Skip to main content
Top

2015 | OriginalPaper | Chapter

15. High Resolution STM Imaging

Author : Alexander N. Chaika

Published in: Surface Science Tools for Nanomaterials Characterization

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Scanning tunneling microscopy (STM) is one of the basic techniques for the analysis of surface reconstructions, overlayer growth mechanisms, surface dynamics, and chemistry at the atomic scale. STM is used in physics, chemistry, and biology for high resolution studies of organic and inorganic nanoobjects. This chapter is devoted to STM imaging at the level of individual electron orbitals which can lead to improvement of the spatial resolution in STM experiments down to the subatomic scale and development of chemical-selective imaging of multi-component surfaces.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40(2):178–180CrossRef Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40(2):178–180CrossRef
2.
go back to reference Binnig G, Rohrer H (1982) Scanning tunnelling microscopy. Helv Phys Acta 55(6):726–735 Binnig G, Rohrer H (1982) Scanning tunnelling microscopy. Helv Phys Acta 55(6):726–735
3.
go back to reference Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933CrossRef Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933CrossRef
4.
go back to reference Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49(1):57–61CrossRef Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49(1):57–61CrossRef
5.
go back to reference Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344(6266):524–526CrossRef Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344(6266):524–526CrossRef
6.
go back to reference Crommie MF, Lutz CP, Eigler DM (1993) Confinement of electrons to quantum corrals on a metal surface. Science 262(5131):218–220CrossRef Crommie MF, Lutz CP, Eigler DM (1993) Confinement of electrons to quantum corrals on a metal surface. Science 262(5131):218–220CrossRef
7.
go back to reference Stroscio JA, Celotta RJ (2004) Controlling the dynamics of a single atom in lateral atom manipulation. Science 306(5694):242–247CrossRef Stroscio JA, Celotta RJ (2004) Controlling the dynamics of a single atom in lateral atom manipulation. Science 306(5694):242–247CrossRef
8.
go back to reference Walsh MA, Hersam MC (2009) Atomic-scale templates patterned by ultrahigh vacuum scanning tunnelling microscopy on silicon. Annu Rev Phys Chem 60:193–216CrossRef Walsh MA, Hersam MC (2009) Atomic-scale templates patterned by ultrahigh vacuum scanning tunnelling microscopy on silicon. Annu Rev Phys Chem 60:193–216CrossRef
9.
go back to reference Khajetoorians AA, Wiebe J, Chilian B, Wiesendanger R (2012) Realizing all-spin–based logic operations atom by atom. Science 332(6033):1062–1064CrossRef Khajetoorians AA, Wiebe J, Chilian B, Wiesendanger R (2012) Realizing all-spin–based logic operations atom by atom. Science 332(6033):1062–1064CrossRef
10.
go back to reference Khajetoorians AA, Wiebe J, Chilian B, Lounis S, Blügel S, Wiesendanger R (2012) Atom-by-atom engineering and magnetometry of tailored nanomagnets. Nat Phys 8(6):497–503CrossRef Khajetoorians AA, Wiebe J, Chilian B, Lounis S, Blügel S, Wiesendanger R (2012) Atom-by-atom engineering and magnetometry of tailored nanomagnets. Nat Phys 8(6):497–503CrossRef
11.
go back to reference Krasnikov SA, Lübben O, Murphy BE, Bozhko SI, Chaika AN, Sergeeva NN, Bulfin B, Shvets IV (2013) Writing with atoms: oxygen adatoms on the MoO2/Mo(110) surface. Nano Res 6(12):929–937CrossRef Krasnikov SA, Lübben O, Murphy BE, Bozhko SI, Chaika AN, Sergeeva NN, Bulfin B, Shvets IV (2013) Writing with atoms: oxygen adatoms on the MoO2/Mo(110) surface. Nano Res 6(12):929–937CrossRef
12.
go back to reference Stipe BC, Rezaei MA, Ho W (1998) Single-molecule vibrational spectroscopy and microscopy. Science 280(5370):1732–1735CrossRef Stipe BC, Rezaei MA, Ho W (1998) Single-molecule vibrational spectroscopy and microscopy. Science 280(5370):1732–1735CrossRef
13.
go back to reference Feenstra RM, Stroscio JA, Tersoff J, Fein AP (1987) Atom-selective imaging of the GaAs(110) surface. Phys Rev Lett 58(12):1192–1195CrossRef Feenstra RM, Stroscio JA, Tersoff J, Fein AP (1987) Atom-selective imaging of the GaAs(110) surface. Phys Rev Lett 58(12):1192–1195CrossRef
14.
go back to reference Schmid M, Stadler H, Varga P (1993) Direct observation of surface chemical order by scanning tunneling microscopy. Phys Rev Lett 70(10):1441–1444CrossRef Schmid M, Stadler H, Varga P (1993) Direct observation of surface chemical order by scanning tunneling microscopy. Phys Rev Lett 70(10):1441–1444CrossRef
15.
go back to reference Wiesendanger R, Güntherodt H-J, Güntherodt G, Gambino RJ, Ruf R (1990) Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys Rev Lett 65(2):247–250CrossRef Wiesendanger R, Güntherodt H-J, Güntherodt G, Gambino RJ, Ruf R (1990) Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys Rev Lett 65(2):247–250CrossRef
16.
go back to reference Wiesendanger R, Shvets IV, Bürgler D, Tarrach G, Güntherodt HJ, Coey JMD, Gräser S (1992) Topographic and magnetic-sensitive scanning tunneling microscope study of magnetite. Science 255(5044):583–586CrossRef Wiesendanger R, Shvets IV, Bürgler D, Tarrach G, Güntherodt HJ, Coey JMD, Gräser S (1992) Topographic and magnetic-sensitive scanning tunneling microscope study of magnetite. Science 255(5044):583–586CrossRef
17.
go back to reference Wiesendanger R (2009) Spin mapping at the nanoscale and atomic scale. Rev Mod Phys 81(4):1495–1550CrossRef Wiesendanger R (2009) Spin mapping at the nanoscale and atomic scale. Rev Mod Phys 81(4):1495–1550CrossRef
18.
go back to reference Binnig G, Rohrer H, Gerber C, Weibel E (1983) (7 × 7) reconstruction on Si(111) resolved in real space. Phys Rev Lett 50(2):120–123CrossRef Binnig G, Rohrer H, Gerber C, Weibel E (1983) (7 × 7) reconstruction on Si(111) resolved in real space. Phys Rev Lett 50(2):120–123CrossRef
19.
go back to reference Binnig G, Rohrer H, Ch G, Weibel E (1983) (111) facets as the origin of reconstructed Au(110) surfaces. Surf Sci 131(1):L379–L384CrossRef Binnig G, Rohrer H, Ch G, Weibel E (1983) (111) facets as the origin of reconstructed Au(110) surfaces. Surf Sci 131(1):L379–L384CrossRef
20.
go back to reference Gawronski H, Mehlhorn M, Morgenstern K (2008) Imaging phonon excitation with atomic resolution. Science 319(5865):930–933CrossRef Gawronski H, Mehlhorn M, Morgenstern K (2008) Imaging phonon excitation with atomic resolution. Science 319(5865):930–933CrossRef
21.
go back to reference Chaika AN, Molodtsova OV, Zakharov AA, Marchenko D, Sanchez-Barriga J, Varykhalov A, Shvets IV, Aristov VY (2013) Continuous wafer-scale graphene on cubic-SiC(001). Nano Res 6(8):562–570CrossRef Chaika AN, Molodtsova OV, Zakharov AA, Marchenko D, Sanchez-Barriga J, Varykhalov A, Shvets IV, Aristov VY (2013) Continuous wafer-scale graphene on cubic-SiC(001). Nano Res 6(8):562–570CrossRef
22.
go back to reference Chaika AN, Nazin SS, Semenov VN, Bozhko SI, Lübben O, Krasnikov SA, Radican K, Shvets IV (2010) Selecting the tip electron orbital for scanning tunneling microscopy imaging with sub-ångström lateral resolution. EPL 92(4):46003CrossRef Chaika AN, Nazin SS, Semenov VN, Bozhko SI, Lübben O, Krasnikov SA, Radican K, Shvets IV (2010) Selecting the tip electron orbital for scanning tunneling microscopy imaging with sub-ångström lateral resolution. EPL 92(4):46003CrossRef
23.
go back to reference Chaika AN, Nazin SS, Semenov VN, Orlova NN, Bozhko SI, Lübben O, Krasnikov SA, Radican K, Shvets IV (2013) High resolution STM imaging with oriented single crystalline tips. Appl Surf Sci 267:219–223CrossRef Chaika AN, Nazin SS, Semenov VN, Orlova NN, Bozhko SI, Lübben O, Krasnikov SA, Radican K, Shvets IV (2013) High resolution STM imaging with oriented single crystalline tips. Appl Surf Sci 267:219–223CrossRef
24.
go back to reference Chaika AN, Orlova NN, Semenov VN, Postnova EY, Krasnikov SA, Lazarev MG, Chekmazov SV, Aristov VY, Glebovsky VG, Bozhko SI, Shvets IV (2014) Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy. Sci Rep 4:3742. doi:10.1038/srep03742CrossRef Chaika AN, Orlova NN, Semenov VN, Postnova EY, Krasnikov SA, Lazarev MG, Chekmazov SV, Aristov VY, Glebovsky VG, Bozhko SI, Shvets IV (2014) Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy. Sci Rep 4:3742. doi:10.1038/srep03742CrossRef
25.
go back to reference Herz M, Giessibl FJ, Mannhart J (2003) Probing the shape of atoms in real space. Phys Rev B 68(4):045301CrossRef Herz M, Giessibl FJ, Mannhart J (2003) Probing the shape of atoms in real space. Phys Rev B 68(4):045301CrossRef
26.
go back to reference Chaika AN, Semenov VN, Nazin SS, Bozhko SI, Murphy S, Radican K, Shvets IV (2007) Atomic row doubling in the STM images of Cu(014)-O obtained with MnNi tips. Phys Rev Lett 98(20):206101CrossRef Chaika AN, Semenov VN, Nazin SS, Bozhko SI, Murphy S, Radican K, Shvets IV (2007) Atomic row doubling in the STM images of Cu(014)-O obtained with MnNi tips. Phys Rev Lett 98(20):206101CrossRef
27.
