internal Wave Turbulence in the Deep Ocean
Author
Hans van Haren
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-71934-4_11