Skip to main content
Top
Published in: Journal of Electronic Materials 4/2021

09-02-2021 | Original Research Article

High Room-Temperature Thermoelectric Performance of Honeycomb GaN Monolayer

Authors: Peng Jiang, Ji-Chang Ren, Xiaowei Zhang

Published in: Journal of Electronic Materials | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Self-powered nanoscale devices that scavenge heat from the surrounding environment show great promise in applications as biosensors or environmental sensors. Recently, defect-free monolayer gallium nitride (GaN) with a honeycomb structure was realized experimentally. In this paper, based on first-principles calculations and Boltzmann transport theory, the thermoelectric properties of monolayer GaN are investigated. Its electronic structure characteristics approach the condition of Mahan–Sofo’s best thermoelectrics, which leads to outstanding room-temperature Seebeck coefficients, up to 310 μV·K−1 with a hole concentration of 5 × 1018cm−3. Combined with the intrinsic high electron mobility, it then boosts the power factor of the GaN monolayer system. Moreover, due to the strong in-plane polarization nature of Ga–N bonds, the in-plane lattice vibrations exhibit extremely large anharmonicity, resulting in low thermal conductivity (6.4 W·m−1·K−1 at 300K). These results immediately cause a room-temperature figure of merit ZT of 0.17, indicating the P-type monolayer GaN is a superior candidate for low-dimensional thermoelectrics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X. Li, Z.S. Liu, D.G. Zhao, D.S. Jiang, P. Chen, J.J. Zhu, J. Yang, L.C. Le, W. Liu, X.G. He, X.J. Li, F. Liang, L.Q. Zhang, J.P. Liu, H. Yang, Y.T. Zhang, and G.T. Du, Sci. Technol. B, 2016, 34, p 041211. X. Li, Z.S. Liu, D.G. Zhao, D.S. Jiang, P. Chen, J.J. Zhu, J. Yang, L.C. Le, W. Liu, X.G. He, X.J. Li, F. Liang, L.Q. Zhang, J.P. Liu, H. Yang, Y.T. Zhang, and G.T. Du, Sci. Technol. B, 2016, 34, p 041211.
2.
go back to reference N.I. Keda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, S. Yoshida, Proc. IEEE, 2010, 98, p 1151–1161. N.I. Keda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, S. Yoshida, Proc. IEEE, 2010, 98, p 1151–1161.
3.
go back to reference H. Ishida, R. Kajitani, Y. Kinoshita, H. Umeda, S. Ujita, M. Ogawa, K. Tanaka, T. Morita, S. Tamura, M. Ishida, T. Ueda, IEEE Int. Electron Devices Meeting (IEDM), 2016. H. Ishida, R. Kajitani, Y. Kinoshita, H. Umeda, S. Ujita, M. Ogawa, K. Tanaka, T. Morita, S. Tamura, M. Ishida, T. Ueda, IEEE Int. Electron Devices Meeting (IEDM), 2016.
4.
go back to reference Z.Y. Al Balushi, K. Wang, R.K. Ghosh, et al., Nat. Mater. 2016, 15, p 1166.CrossRef Z.Y. Al Balushi, K. Wang, R.K. Ghosh, et al., Nat. Mater. 2016, 15, p 1166.CrossRef
5.
go back to reference W.L. Wang, Y. Li, Y.L. Zheng, X.C. Li, L.G. Huang, and G.Q. Li, Small, 2019, 15, p 1802995.CrossRef W.L. Wang, Y. Li, Y.L. Zheng, X.C. Li, L.G. Huang, and G.Q. Li, Small, 2019, 15, p 1802995.CrossRef
6.
7.
go back to reference H. Gao, Y. Zhang, H. Ye, Z.Y. Yu, Y. Liu, and Y.F. Li, Physica E, 2018, 103, p 289–293.CrossRef H. Gao, Y. Zhang, H. Ye, Z.Y. Yu, Y. Liu, and Y.F. Li, Physica E, 2018, 103, p 289–293.CrossRef
8.
go back to reference Z.Z. Qin, G.Z. Qin, X. Zuo, Z.H. Xiong, and M. Hu, Nanoscale, 2017, 9, p 4295.CrossRef Z.Z. Qin, G.Z. Qin, X. Zuo, Z.H. Xiong, and M. Hu, Nanoscale, 2017, 9, p 4295.CrossRef
12.
go back to reference P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, and D. Ceresolli, J. Phys-Condens. Mat., 2009, 21, p 395502.CrossRef P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, and D. Ceresolli, J. Phys-Condens. Mat., 2009, 21, p 395502.CrossRef
14.
go back to reference J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, p 3865.CrossRef J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, p 3865.CrossRef
15.
16.
go back to reference G.K.H. Madsen, and D.J. Singh, Comput. Phys. Commun., 2006, 175, p 67–71.CrossRef G.K.H. Madsen, and D.J. Singh, Comput. Phys. Commun., 2006, 175, p 67–71.CrossRef
17.
18.
19.
go back to reference G. Fugallo, M. Lazzeri, L. Paulatto, and F. Mauri, Phys. Rev. B, 2013, 88, p 045430.CrossRef G. Fugallo, M. Lazzeri, L. Paulatto, and F. Mauri, Phys. Rev. B, 2013, 88, p 045430.CrossRef
20.
go back to reference A. Onen, D. Kecik, E. Durgun, and S. Ciraci, Phys. Rev. B, 2016, 93, p 085431.CrossRef A. Onen, D. Kecik, E. Durgun, and S. Ciraci, Phys. Rev. B, 2016, 93, p 085431.CrossRef
21.
22.
go back to reference B. Peng, H. Zhang, H.Z. Shao, K. Xu, G. Ni, L.C. Wu, J. Li, H.L. Lu, Q.Y. Jin, and H.Y. Zhu, ACS Photonics, 2018, 5, p 4081–4088.CrossRef B. Peng, H. Zhang, H.Z. Shao, K. Xu, G. Ni, L.C. Wu, J. Li, H.L. Lu, Q.Y. Jin, and H.Y. Zhu, ACS Photonics, 2018, 5, p 4081–4088.CrossRef
23.
go back to reference T.Q. Deng, X. Yong, W. Shi, Z.M. Wong, G. Wu, H. Pan, J.S. Wang, and S.W. Yang, J. Mater. Chem. A, 2020, 8, p 4257–4262.CrossRef T.Q. Deng, X. Yong, W. Shi, Z.M. Wong, G. Wu, H. Pan, J.S. Wang, and S.W. Yang, J. Mater. Chem. A, 2020, 8, p 4257–4262.CrossRef
25.
go back to reference M.Q. Long, L. Tang, D. Wang, Y.L. Li, and Z.J. Shuai, ACS Nano, 2011, 5, p 2593–2600.CrossRef M.Q. Long, L. Tang, D. Wang, Y.L. Li, and Z.J. Shuai, ACS Nano, 2011, 5, p 2593–2600.CrossRef
27.
29.
Metadata
Title
High Room-Temperature Thermoelectric Performance of Honeycomb GaN Monolayer
Authors
Peng Jiang
Ji-Chang Ren
Xiaowei Zhang
Publication date
09-02-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 4/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08744-8

Other articles of this Issue 4/2021

Journal of Electronic Materials 4/2021 Go to the issue