go back to reference Murphy S, Radican K, Shvets IV, Chaika AN, Semenov VN, Nazin SS, Bozhko SI (2007) Asymmetry effects in atomically resolved STM images of Cu(014)-O and W(100)-O surfaces measured with MnNi tips. Phys Rev B 76(24):245423CrossRef Murphy S, Radican K, Shvets IV, Chaika AN, Semenov VN, Nazin SS, Bozhko SI (2007) Asymmetry effects in atomically resolved STM images of Cu(014)-O and W(100)-O surfaces measured with MnNi tips. Phys Rev B 76(24):245423CrossRef
28.
go back to reference Chaika AN, Myagkov AN (2008) Imaging atomic orbitals in STM experiments on a Si(111)-(7 × 7) surface. Chem Phys Lett 453(4–6):217–221CrossRef Chaika AN, Myagkov AN (2008) Imaging atomic orbitals in STM experiments on a Si(111)-(7 × 7) surface. Chem Phys Lett 453(4–6):217–221CrossRef
29.
go back to reference Cren T, Serrier-Garcia L, Debontridder F, Roditchev D (2011) Vortex fusion and giant vortex states in confined superconducting condensates. Phys Rev Lett 107(9):097202CrossRef Cren T, Serrier-Garcia L, Debontridder F, Roditchev D (2011) Vortex fusion and giant vortex states in confined superconducting condensates. Phys Rev Lett 107(9):097202CrossRef
30.
go back to reference Hembacher S, Giessibl FJ, Mannhart J, Quate CF (2005) Local spectroscopy and atomic imaging of tunneling current, forces, and dissipation on graphite. Phys Rev Lett 94(5):056101CrossRef Hembacher S, Giessibl FJ, Mannhart J, Quate CF (2005) Local spectroscopy and atomic imaging of tunneling current, forces, and dissipation on graphite. Phys Rev Lett 94(5):056101CrossRef
31.
go back to reference Grim PCM, De Feyter S, Gesquière A, Vanoppen P, Rücker M, Valiyaveettil S, Moessner G, Müllen K, De Schryver FC (1997) Submolecularly resolved polymerization of diacetylene molecules on the graphite surface observed with scanning tunneling microscopy. Angew Chem Int Ed Engl 36(23):2601–2603CrossRef Grim PCM, De Feyter S, Gesquière A, Vanoppen P, Rücker M, Valiyaveettil S, Moessner G, Müllen K, De Schryver FC (1997) Submolecularly resolved polymerization of diacetylene molecules on the graphite surface observed with scanning tunneling microscopy. Angew Chem Int Ed Engl 36(23):2601–2603CrossRef
32.
go back to reference den Boer D, Li M, Habets T, Iavicoli P, Rowan AE, Nolte RJM, Speller S, Amabilino DB, De Feyter S, Elemans JAAW (2013) Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nat Chem 5(7):621–627CrossRef den Boer D, Li M, Habets T, Iavicoli P, Rowan AE, Nolte RJM, Speller S, Amabilino DB, De Feyter S, Elemans JAAW (2013) Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nat Chem 5(7):621–627CrossRef
33.
go back to reference Chen CJ (1988) Theory of scanning tunneling spectroscopy. J Vac Sci Technol A 6(2):319–322CrossRef Chen CJ (1988) Theory of scanning tunneling spectroscopy. J Vac Sci Technol A 6(2):319–322CrossRef
34.
go back to reference Chaika AN, Nazin SS, Bozhko SI (2008) Selective STM imaging of oxygen-induced Cu(115) surface reconstructions with tungsten probes. Surf Sci 602(12):2078–2088CrossRef Chaika AN, Nazin SS, Bozhko SI (2008) Selective STM imaging of oxygen-induced Cu(115) surface reconstructions with tungsten probes. Surf Sci 602(12):2078–2088CrossRef
35.
go back to reference Binnig G, Rohrer H (1987) Scanning tunneling microscopy – from birth to adolescence. Rev Mod Phys 59(3):615–625CrossRef Binnig G, Rohrer H (1987) Scanning tunneling microscopy – from birth to adolescence. Rev Mod Phys 59(3):615–625CrossRef
36.
go back to reference Jurczyszyn L, Mingo N, Flores F (1998) Influence of the atomic and electronic structure of the tip on STM images and STS spectra. Surf Sci 402–404:459–463CrossRef Jurczyszyn L, Mingo N, Flores F (1998) Influence of the atomic and electronic structure of the tip on STM images and STS spectra. Surf Sci 402–404:459–463CrossRef
37.
go back to reference Nagahara LA, Thundat T, Lindsay SM (1989) Preparation and characterization of STM tips for electrochemical studies. Rev Sci Instrum 60(10):3128–3130CrossRef Nagahara LA, Thundat T, Lindsay SM (1989) Preparation and characterization of STM tips for electrochemical studies. Rev Sci Instrum 60(10):3128–3130CrossRef
38.
go back to reference Iwami M, Uehara Y, Ushioda S (1998) Preparation of silver tips for scanning tunneling microscopy imaging. Rev Sci Instrum 69(11):4010–4011CrossRef Iwami M, Uehara Y, Ushioda S (1998) Preparation of silver tips for scanning tunneling microscopy imaging. Rev Sci Instrum 69(11):4010–4011CrossRef
39.
go back to reference Ibe JP, Bey PP, Brandow SL, Brizzolara RA, Burnham NA, DiLella DP, Lee KP, Marrian CRK, Colton RJ (1990) On the electrochemical etching of tips for scanning tunneling microscopy. J Vac Sci Technol 8(4):3570–3575CrossRef Ibe JP, Bey PP, Brandow SL, Brizzolara RA, Burnham NA, DiLella DP, Lee KP, Marrian CRK, Colton RJ (1990) On the electrochemical etching of tips for scanning tunneling microscopy. J Vac Sci Technol 8(4):3570–3575CrossRef
40.
go back to reference Nunes G, Amer NM (1993) Atomic resolution scanning tunneling microscopy with a gallium arsenide tip. Appl Phys Lett 63(13):1851–1853CrossRef Nunes G, Amer NM (1993) Atomic resolution scanning tunneling microscopy with a gallium arsenide tip. Appl Phys Lett 63(13):1851–1853CrossRef
41.
go back to reference Prins MWJ, Jansen R, Van Kempen H (1996) Spin-polarized tunneling with GaAs tips in scanning tunneling microscopy. Phys Rev B 53(12):8105–8113CrossRef Prins MWJ, Jansen R, Van Kempen H (1996) Spin-polarized tunneling with GaAs tips in scanning tunneling microscopy. Phys Rev B 53(12):8105–8113CrossRef
42.
go back to reference Sutter P, Zahl P, Sutter E, Bernard JE (2003) Energy-filtered scanning tunneling microscopy using a semiconductor tip. Phys Rev Lett 90(16):166101CrossRef Sutter P, Zahl P, Sutter E, Bernard JE (2003) Energy-filtered scanning tunneling microscopy using a semiconductor tip. Phys Rev Lett 90(16):166101CrossRef
43.
go back to reference Kohen A, Noat Y, Proslier T, Lacaze E, Aprili M, Sacks W, Roditchev D (2005) Fabrication and characterization of scanning tunneling microscopy superconducting Nb tips having highly enhanced critical fields. Physica C 419(1–2):18–24CrossRef Kohen A, Noat Y, Proslier T, Lacaze E, Aprili M, Sacks W, Roditchev D (2005) Fabrication and characterization of scanning tunneling microscopy superconducting Nb tips having highly enhanced critical fields. Physica C 419(1–2):18–24CrossRef
44.
go back to reference Murphy S, Osing J, Shvets IV (1999) Atomically resolved p(3 × 1) reconstruction on the W(100) surface imaged with magnetic tips. J Magn Magn Mater 198–199:686–688CrossRef Murphy S, Osing J, Shvets IV (1999) Atomically resolved p(3 × 1) reconstruction on the W(100) surface imaged with magnetic tips. J Magn Magn Mater 198–199:686–688CrossRef
45.
go back to reference Murphy S, Osing J, Shvets IV (1999) Fabrication of submicron-scale manganese-nickel tips for spin-polarized STM studies. Appl Surf Sci 144–145:497–500CrossRef Murphy S, Osing J, Shvets IV (1999) Fabrication of submicron-scale manganese-nickel tips for spin-polarized STM studies. Appl Surf Sci 144–145:497–500CrossRef
46.
go back to reference Wiesendanger R, Bürgler D, Tarrach G, Schaub T, Hartmann U, Güntherodt H-J, Shvets IV, Coey JMD (1991) Recent advances in scanning tunneling microscopy involving magnetic probes and samples. Appl Phy A-Materials Sci Process 53(5):349–355CrossRef Wiesendanger R, Bürgler D, Tarrach G, Schaub T, Hartmann U, Güntherodt H-J, Shvets IV, Coey JMD (1991) Recent advances in scanning tunneling microscopy involving magnetic probes and samples. Appl Phy A-Materials Sci Process 53(5):349–355CrossRef
47.
go back to reference Shvets IV, Wiesendanger R, Bürgler D, Tarrach G, Günterodt H-J, Coey JMD (1992) Progress towards spin-polarized scanning tunneling microscopy. J Appl Phys 71(11):5489–5499CrossRef Shvets IV, Wiesendanger R, Bürgler D, Tarrach G, Günterodt H-J, Coey JMD (1992) Progress towards spin-polarized scanning tunneling microscopy. J Appl Phys 71(11):5489–5499CrossRef
48.
go back to reference Schlenhoff A, Krause S, Herzog G, Wiesendanger R (2010) Bulk Cr tips with full spatial magnetic sensitivity for spin-polarized scanning tunneling microscopy. Appl Phys Lett 97(8):083104CrossRef Schlenhoff A, Krause S, Herzog G, Wiesendanger R (2010) Bulk Cr tips with full spatial magnetic sensitivity for spin-polarized scanning tunneling microscopy. Appl Phys Lett 97(8):083104CrossRef
49.
go back to reference Romming N, Hanneken C, Menzel M, Bickel JE, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R (2013) Writing and deleting single magnetic skyrmions. Science 341(6146):636–639CrossRef Romming N, Hanneken C, Menzel M, Bickel JE, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R (2013) Writing and deleting single magnetic skyrmions. Science 341(6146):636–639CrossRef
50.
go back to reference Bode M (2003) Spin-polarized scanning tunnelling microscopy. Rep Prog Phys 66(4):523–582CrossRef Bode M (2003) Spin-polarized scanning tunnelling microscopy. Rep Prog Phys 66(4):523–582CrossRef
51.
go back to reference Decker R, Brede J, Atodiresei N, Caciuc V, Blügel S, Wiesendanger R (2013) Atomic-scale magnetism of cobalt-intercalated graphene. Phys Rev B 87(4):041403(R)CrossRef Decker R, Brede J, Atodiresei N, Caciuc V, Blügel S, Wiesendanger R (2013) Atomic-scale magnetism of cobalt-intercalated graphene. Phys Rev B 87(4):041403(R)CrossRef
52.
go back to reference Hofmann T, Welker J, Giessibl FJ (2010) Preparation of light-atom tips for scanning probe microscopy by explosive delamination. J Vac Sci Technol B 28(3):C4E28CrossRef Hofmann T, Welker J, Giessibl FJ (2010) Preparation of light-atom tips for scanning probe microscopy by explosive delamination. J Vac Sci Technol B 28(3):C4E28CrossRef
53.
go back to reference Kaneko R, Oguchi S (1990) Ion-implanted diamond tip for a scanning tunneling microscope. Jpn J Appl Phys 29(9):1854–1855CrossRef Kaneko R, Oguchi S (1990) Ion-implanted diamond tip for a scanning tunneling microscope. Jpn J Appl Phys 29(9):1854–1855CrossRef
54.
go back to reference Visser EP, Gerritsen JW, van Enckevort WJP, van Kempen H (1992) Tips for scanning tunneling microscopy made of monocrystalline, semiconducting, chemical vapor deposited diamond. Appl Phys Lett 60(26):3232–3234CrossRef Visser EP, Gerritsen JW, van Enckevort WJP, van Kempen H (1992) Tips for scanning tunneling microscopy made of monocrystalline, semiconducting, chemical vapor deposited diamond. Appl Phys Lett 60(26):3232–3234CrossRef
55.
go back to reference Albin S, Zheng J, Cooper JB, Fu W, Lavarias AC (1997) Microwave plasma chemical vapor deposited diamond tips for scanning tunneling microscopy. Appl Phys Lett 71(19):2848–2850CrossRef Albin S, Zheng J, Cooper JB, Fu W, Lavarias AC (1997) Microwave plasma chemical vapor deposited diamond tips for scanning tunneling microscopy. Appl Phys Lett 71(19):2848–2850CrossRef
56.
go back to reference Meyer T, Klemenc M, von Kanel H, Ph N (2000) Diamond tips in low temperature scanning tunnelling microscopy. Surf Sci 470(1–2):164–170CrossRef Meyer T, Klemenc M, von Kanel H, Ph N (2000) Diamond tips in low temperature scanning tunnelling microscopy. Surf Sci 470(1–2):164–170CrossRef
57.
go back to reference Grushko V, Lubben O, Chaika AN, Novikov N, Mitskevich E, Chepugov A, Lysenko O, Murphy BE, Krasnikov SA, Shvets IV (2014) Atomically resolved STM imaging with a diamond tip: simulation and experiment. Nanotechnology 25(2):025706CrossRef Grushko V, Lubben O, Chaika AN, Novikov N, Mitskevich E, Chepugov A, Lysenko O, Murphy BE, Krasnikov SA, Shvets IV (2014) Atomically resolved STM imaging with a diamond tip: simulation and experiment. Nanotechnology 25(2):025706CrossRef
58.
go back to reference Yu ZQ, Wang CM, Du Y, Thevuthasan S, Lyubinetsky I (2008) Reproducible tip fabrication and cleaning for UHV STM. Ultramicroscopy 108(9):873–877CrossRef Yu ZQ, Wang CM, Du Y, Thevuthasan S, Lyubinetsky I (2008) Reproducible tip fabrication and cleaning for UHV STM. Ultramicroscopy 108(9):873–877CrossRef
59.
go back to reference Fink H-W (1986) Mono-atomic tips for scanning tunneling microscopy. IBM J Res Dev 30(5):460–465CrossRef Fink H-W (1986) Mono-atomic tips for scanning tunneling microscopy. IBM J Res Dev 30(5):460–465CrossRef
60.
go back to reference Stroscio JA, Feenstra RM, Fein PA (1987) Local density and long-range screening of adsorbed oxygen atoms on the GaAs(110) surface. Phys Rev Lett 58(16):1668–1671CrossRef Stroscio JA, Feenstra RM, Fein PA (1987) Local density and long-range screening of adsorbed oxygen atoms on the GaAs(110) surface. Phys Rev Lett 58(16):1668–1671CrossRef
61.
go back to reference Neddermeyer H, Drechsler M (1988) Electric field-induced changes of W(110) and W(111) tips. J Microsc 152(2):459–466CrossRef Neddermeyer H, Drechsler M (1988) Electric field-induced changes of W(110) and W(111) tips. J Microsc 152(2):459–466CrossRef
62.
go back to reference Wintterlin J, Wiechers J, Brune H, Gritsch T, Hofer H, Behm RJ (1989) Atomic-resolution imaging of close-packed metal surfaces by scanning tunneling microscopy. Phys Rev Lett 62(1):59–62CrossRef Wintterlin J, Wiechers J, Brune H, Gritsch T, Hofer H, Behm RJ (1989) Atomic-resolution imaging of close-packed metal surfaces by scanning tunneling microscopy. Phys Rev Lett 62(1):59–62CrossRef
63.
go back to reference Chen CJ (1991) Microscopic view of scanning tunneling microscopy. J Vac Sci Technol A 9(1):44–50CrossRef Chen CJ (1991) Microscopic view of scanning tunneling microscopy. J Vac Sci Technol A 9(1):44–50CrossRef
64.
go back to reference Heike S, Hashizume T, Wada Y (1996) In situ control and analysis of the scanning tunneling microscope tip by formation of sharp needles on the Si sample and W tip. J Vac Sci Technol B 14(2):1522–1526CrossRef Heike S, Hashizume T, Wada Y (1996) In situ control and analysis of the scanning tunneling microscope tip by formation of sharp needles on the Si sample and W tip. J Vac Sci Technol B 14(2):1522–1526CrossRef
65.
go back to reference Castellanos-Gomez A, Rubio-Bollinger G, Garnica M, Barja S, Vazquez de Parga AL, Miranda R, Agraıt N (2012) Highly reproducible low temperature scanning tunnelling microscopy and spectroscopy with in situ prepared tips. Ultramicroscopy 122:1–5CrossRef Castellanos-Gomez A, Rubio-Bollinger G, Garnica M, Barja S, Vazquez de Parga AL, Miranda R, Agraıt N (2012) Highly reproducible low temperature scanning tunnelling microscopy and spectroscopy with in situ prepared tips. Ultramicroscopy 122:1–5CrossRef
66.
go back to reference Biegelsen DK, Ponce FA, Tramontana JC, Koch SM (1987) Ion milled tips for scanning tunneling microscopy. Appl Phys Lett 50(11):696–698CrossRef Biegelsen DK, Ponce FA, Tramontana JC, Koch SM (1987) Ion milled tips for scanning tunneling microscopy. Appl Phys Lett 50(11):696–698CrossRef
67.
go back to reference Biegelsen DK, Ponce FA, Tramontana JC (1989) Simple ion milling preparation of <111> tungsten tips. Appl Phys Lett 54(13):1223–1225CrossRef Biegelsen DK, Ponce FA, Tramontana JC (1989) Simple ion milling preparation of <111> tungsten tips. Appl Phys Lett 54(13):1223–1225CrossRef
68.
go back to reference Morishita S, Okuyama F (1991) Sharpening of monocrystalline molybdenum tips by means of inert-gas ion sputtering. J Vac Sci Technol A 9(1):167–169CrossRef Morishita S, Okuyama F (1991) Sharpening of monocrystalline molybdenum tips by means of inert-gas ion sputtering. J Vac Sci Technol A 9(1):167–169CrossRef
69.
go back to reference Eltsov KN, Shevlyuga VM, Yurov VY, Kvit AV, Kogan MS (1996) Sharp tungsten tips prepared for STM study of deep nanostructures in UHV. Phys Low-Dim Struct 9–10:7–14 Eltsov KN, Shevlyuga VM, Yurov VY, Kvit AV, Kogan MS (1996) Sharp tungsten tips prepared for STM study of deep nanostructures in UHV. Phys Low-Dim Struct 9–10:7–14
70.
go back to reference Hansma PK, Tersoff J (1987) Scanning tunneling microscopy. J Appl Phys 61(2):R1–R23CrossRef Hansma PK, Tersoff J (1987) Scanning tunneling microscopy. J Appl Phys 61(2):R1–R23CrossRef
71.
go back to reference Demuth JE, Koehler U, Hamers RJ (1988) The STM learning curve and where it may take us. J Microsc 152(2):299–316CrossRef Demuth JE, Koehler U, Hamers RJ (1988) The STM learning curve and where it may take us. J Microsc 152(2):299–316CrossRef
72.
go back to reference Kuk Y, Silverman PJ (1986) Role of tip structure in scanning tunneling microscopy. Appl Phys Lett 48(23):1597–1599CrossRef Kuk Y, Silverman PJ (1986) Role of tip structure in scanning tunneling microscopy. Appl Phys Lett 48(23):1597–1599CrossRef
73.
go back to reference Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605):147–150CrossRef Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605):147–150CrossRef
74.
go back to reference Kelly KF, Sarkar D, Hale GD, Oldenburg SJ, Halas NJ (1996) Threefold electron scattering on graphite observed with C60-adsorbed STM tips. Science 273(5280):1371–1373CrossRef Kelly KF, Sarkar D, Hale GD, Oldenburg SJ, Halas NJ (1996) Threefold electron scattering on graphite observed with C60-adsorbed STM tips. Science 273(5280):1371–1373CrossRef
75.
go back to reference Repp J, Meyer G, Stojkovic SM, Gourdon A, Joachim C (2005) Molecules on insulating films: scanning tunneling microscopy imaging of individual molecular orbitals. Phys Rev Lett 94(2):026803CrossRef Repp J, Meyer G, Stojkovic SM, Gourdon A, Joachim C (2005) Molecules on insulating films: scanning tunneling microscopy imaging of individual molecular orbitals. Phys Rev Lett 94(2):026803CrossRef
76.
go back to reference Deng ZT, Lin H, Ji W, Gao L, Lin X, Cheng ZH, He XB, Lu JL, Shi DX, Hofer WA, Gao H-J (2006) Selective analysis of molecular states by functionalized scanning tunneling microscopy tips. Phys Rev Lett 96(15):156102CrossRef Deng ZT, Lin H, Ji W, Gao L, Lin X, Cheng ZH, He XB, Lu JL, Shi DX, Hofer WA, Gao H-J (2006) Selective analysis of molecular states by functionalized scanning tunneling microscopy tips. Phys Rev Lett 96(15):156102CrossRef
77.
go back to reference Temirov R, Soubatch S, Neucheva O, Lassise AC, Tautz FS (2008) A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy. New J Phys 10(5):053012CrossRef Temirov R, Soubatch S, Neucheva O, Lassise AC, Tautz FS (2008) A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy. New J Phys 10(5):053012CrossRef
78.
go back to reference Weiss C, Wagner C, Kleimann C, Rohlfing M, Tautz FS, Temirov R (2010) Imaging Pauli repulsion in scanning tunneling microscopy. Phys Rev Lett 105(8):086103CrossRef Weiss C, Wagner C, Kleimann C, Rohlfing M, Tautz FS, Temirov R (2010) Imaging Pauli repulsion in scanning tunneling microscopy. Phys Rev Lett 105(8):086103CrossRef
79.
go back to reference Gross L, Moll N, Mohn F, Curioni A, Meyer G, Hanke F, Persson M (2011) High-resolution molecular orbital imaging using a p-wave STM tip. Phys Rev Lett 107(8):086101CrossRef Gross L, Moll N, Mohn F, Curioni A, Meyer G, Hanke F, Persson M (2011) High-resolution molecular orbital imaging using a p-wave STM tip. Phys Rev Lett 107(8):086101CrossRef
80.
go back to reference Cheng Z, Du S, Guo W, Gao L, Deng Z, Jiang N, Guo H, Tang H, Gao H-J (2011) Direct imaging of molecular orbitals of metal phthalocyanines on metal surfaces with an O2-functionalized tip of a scanning tunneling microscope. Nano Res 4(6):523–530CrossRef Cheng Z, Du S, Guo W, Gao L, Deng Z, Jiang N, Guo H, Tang H, Gao H-J (2011) Direct imaging of molecular orbitals of metal phthalocyanines on metal surfaces with an O2-functionalized tip of a scanning tunneling microscope. Nano Res 4(6):523–530CrossRef
81.
go back to reference Martinez JI, Abad E, Gonzalez C, Flores F, Ortega J (2012) Improvement of scanning tunneling microscopy resolution with H-sensitized tips. Phys Rev Lett 108(24):246102CrossRef Martinez JI, Abad E, Gonzalez C, Flores F, Ortega J (2012) Improvement of scanning tunneling microscopy resolution with H-sensitized tips. Phys Rev Lett 108(24):246102CrossRef
82.
go back to reference Mohn F, Gross L, Moll N, Meyer G (2012) Imaging the charge distribution within a single molecule. Nat Nanotechnol 7(4):227–231CrossRef Mohn F, Gross L, Moll N, Meyer G (2012) Imaging the charge distribution within a single molecule. Nat Nanotechnol 7(4):227–231CrossRef
83.
go back to reference Tromp RM, Van Loenen EJ, Demuth JE, Lang ND (1988) Tip electronic structure in scanning tunneling microscopy. Phys Rev B 37(15):9042–9045CrossRef Tromp RM, Van Loenen EJ, Demuth JE, Lang ND (1988) Tip electronic structure in scanning tunneling microscopy. Phys Rev B 37(15):9042–9045CrossRef
84.
go back to reference Chiutu C, Sweetman AM, Lakin AJ, Stannard A, Jarvis S, Kantorovich L, Dunn JL, Moriarty P (2012) Precise orientation of a single C60 molecule on the tip of a scanning probe microscope. Phys Rev Lett 108(26):268302CrossRef Chiutu C, Sweetman AM, Lakin AJ, Stannard A, Jarvis S, Kantorovich L, Dunn JL, Moriarty P (2012) Precise orientation of a single C60 molecule on the tip of a scanning probe microscope. Phys Rev Lett 108(26):268302CrossRef
85.
go back to reference Lakin AJ, Chiutu C, Sweetman AM, Moriarty P, Dunn JL (2013) Recovering molecular orientation from convoluted orbitals. Phys Rev B 88(3):035447CrossRef Lakin AJ, Chiutu C, Sweetman AM, Moriarty P, Dunn JL (2013) Recovering molecular orientation from convoluted orbitals. Phys Rev B 88(3):035447CrossRef
86.
go back to reference Fink H-W, Stocker W, Schmid H (1990) Coherent point source electron beams. J Vac Sci Technol B 8(8):1323–1324CrossRef Fink H-W, Stocker W, Schmid H (1990) Coherent point source electron beams. J Vac Sci Technol B 8(8):1323–1324CrossRef
87.
go back to reference Ottaviano L, Lozzi L, Santucci S (2003) Scanning Auger microscopy study of W tips for scanning tunneling microscopy. Rev Sci Instrum 74(7):3368CrossRef Ottaviano L, Lozzi L, Santucci S (2003) Scanning Auger microscopy study of W tips for scanning tunneling microscopy. Rev Sci Instrum 74(7):3368CrossRef
88.
go back to reference Kirakosian A, Bennewitz R, Crain JN, Fauster T, Lin J-L, Petrovykh DY, Himpsel FJ (2001) Atomically accurate Si grating with 5.73 nm period. Appl Phys Lett 79(11):1608–1610CrossRef Kirakosian A, Bennewitz R, Crain JN, Fauster T, Lin J-L, Petrovykh DY, Himpsel FJ (2001) Atomically accurate Si grating with 5.73 nm period. Appl Phys Lett 79(11):1608–1610CrossRef
89.
go back to reference Chaika AN, Fokin DA, Bozhko SI, Ionov AM, Debontridder F, Dubost V, Cren T, Roditchev D (2009) Regular stepped structures on clean Si(hhm)-7 × 7 surfaces. J Appl Phys 105(3):034304CrossRef Chaika AN, Fokin DA, Bozhko SI, Ionov AM, Debontridder F, Dubost V, Cren T, Roditchev D (2009) Regular stepped structures on clean Si(hhm)-7 × 7 surfaces. J Appl Phys 105(3):034304CrossRef
90.
go back to reference Chaika AN, Fokin DA, Bozhko SI, Ionov AM, Debontridder F, Dubost V, Cren T, Roditchev D (2009) Atomic structure of a regular Si(223) triple step staircase. Surf Sci 603(5):752–761CrossRef Chaika AN, Fokin DA, Bozhko SI, Ionov AM, Debontridder F, Dubost V, Cren T, Roditchev D (2009) Atomic structure of a regular Si(223) triple step staircase. Surf Sci 603(5):752–761CrossRef
91.
go back to reference Chaika AN, Semenov VN, Glebovskiy VG, Bozhko SI (2009) Scanning tunneling microscopy with single crystal W[001] tips: high resolution studies of Si(557)5 × 5 surface. Appl Phys Lett 95(17):173107CrossRef Chaika AN, Semenov VN, Glebovskiy VG, Bozhko SI (2009) Scanning tunneling microscopy with single crystal W[001] tips: high resolution studies of Si(557)5 × 5 surface. Appl Phys Lett 95(17):173107CrossRef
92.
go back to reference Takayanagi K, Tanishiro Y, Takahashi M, Takahashi S (1985) Structural analysis of Si(111)-(7 × 7) by UHV-transmission electron diffraction and microscopy. J Vac Sci Technol A 3(3):1502–1506CrossRef Takayanagi K, Tanishiro Y, Takahashi M, Takahashi S (1985) Structural analysis of Si(111)-(7 × 7) by UHV-transmission electron diffraction and microscopy. J Vac Sci Technol A 3(3):1502–1506CrossRef
93.
go back to reference Wang YL, Gao H-J, Guo HM, Liu HW, Batyrev IG, McMahon WE, Zhang SB (2004) Tip size effect on the appearance of a STM image for complex surfaces: theory versus experiment for Si(111)-(7 × 7). Phys Rev B 70(7):073312CrossRef Wang YL, Gao H-J, Guo HM, Liu HW, Batyrev IG, McMahon WE, Zhang SB (2004) Tip size effect on the appearance of a STM image for complex surfaces: theory versus experiment for Si(111)-(7 × 7). Phys Rev B 70(7):073312CrossRef
94.
go back to reference Hamers RJ, Tromp RM, Demuth JE (1986) Surface electronic structure of Si(111)-(7 × 7) resolved in real space. Phys Rev Lett 56(18):1972–1975CrossRef Hamers RJ, Tromp RM, Demuth JE (1986) Surface electronic structure of Si(111)-(7 × 7) resolved in real space. Phys Rev Lett 56(18):1972–1975CrossRef
95.
go back to reference Tromp RM, Hamers RJ, Demuth JE (1986) Atomic and electronic contributions to Si(111)-(7 × 7) scanning tunneling-microscopy images. Phys Rev B 34(2):1388–1391CrossRef Tromp RM, Hamers RJ, Demuth JE (1986) Atomic and electronic contributions to Si(111)-(7 × 7) scanning tunneling-microscopy images. Phys Rev B 34(2):1388–1391CrossRef
96.
go back to reference Hamers RJ, Tromp RM, Demuth JE (1987) Electronic and geometric structure of Si(111)-(7 × 7) and Si(001) surfaces. Surf Sci 181(1–2):346–355CrossRef Hamers RJ, Tromp RM, Demuth JE (1987) Electronic and geometric structure of Si(111)-(7 × 7) and Si(001) surfaces. Surf Sci 181(1–2):346–355CrossRef
97.
go back to reference Paz O, Brihuega I, Gomez-Rodriguez JM, Soler JM (2005) Tip and surface determination from experiments and simulations of scanning tunneling microscopy and spectroscopy. Phys Rev Lett 94(5):056103CrossRef Paz O, Brihuega I, Gomez-Rodriguez JM, Soler JM (2005) Tip and surface determination from experiments and simulations of scanning tunneling microscopy and spectroscopy. Phys Rev Lett 94(5):056103CrossRef
98.
go back to reference Dubois M, Perdigao L, Delerue C, Allan G, Grandidier B, Deresme D, Stievenard D (2005) Scanning tunneling microscopy and spectroscopy of reconstructed Si(100) surfaces. Phys Rev B 71(16):165322CrossRef Dubois M, Perdigao L, Delerue C, Allan G, Grandidier B, Deresme D, Stievenard D (2005) Scanning tunneling microscopy and spectroscopy of reconstructed Si(100) surfaces. Phys Rev B 71(16):165322CrossRef
99.
go back to reference Hamers RJ, Tromp RM, Demuth JE (1987) Scanning tunneling microscopy of Si(001). Phys Rev B 34(8):5343–5357CrossRef Hamers RJ, Tromp RM, Demuth JE (1987) Scanning tunneling microscopy of Si(001). Phys Rev B 34(8):5343–5357CrossRef
100.
go back to reference Wolkow RA (1992) Direct observation of an increase in buckled dimmers on Si(001) at low temperatures. Phys Rev Lett 68(17):2636–2639CrossRef Wolkow RA (1992) Direct observation of an increase in buckled dimmers on Si(001) at low temperatures. Phys Rev Lett 68(17):2636–2639CrossRef
101.
go back to reference Garleff JK, Wenderoth M, Sauthoff K, Ulbrich RG, Rohlfing M (2004) 2 × 1 reconstructed Si(111) surface: STM experiments versus ab initio calculations. Phys Rev B 70(24):245424CrossRef Garleff JK, Wenderoth M, Sauthoff K, Ulbrich RG, Rohlfing M (2004) 2 × 1 reconstructed Si(111) surface: STM experiments versus ab initio calculations. Phys Rev B 70(24):245424CrossRef
102.
go back to reference Zotti LA, Hofer WA, Giessibl FJ (2006) Electron scattering in scanning probe microscopy experiments. Chem Phys Lett 420(1–3):177–182CrossRef Zotti LA, Hofer WA, Giessibl FJ (2006) Electron scattering in scanning probe microscopy experiments. Chem Phys Lett 420(1–3):177–182CrossRef
103.
go back to reference Hallmark V, Chiang S, Rabalt J, Swalen J, Wilson R (1987) Observation of atomic corrugation on Au(111) by scanning tunneling microscopy. Phys Rev Lett 59(25):2879–2882CrossRef Hallmark V, Chiang S, Rabalt J, Swalen J, Wilson R (1987) Observation of atomic corrugation on Au(111) by scanning tunneling microscopy. Phys Rev Lett 59(25):2879–2882CrossRef
104.
go back to reference Wintterlin J, Brune H, Hofer H, Behm R (1988) Atomic scale characterization of oxygen adsorbates on Al(111) by scanning tunneling microscopy. Appl Phys A 47(1):99–102CrossRef Wintterlin J, Brune H, Hofer H, Behm R (1988) Atomic scale characterization of oxygen adsorbates on Al(111) by scanning tunneling microscopy. Appl Phys A 47(1):99–102CrossRef
105.
go back to reference Clarke ARH, Pethica JB, Nieminen JA, Besenbacher F, Lægsgaard E, Stensgaard I (1996) Quantitative scanning tunneling microscopy at atomic resolution: influence of forces and tip configuration. Phys Rev Lett 76(8):1276–1279CrossRef Clarke ARH, Pethica JB, Nieminen JA, Besenbacher F, Lægsgaard E, Stensgaard I (1996) Quantitative scanning tunneling microscopy at atomic resolution: influence of forces and tip configuration. Phys Rev Lett 76(8):1276–1279CrossRef
106.
go back to reference Bobrov K, Mayne AJ, Dujardin G (2001) Atomic-scale imaging of insulating diamond through resonant electron injection. Nature 413(6856):616–619CrossRef Bobrov K, Mayne AJ, Dujardin G (2001) Atomic-scale imaging of insulating diamond through resonant electron injection. Nature 413(6856):616–619CrossRef
107.
go back to reference Castell MR, Dudarev SL, Briggs GAD, Sutton AP (1999) Unexpected differences in the surface electronic structure of NiO and CoO observed by STM and explained by first-principles theory. Phys Rev B 59(11):7342–7345CrossRef Castell MR, Dudarev SL, Briggs GAD, Sutton AP (1999) Unexpected differences in the surface electronic structure of NiO and CoO observed by STM and explained by first-principles theory. Phys Rev B 59(11):7342–7345CrossRef
108.
go back to reference Repp J, Meyer G, Paavilainen S, Olsson FE, Persson M (2005) Scanning tunneling spectroscopy of Cl vacancies in NaCl films: strong electron-phonon coupling in double-barrier tunneling junctions. Phys Rev Lett 95(22):225503CrossRef Repp J, Meyer G, Paavilainen S, Olsson FE, Persson M (2005) Scanning tunneling spectroscopy of Cl vacancies in NaCl films: strong electron-phonon coupling in double-barrier tunneling junctions. Phys Rev Lett 95(22):225503CrossRef
109.
go back to reference Olsson FE, Paavilainen S, Persson M, Repp J, Meyer G (2007) Multiple charge states of Ag atoms on ultrathin NaCl films. Phys Rev Lett 98(17):176803CrossRef Olsson FE, Paavilainen S, Persson M, Repp J, Meyer G (2007) Multiple charge states of Ag atoms on ultrathin NaCl films. Phys Rev Lett 98(17):176803CrossRef
110.
go back to reference Olsson FE, Persson M, Repp J, Meyer G (2005) Scanning tunneling microscopy and spectroscopy of NaCl overlayers on the stepped Cu(311) surface: experimental and theoretical study. Phys Rev B 71(7):075419CrossRef Olsson FE, Persson M, Repp J, Meyer G (2005) Scanning tunneling microscopy and spectroscopy of NaCl overlayers on the stepped Cu(311) surface: experimental and theoretical study. Phys Rev B 71(7):075419CrossRef
111.
go back to reference Schoiswohl J, Agnoli S, Xu B, Surnev S, Sambi M, Ramsey MG, Granozzi G, Netzer FP (2005) Growth and thermal behaviour of NiO nanolayers on Pd(100). Surf Sci 599(1–3):1–13CrossRef Schoiswohl J, Agnoli S, Xu B, Surnev S, Sambi M, Ramsey MG, Granozzi G, Netzer FP (2005) Growth and thermal behaviour of NiO nanolayers on Pd(100). Surf Sci 599(1–3):1–13CrossRef
112.
go back to reference Caffio M, Atrei A, Cortigiani B, Rovida G (2006) STM study of the nanostructures prepared by deposition of NiO on Ag(001). J Phys Condens Matter 18:2379–2384CrossRef Caffio M, Atrei A, Cortigiani B, Rovida G (2006) STM study of the nanostructures prepared by deposition of NiO on Ag(001). J Phys Condens Matter 18:2379–2384CrossRef
113.
go back to reference Steurer W, Allegretti F, Surnev S, Barcaro G, Sementa L, Negreiros F, Fortunelli A, Netzer FP (2011) Metamorphosis of ultrathin Ni oxide nanostructures on Ag(100). Phys Rev B 84(11):115446CrossRef Steurer W, Allegretti F, Surnev S, Barcaro G, Sementa L, Negreiros F, Fortunelli A, Netzer FP (2011) Metamorphosis of ultrathin Ni oxide nanostructures on Ag(100). Phys Rev B 84(11):115446CrossRef
114.
go back to reference Barth JV, Costantini G, Kern K (2005) Engineering atomic and molecular nanostructures at surfaces. Nature 437(7059):671–679CrossRef Barth JV, Costantini G, Kern K (2005) Engineering atomic and molecular nanostructures at surfaces. Nature 437(7059):671–679CrossRef
115.
go back to reference Gambardella P, Stepanow S, Dmitriev A, Honolka J, de Groot FMF, Lingenfelder M, Gupta SS, Sarma DD, Bencok P, Stanescu S, Clair S, Pons S, Lin N, Seitsonen AP, Brune H, Barth JV, Kern K (2009) Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface. Nat Mater 8(3):189–193CrossRef Gambardella P, Stepanow S, Dmitriev A, Honolka J, de Groot FMF, Lingenfelder M, Gupta SS, Sarma DD, Bencok P, Stanescu S, Clair S, Pons S, Lin N, Seitsonen AP, Brune H, Barth JV, Kern K (2009) Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface. Nat Mater 8(3):189–193CrossRef
116.
go back to reference Krasnikov SA, Beggan JP, Sergeeva NN, Senge MO, Cafolla AA (2009) Ni(II) porphine nanolines grown on a Ag(111) surface at room temperature. Nanotechnology 20(13):135301CrossRef Krasnikov SA, Beggan JP, Sergeeva NN, Senge MO, Cafolla AA (2009) Ni(II) porphine nanolines grown on a Ag(111) surface at room temperature. Nanotechnology 20(13):135301CrossRef
117.
go back to reference Moriarty PJ (2010) Fullerene adsorption on semiconductor surfaces. Surf Sci Rep 65(7):175–227CrossRef Moriarty PJ (2010) Fullerene adsorption on semiconductor surfaces. Surf Sci Rep 65(7):175–227CrossRef
118.
go back to reference Krasnikov SA, Doyle CM, Sergeeva NN, Preobrajenski AB, Vinogradov NA, Sergeeva YN, Zakharov AA, Senge MO, Cafolla AA (2011) Formation of extended covalently bonded Ni porphyrin networks on the Au(111) surface. Nano Res 4(4):376–384CrossRef Krasnikov SA, Doyle CM, Sergeeva NN, Preobrajenski AB, Vinogradov NA, Sergeeva YN, Zakharov AA, Senge MO, Cafolla AA (2011) Formation of extended covalently bonded Ni porphyrin networks on the Au(111) surface. Nano Res 4(4):376–384CrossRef
119.
go back to reference Krasnikov SA, Bozhko SI, Radican K, Lubben O, Murphy BE, Vadapoo SR, Han-Chun W, Abid M, Semenov VN, Shvets IV (2011) Self-assembly and ordering of C60 on the WO2/W(110) surface. Nano Res 4(2):194–203CrossRef Krasnikov SA, Bozhko SI, Radican K, Lubben O, Murphy BE, Vadapoo SR, Han-Chun W, Abid M, Semenov VN, Shvets IV (2011) Self-assembly and ordering of C60 on the WO2/W(110) surface. Nano Res 4(2):194–203CrossRef
120.
go back to reference Bozhko SI, Krasnikov SA, Lubben O, Murphy BE, Radican K, Semenov VN, Wu H-C, Bulfin B, Shvets IV (2011) Rotational transitions in a C60 monolayer on the WO2/W(110) surface. Phys Rev B 84(19):195412CrossRef Bozhko SI, Krasnikov SA, Lubben O, Murphy BE, Radican K, Semenov VN, Wu H-C, Bulfin B, Shvets IV (2011) Rotational transitions in a C60 monolayer on the WO2/W(110) surface. Phys Rev B 84(19):195412CrossRef
121.
go back to reference Mugarza A, Krull C, Robles R, Stepanow S, Ceballos G, Gambardella P (2011) Spin coupling and relaxation inside molecule–metal contacts. Nat Commun 2:490. doi:10.1038/ncomms1497CrossRef Mugarza A, Krull C, Robles R, Stepanow S, Ceballos G, Gambardella P (2011) Spin coupling and relaxation inside molecule–metal contacts. Nat Commun 2:490. doi:10.1038/ncomms1497CrossRef
122.
go back to reference Swart I, Sonnleitner T, Repp J (2011) Charge state control of molecules reveals modification of the tunneling barrier with intramolecular contrast. Nano Lett 11(4):1580–1584CrossRef Swart I, Sonnleitner T, Repp J (2011) Charge state control of molecules reveals modification of the tunneling barrier with intramolecular contrast. Nano Lett 11(4):1580–1584CrossRef
123.
go back to reference Beggan JP, Krasnikov SA, Sergeeva NN, Senge MO, Cafolla AA (2012) Control of the axial coordination of a surface-confined manganese(III) porphyrin complex. Nanotechnology 23(23):235606CrossRef Beggan JP, Krasnikov SA, Sergeeva NN, Senge MO, Cafolla AA (2012) Control of the axial coordination of a surface-confined manganese(III) porphyrin complex. Nanotechnology 23(23):235606CrossRef
124.
go back to reference Murphy BE, Krasnikov SA, Cafolla AA, Sergeeva NN, Vinogradov NA, Beggan JP, Lübben O, Senge MO, Shvets IV (2012) Growth and ordering of Ni(II) diphenylporphyrin monolayers on Ag(111) and Ag/Si(111) studied by STM and LEED. J Phys Condens Matter 24(4):045005CrossRef Murphy BE, Krasnikov SA, Cafolla AA, Sergeeva NN, Vinogradov NA, Beggan JP, Lübben O, Senge MO, Shvets IV (2012) Growth and ordering of Ni(II) diphenylporphyrin monolayers on Ag(111) and Ag/Si(111) studied by STM and LEED. J Phys Condens Matter 24(4):045005CrossRef
125.
go back to reference Bazarnik M, Brede J, Decker R, Wiesedanger R (2013) Tailoring molecular self-assembly of magnetic phthalocyanine molecules on Fe- and Co-intercalated graphene. ACS Nano 7(12):11341–11349CrossRef Bazarnik M, Brede J, Decker R, Wiesedanger R (2013) Tailoring molecular self-assembly of magnetic phthalocyanine molecules on Fe- and Co-intercalated graphene. ACS Nano 7(12):11341–11349CrossRef
126.
go back to reference Garnica M, Stradi D, Barja S, Calleja F, Díaz C, Alcamí M, Martín N, Vázquez de Parga AL, Martín F, Miranda R (2013) Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene. Nat Phys 9(6):368–374CrossRef Garnica M, Stradi D, Barja S, Calleja F, Díaz C, Alcamí M, Martín N, Vázquez de Parga AL, Martín F, Miranda R (2013) Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene. Nat Phys 9(6):368–374CrossRef
127.
go back to reference Swart I, Gross L, Liljeroth P (2011) Single-molecule chemistry and physics explored by low-temperature scanning probe microscopy. Chem Commun 47(32):9011–9023CrossRef Swart I, Gross L, Liljeroth P (2011) Single-molecule chemistry and physics explored by low-temperature scanning probe microscopy. Chem Commun 47(32):9011–9023CrossRef
128.
go back to reference Tersoff J, Hamann DR (1983) Theory and application for the scanning tunneling microscope. Phys Rev Lett 50(25):1998–2001CrossRef Tersoff J, Hamann DR (1983) Theory and application for the scanning tunneling microscope. Phys Rev Lett 50(25):1998–2001CrossRef
129.
go back to reference Tersoff J, Hamann DR (1985) Theory of the scanning tunneling microscope. Phys Rev B 31(2):805–813CrossRef Tersoff J, Hamann DR (1985) Theory of the scanning tunneling microscope. Phys Rev B 31(2):805–813CrossRef
130.
go back to reference Hofer WA, Garcia-Lekue A, Brune H (2004) The role of surface elasticity in giant corrugations observed by scanning tunneling microscopes. Chem Phys Lett 397(4–6):354–359CrossRef Hofer WA, Garcia-Lekue A, Brune H (2004) The role of surface elasticity in giant corrugations observed by scanning tunneling microscopes. Chem Phys Lett 397(4–6):354–359CrossRef
131.
go back to reference Tersoff J, Lang ND (1990) Tip-dependent corrugation of graphite in scanning tunneling microscopy. Phys Rev Lett 65(9):1132–1135CrossRef Tersoff J, Lang ND (1990) Tip-dependent corrugation of graphite in scanning tunneling microscopy. Phys Rev Lett 65(9):1132–1135CrossRef
132.
go back to reference Chen CJ (1990) Origin of atomic resolution on metal surfaces in scanning tunneling microscopy. Phys Rev Lett 65(4):448–451CrossRef Chen CJ (1990) Origin of atomic resolution on metal surfaces in scanning tunneling microscopy. Phys Rev Lett 65(4):448–451CrossRef
133.
go back to reference Chen CJ (1990) Tunneling matrix elements in three-dimensional space: the derivative rule and the sum rule. Phys Rev B 42(14):8841–8857CrossRef Chen CJ (1990) Tunneling matrix elements in three-dimensional space: the derivative rule and the sum rule. Phys Rev B 42(14):8841–8857CrossRef
134.
go back to reference Chen CJ (1992) Effects of m ≠ 0 tip states in scanning tunneling microscopy: the explanation of corrugation reversal. Phys Rev Lett 69(11):1656–1659CrossRef Chen CJ (1992) Effects of m ≠ 0 tip states in scanning tunneling microscopy: the explanation of corrugation reversal. Phys Rev Lett 69(11):1656–1659CrossRef
135.
go back to reference Sacks W (2000) Tip orbitals and the atomic corrugation of metal surfaces in scanning tunneling microscopy. Phys Rev B 61(11):7656–7668CrossRef Sacks W (2000) Tip orbitals and the atomic corrugation of metal surfaces in scanning tunneling microscopy. Phys Rev B 61(11):7656–7668CrossRef
136.
go back to reference Suominen I, Nieminen J, Markiewicz RS, Bansil A (2011) Effect of orbital symmetry of the tip on scanning tunneling spectra of Bi2Sr2CaCu2O8+δ. Phys Rev B 84(1):014528CrossRef Suominen I, Nieminen J, Markiewicz RS, Bansil A (2011) Effect of orbital symmetry of the tip on scanning tunneling spectra of Bi2Sr2CaCu2O8+δ. Phys Rev B 84(1):014528CrossRef
137.
go back to reference Polok M, Fedorov DV, Bagrets A, Zahn P, Mertig I (2011) Evaluation of conduction eigenchannels of an adatom probed by an STM tip. Phys Rev B 83(24):245426CrossRef Polok M, Fedorov DV, Bagrets A, Zahn P, Mertig I (2011) Evaluation of conduction eigenchannels of an adatom probed by an STM tip. Phys Rev B 83(24):245426CrossRef
138.
go back to reference Choi H, Longo RC, Huang M, Randall JN, Wallace RM, Cho K (2013) A density-functional theory study of tip electronic structures in scanning tunneling microscopy. Nanotechnology 24(10):105201CrossRef Choi H, Longo RC, Huang M, Randall JN, Wallace RM, Cho K (2013) A density-functional theory study of tip electronic structures in scanning tunneling microscopy. Nanotechnology 24(10):105201CrossRef
139.
go back to reference Wright CA, Solares SD (2013) Computational study of tip apex symmetry characterization in high-resolution atomic force microscopy. J Phys D Appl Phys 46(15):155307CrossRef Wright CA, Solares SD (2013) Computational study of tip apex symmetry characterization in high-resolution atomic force microscopy. J Phys D Appl Phys 46(15):155307CrossRef
140.
go back to reference Hembacher S, Giessibl FJ, Mannhart J (2004) Force microscopy with light-atom probes. Science 305(5682):380–383CrossRef Hembacher S, Giessibl FJ, Mannhart J (2004) Force microscopy with light-atom probes. Science 305(5682):380–383CrossRef
141.
go back to reference Wright CA, Solares SD (2011) On mapping subångström electron clouds with force microscopy. Nano Lett 11(11):5026–5033CrossRef Wright CA, Solares SD (2011) On mapping subångström electron clouds with force microscopy. Nano Lett 11(11):5026–5033CrossRef
142.
go back to reference Wright CA, Solares SD (2012) Imaging of subatomic electron cloud interactions: effect of higher harmonics processing in noncontact atomic force microscopy. Appl Phys Lett 100(16):163104CrossRef Wright CA, Solares SD (2012) Imaging of subatomic electron cloud interactions: effect of higher harmonics processing in noncontact atomic force microscopy. Appl Phys Lett 100(16):163104CrossRef
143.
go back to reference Binnig G, Garcia N, Rohrer H, Soler JM, Flores F (1984) Electron-metal-surface interaction potential with vacuum tunneling: observation of the image force. Phys Rev B 30(8):4816–4818CrossRef Binnig G, Garcia N, Rohrer H, Soler JM, Flores F (1984) Electron-metal-surface interaction potential with vacuum tunneling: observation of the image force. Phys Rev B 30(8):4816–4818CrossRef
144.
go back to reference Zheng NJ, Tsong IST (1990) Resonant-tunneling theory of imaging close-packed metal surfaces by scanning tunneling microscopy. Phys Rev B 41(5):2671–2677CrossRef Zheng NJ, Tsong IST (1990) Resonant-tunneling theory of imaging close-packed metal surfaces by scanning tunneling microscopy. Phys Rev B 41(5):2671–2677CrossRef
145.
go back to reference Hofer WA, Foster AS, Shluger AL (2003) Theories of scanning probe microscopes at the atomic scale. Rev Mod Phys 75(4):1287–1331CrossRef Hofer WA, Foster AS, Shluger AL (2003) Theories of scanning probe microscopes at the atomic scale. Rev Mod Phys 75(4):1287–1331CrossRef
146.
go back to reference Hofer WA (2003) Challenges and errors: interpreting high resolution images in scanning tunneling microscopy. Prog Surf Sci 71(5–8):147–183CrossRef Hofer WA (2003) Challenges and errors: interpreting high resolution images in scanning tunneling microscopy. Prog Surf Sci 71(5–8):147–183CrossRef
147.
go back to reference Jelınek P, Shvec M, Pou P, Perez R, Chab V (2008) Tip-induced reduction of the resonant tunneling current on semiconductor surfaces. Phys Rev Lett 101(17):176101CrossRef Jelınek P, Shvec M, Pou P, Perez R, Chab V (2008) Tip-induced reduction of the resonant tunneling current on semiconductor surfaces. Phys Rev Lett 101(17):176101CrossRef
148.
go back to reference Bryant A, Smith DPE, Binnig G, Harrison WA, Quate CF (1986) Anomalous distance dependence in scanning tunneling microscopy. Appl Phys Lett 49(15):936–938CrossRef Bryant A, Smith DPE, Binnig G, Harrison WA, Quate CF (1986) Anomalous distance dependence in scanning tunneling microscopy. Appl Phys Lett 49(15):936–938CrossRef
149.
go back to reference Bode M, Pascal R, Wiesendanger R (1996) Distance-dependent STM-study of the W(110)/C-R(15 × 3) surface. Z Phys B 101(1):103–107CrossRef Bode M, Pascal R, Wiesendanger R (1996) Distance-dependent STM-study of the W(110)/C-R(15 × 3) surface. Z Phys B 101(1):103–107CrossRef
150.
go back to reference Wiesendanger R, Bode M, Pascal R, Allers W, Schwarz UD (1996) Issues of atomic-resolution structure and chemical analysis by scanning probe microscopy and spectroscopy. J Vac Sci Technol A 14(3):1161–1167CrossRef Wiesendanger R, Bode M, Pascal R, Allers W, Schwarz UD (1996) Issues of atomic-resolution structure and chemical analysis by scanning probe microscopy and spectroscopy. J Vac Sci Technol A 14(3):1161–1167CrossRef
151.
go back to reference Klijn J, Sacharow L, Meyer C, Blugel S, Morgenstern M, Wiesendanger R (2003) STM measurements on the InAs(110) surface directly compared with surface electronic structure calculations. Phys Rev B 68(20):205327CrossRef Klijn J, Sacharow L, Meyer C, Blugel S, Morgenstern M, Wiesendanger R (2003) STM measurements on the InAs(110) surface directly compared with surface electronic structure calculations. Phys Rev B 68(20):205327CrossRef
152.
go back to reference Calleja F, Arnau A, Hinarejos JJ, Vazquez de Parga AL, Hofer WA, Echenique PM, Miranda R (2004) Contrast reversal and shape changes of atomic adsorbates measured with scanning tunneling microscopy. Phys Rev Lett 92(20):206101CrossRef Calleja F, Arnau A, Hinarejos JJ, Vazquez de Parga AL, Hofer WA, Echenique PM, Miranda R (2004) Contrast reversal and shape changes of atomic adsorbates measured with scanning tunneling microscopy. Phys Rev Lett 92(20):206101CrossRef
153.
go back to reference Blanco JM, González C, Jelínek P, Ortega J, Flores F, Pérez R, Rose M, Salmeron M, Méndez J, Wintterlin J, Ertl G (2005) Origin of contrast in STM images of oxygen on Pd(111) and its dependence on tip structure and tunneling parameters. Phys Rev B 71(11):113402CrossRef Blanco JM, González C, Jelínek P, Ortega J, Flores F, Pérez R, Rose M, Salmeron M, Méndez J, Wintterlin J, Ertl G (2005) Origin of contrast in STM images of oxygen on Pd(111) and its dependence on tip structure and tunneling parameters. Phys Rev B 71(11):113402CrossRef
154.
go back to reference Woolcot T, Teobaldi G, Pang CL, Beglitis NS, Fisher AJ, Hofer WA, Thornton G (2012) Scanning tunneling microscopy contrast mechanisms for TiO2. Phys Rev Lett 109(15):156105CrossRef Woolcot T, Teobaldi G, Pang CL, Beglitis NS, Fisher AJ, Hofer WA, Thornton G (2012) Scanning tunneling microscopy contrast mechanisms for TiO2. Phys Rev Lett 109(15):156105CrossRef
155.
go back to reference Mönig H, Todorovic M, Baykara MZ, Schwendemann TC, Rodrigo L, Altman EI, Pérez R, Schwarz UD (2013) Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: a case study. ACS Nano 7(11):10233–10244CrossRef Mönig H, Todorovic M, Baykara MZ, Schwendemann TC, Rodrigo L, Altman EI, Pérez R, Schwarz UD (2013) Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: a case study. ACS Nano 7(11):10233–10244CrossRef
156.
go back to reference Ondracek M, Pou P, Rozsıval V, Gonzalez C, Jelınek P, Perez R (2011) Forces and currents in carbon nanostructures: are we imaging atoms? Phys Rev Lett 106(17):176101CrossRef Ondracek M, Pou P, Rozsıval V, Gonzalez C, Jelınek P, Perez R (2011) Forces and currents in carbon nanostructures: are we imaging atoms? Phys Rev Lett 106(17):176101CrossRef
157.
go back to reference Ondracek M, Gonzalez C, Jelınek P (2012) Reversal of atomic contrast in scanning probe microscopy on (111) metal surfaces. J Phys Condens Matter 24(8):084003CrossRef Ondracek M, Gonzalez C, Jelınek P (2012) Reversal of atomic contrast in scanning probe microscopy on (111) metal surfaces. J Phys Condens Matter 24(8):084003CrossRef
158.
go back to reference Whangbo M-H, Liang W, Ren J, Magonov SN, Wawkuschewski AJ (1994) Structural and electronic properties of graphite and graphite intercalation compounds MCs (M = K, Rb, Cs) governing their scanning tunneling microscopy images. J Phys Chem 98(31):7602–7607CrossRef Whangbo M-H, Liang W, Ren J, Magonov SN, Wawkuschewski AJ (1994) Structural and electronic properties of graphite and graphite intercalation compounds MCs (M = K, Rb, Cs) governing their scanning tunneling microscopy images. J Phys Chem 98(31):7602–7607CrossRef
159.
go back to reference Teobaldi G, Inami E, Kanasaki J, Tanimura K, Shluger AL (2012) Role of applied bias and tip electronic structure in the scanning tunneling microscopy imaging of highly oriented pyrolytic graphite. Phys Rev B 85(8):085433CrossRef Teobaldi G, Inami E, Kanasaki J, Tanimura K, Shluger AL (2012) Role of applied bias and tip electronic structure in the scanning tunneling microscopy imaging of highly oriented pyrolytic graphite. Phys Rev B 85(8):085433CrossRef
160.
go back to reference Chaika AN, Bozhko SI (2005) Atomic structure of the Cu(410)-O surface: STM visualization of oxygen and copper atoms. JETP Lett 82(7):416–420CrossRef Chaika AN, Bozhko SI (2005) Atomic structure of the Cu(410)-O surface: STM visualization of oxygen and copper atoms. JETP Lett 82(7):416–420CrossRef
161.
go back to reference Ternes M, Gonzalez C, Lutz CP, Hapala P, Giessibl FJ, Jelınek P, Heinrich AJ (2011) Interplay of conductance, force, and structural change in metallic point contacts. Phys Rev Lett 106(1):016802CrossRef Ternes M, Gonzalez C, Lutz CP, Hapala P, Giessibl FJ, Jelınek P, Heinrich AJ (2011) Interplay of conductance, force, and structural change in metallic point contacts. Phys Rev Lett 106(1):016802CrossRef
162.
go back to reference Scheer E, Agrait N, Cuevas JC, Yeyati AL, Ludoph B, Martin-Rodero A, Bollinger GR, Van Ruitenbeek JM, Urbina C (1998) The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394(6689):154–157CrossRef Scheer E, Agrait N, Cuevas JC, Yeyati AL, Ludoph B, Martin-Rodero A, Bollinger GR, Van Ruitenbeek JM, Urbina C (1998) The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394(6689):154–157CrossRef
163.
go back to reference Neel N, Kröger J, Limot L, Palotas K, Hofer WA, Berndt R (2007) Conductance and Kondo effect in a controlled single-atom contact. Phys Rev Lett 98(1):016801CrossRef Neel N, Kröger J, Limot L, Palotas K, Hofer WA, Berndt R (2007) Conductance and Kondo effect in a controlled single-atom contact. Phys Rev Lett 98(1):016801CrossRef
164.
go back to reference Dias LG, Leitão AA, Achete CA, Blum R-P, Niehus H, Capaz RB (2007) Chemical identification in the Cu3Au(100) surface using scanning tunneling microscopy and first-principles calculations. Surf Sci 601(23):5540–5545CrossRef Dias LG, Leitão AA, Achete CA, Blum R-P, Niehus H, Capaz RB (2007) Chemical identification in the Cu3Au(100) surface using scanning tunneling microscopy and first-principles calculations. Surf Sci 601(23):5540–5545CrossRef
165.
go back to reference Ruan L, Besenbacher F, Stensgaard I, Laegsgaard E (1993) Atom resolved discrimination of chemically different elements on metal surfaces. Phys Rev Lett 70(26):4079–4082CrossRef Ruan L, Besenbacher F, Stensgaard I, Laegsgaard E (1993) Atom resolved discrimination of chemically different elements on metal surfaces. Phys Rev Lett 70(26):4079–4082CrossRef
166.
go back to reference Diebold U, Li S-C, Schmid M (2010) Oxide surface science. Annu Rev Phys Chem 61:129–148CrossRef Diebold U, Li S-C, Schmid M (2010) Oxide surface science. Annu Rev Phys Chem 61:129–148CrossRef
167.
go back to reference Knudsen J, Merte LR, Peng G, Vang RT, Resta A, Laegsgaard E, Andersen JN, Mavrikakis M, Besenbacher F (2010) Low-temperature, CO oxidation on Ni(111) and on a Au/Ni(111) surface alloy. ACS Nano 4(8):4380–4387CrossRef Knudsen J, Merte LR, Peng G, Vang RT, Resta A, Laegsgaard E, Andersen JN, Mavrikakis M, Besenbacher F (2010) Low-temperature, CO oxidation on Ni(111) and on a Au/Ni(111) surface alloy. ACS Nano 4(8):4380–4387CrossRef
168.
go back to reference Baykara MZ, Todorović M, Mönig H, Schwendemann TC, Ünverdi Ö, Rodrigo L, Altman EI, Pérez R, Schwarz UD (2013) Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements. Phys Rev B 87(15):155414CrossRef Baykara MZ, Todorović M, Mönig H, Schwendemann TC, Ünverdi Ö, Rodrigo L, Altman EI, Pérez R, Schwarz UD (2013) Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements. Phys Rev B 87(15):155414CrossRef
169.
go back to reference Gauthier Y, Dolle P, Baudoing-Savois R, Hebenstreit W, Platzgummer E, Schmid M, Varga P (1998) Chemical ordering and reconstruction of Pt25Co75(100): an LEED/STM study. Surf Sci 396(1–3):137–155CrossRef Gauthier Y, Dolle P, Baudoing-Savois R, Hebenstreit W, Platzgummer E, Schmid M, Varga P (1998) Chemical ordering and reconstruction of Pt25Co75(100): an LEED/STM study. Surf Sci 396(1–3):137–155CrossRef
170.
go back to reference Hebenstreit W, Ritz G, Schmid M, Biedermann A, Varga P (1997) Segregation and reconstructions of PtxNi1-x(100). Surf Sci 388(1–3):150–161CrossRef Hebenstreit W, Ritz G, Schmid M, Biedermann A, Varga P (1997) Segregation and reconstructions of PtxNi1-x(100). Surf Sci 388(1–3):150–161CrossRef
171.
go back to reference Hebenstreit ELD, Hebenstreit W, Schmid P, Varga P (1999) Pt25Rh75(111), (110), and (100) studied by scanning tunneling microscopy with chemical contrast. Surf Sci 441(2–3):441–453CrossRef Hebenstreit ELD, Hebenstreit W, Schmid P, Varga P (1999) Pt25Rh75(111), (110), and (100) studied by scanning tunneling microscopy with chemical contrast. Surf Sci 441(2–3):441–453CrossRef
172.
go back to reference Schmid M, Varga P (2002) Segregation and surface chemical ordering – an experimental view on the atomic scale, Chapter 4. In: Woodruff DP (ed) The chemical physics of solid surfaces, vol 10, Surface alloys and Alloy surfaces. Elsevier, Amsterdam, 2002 Schmid M, Varga P (2002) Segregation and surface chemical ordering – an experimental view on the atomic scale, Chapter 4. In: Woodruff DP (ed) The chemical physics of solid surfaces, vol 10, Surface alloys and Alloy surfaces. Elsevier, Amsterdam, 2002
173.
go back to reference Yashina LV, Püttner R, Volykhov AA, Stojanov P, Riley J, Vassiliev SY, Chaika AN, Dedyulin SN, Tamm ME, Vyalikh DV, Belogorokhov AI (2012) Atomic geometry and electron structure of the GaTe(\( 10\overline{2} \)) surface. Phys Rev B 85(7):075409CrossRef Yashina LV, Püttner R, Volykhov AA, Stojanov P, Riley J, Vassiliev SY, Chaika AN, Dedyulin SN, Tamm ME, Vyalikh DV, Belogorokhov AI (2012) Atomic geometry and electron structure of the GaTe(\( 10\overline{2} \)) surface. Phys Rev B 85(7):075409CrossRef
174.
go back to reference Hofer WA, Ritz G, Hebenstreit W, Schmid M, Varga P, Redinger J, Podloucky R (1998) Scanning tunneling microscopy of binary-alloy surfaces: is chemical contrast a consequence of alloying? Surf Sci 405(2–3):L514–L519CrossRef Hofer WA, Ritz G, Hebenstreit W, Schmid M, Varga P, Redinger J, Podloucky R (1998) Scanning tunneling microscopy of binary-alloy surfaces: is chemical contrast a consequence of alloying? Surf Sci 405(2–3):L514–L519CrossRef
175.
go back to reference Hofer WA, Redinger J (2000) Scanning tunneling microscopy of binary alloys: first principles calculation of the current for PtX(100) surfaces. Surf Sci 447(1–3):51–61CrossRef Hofer WA, Redinger J (2000) Scanning tunneling microscopy of binary alloys: first principles calculation of the current for PtX(100) surfaces. Surf Sci 447(1–3):51–61CrossRef
176.
go back to reference Serrate D, Ferriani P, Yoshida Y, Hla S-W, Menzel M, von Bergmann K, Heinze S, Kubetzka A, Wiesendanger R (2010) Imaging and manipulating the spin direction of individual atoms. Nat Nanotechnol 5(5):350–353CrossRef Serrate D, Ferriani P, Yoshida Y, Hla S-W, Menzel M, von Bergmann K, Heinze S, Kubetzka A, Wiesendanger R (2010) Imaging and manipulating the spin direction of individual atoms. Nat Nanotechnol 5(5):350–353CrossRef
177.
go back to reference Giessibl FJ, Hembacher S, Bielefeldt H, Mannhart J (2000) Subatomic features on the silicon (111)-(7 × 7) surface observed by atomic force microscopy. Science 289(5478):422–425CrossRef Giessibl FJ, Hembacher S, Bielefeldt H, Mannhart J (2000) Subatomic features on the silicon (111)-(7 × 7) surface observed by atomic force microscopy. Science 289(5478):422–425CrossRef
178.
go back to reference Hug HJ, Lantz MA, Abdurixit A, van Schendel PJA, Hoffmann R, Kappenberger P, Baratoff A (2001) Subatomic features in atomic force microscopy images. Science 29(5513):2509aCrossRef Hug HJ, Lantz MA, Abdurixit A, van Schendel PJA, Hoffmann R, Kappenberger P, Baratoff A (2001) Subatomic features in atomic force microscopy images. Science 29(5513):2509aCrossRef
179.
go back to reference Giessibl FJ, Bielefeldt H, Hembacher S, Mannhart J (2001) Imaging of atomic orbitals with the atomic force microscope – experiments and simulations. Ann Phys 10(11–12):887–910CrossRef Giessibl FJ, Bielefeldt H, Hembacher S, Mannhart J (2001) Imaging of atomic orbitals with the atomic force microscope – experiments and simulations. Ann Phys 10(11–12):887–910CrossRef
180.
go back to reference Huang M, Cuma M, Liu F (2003) Seeing the atomic orbital: first-principles study of the effect of tip termination on atomic force microscopy. Phys Rev Lett 90(25):256101CrossRef Huang M, Cuma M, Liu F (2003) Seeing the atomic orbital: first-principles study of the effect of tip termination on atomic force microscopy. Phys Rev Lett 90(25):256101CrossRef
181.
go back to reference Chen CJ (2006) Possibility of imaging lateral profiles of individual tetrahedral hybrid orbitals in real space. Nanotechnology 17(7):S195–S200CrossRef Chen CJ (2006) Possibility of imaging lateral profiles of individual tetrahedral hybrid orbitals in real space. Nanotechnology 17(7):S195–S200CrossRef
182.
go back to reference Campbellova A, Ondracek M, Pou P, Perez R, Klapetek P, Jelınek P (2011) ‘Sub-atomic’ resolution of non-contact atomic force microscope images induced by a heterogeneous tip structure: a density functional theory study. Nanotechnology 22(29):295710CrossRef Campbellova A, Ondracek M, Pou P, Perez R, Klapetek P, Jelınek P (2011) ‘Sub-atomic’ resolution of non-contact atomic force microscope images induced by a heterogeneous tip structure: a density functional theory study. Nanotechnology 22(29):295710CrossRef
183.
go back to reference Aristov VY, Urbanik G, Kummer K, Vyalikh DV, Molodtsova OV, Preobrajenski AB, Zakharov AA, Hess C, Hänke T, Büchner B, Vobornik I, Fujii J, Panaccione G, Ossipyan YA, Knupfer M (2010) Graphene synthesis on cubic SiC/Si wafers: perspectives for mass production of graphene-based electronic devices. Nano Lett 10(3):992–995CrossRef Aristov VY, Urbanik G, Kummer K, Vyalikh DV, Molodtsova OV, Preobrajenski AB, Zakharov AA, Hess C, Hänke T, Büchner B, Vobornik I, Fujii J, Panaccione G, Ossipyan YA, Knupfer M (2010) Graphene synthesis on cubic SiC/Si wafers: perspectives for mass production of graphene-based electronic devices. Nano Lett 10(3):992–995CrossRef
184.
go back to reference Fasolino A, Los JH, Katsnelson MI (2007) Intrinsic ripples in graphene. Nature Mater 6(11):858–861CrossRef Fasolino A, Los JH, Katsnelson MI (2007) Intrinsic ripples in graphene. Nature Mater 6(11):858–861CrossRef
185.
go back to reference Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitian E, Pena D, Gourdon A, Meyer G (2012) Bond-order discrimination by atomic force microscopy. Science 337(6100):1326–1329CrossRef Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitian E, Pena D, Gourdon A, Meyer G (2012) Bond-order discrimination by atomic force microscopy. Science 337(6100):1326–1329CrossRef
186.
go back to reference Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78(1):013705CrossRef Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78(1):013705CrossRef
Metadata
Title
High Resolution STM Imaging
Author
Alexander N. Chaika
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-44551-8_15

Premium Partners