Skip to main content
Top

2020 | OriginalPaper | Chapter

31. High-Temperature Environmental Degradation Behavior of Ultrahigh-Temperature Ceramic Composites

Case Examples of Zirconium and Hafnium Diboride

Authors : R. Mitra, M. Mallik, Sunil Kashyap

Published in: Handbook of Advanced Ceramics and Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, there is a very strong interest for the development of zirconium and hafnium diboride-based ultrahigh-temperature composites (UHTCs) for use in nose cones and leading edges of hypersonic vehicles, which are subjected to high temperatures and ablative environment during reentry into the earth atmosphere. An overview of the literature on high-temperature environmental degradation behavior of zirconium and hafnium diboride-based UHTCs has been presented, with emphasis on their resistance to oxidation under non-isothermal, isothermal, and cyclic conditions, as well as under ablative conditions during reentry at ~2000 °C. It has been observed that using SiC and Si-bearing reinforcements such as Si3N4 and MoSi2 aids in the formation of a borosilicate scale on the surfaces, which is capable of protecting partially or fully against further damage under extreme environments, depending on the temperature. Formation of oxidation products at grain boundaries and interfaces during creep contributes to damage by grain boundary sliding and intergranular cracking. Both nature of oxidation products and mechanisms of their formation leading to degradation are found to vary significantly with the temperature regimes of exposure. On subjecting to ablative exposure at temperatures close to 2000 °C, active oxidation of SiC along with vaporization of B2O3 influences the kinetics and mechanisms of degradation. Formation of ZrO2-rich oxide scale at such temperatures is believed to play the role of an in situ formed thermal barrier coating, which protects the composite underneath from damage. The effects of reinforcements and their volume fractions on oxidation and ablative behavior have been discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jackson TA, Eklund DR, Fink AJ (2004) High speed propulsion: performance advantage of advanced materials. J Mater Sci 39:5905–5913CrossRef Jackson TA, Eklund DR, Fink AJ (2004) High speed propulsion: performance advantage of advanced materials. J Mater Sci 39:5905–5913CrossRef
2.
go back to reference Vanwie DM, Drewary DG Jr, King DE, Hudson CM (2004) The hypersonic environment: required operating conditions and design challenges. J Mater Sci 39:5915–5924CrossRef Vanwie DM, Drewary DG Jr, King DE, Hudson CM (2004) The hypersonic environment: required operating conditions and design challenges. J Mater Sci 39:5915–5924CrossRef
3.
go back to reference Kolodziej P (1997) Aerothermal performance constraints for hypervelocity small radius unswept leading edges and nose-tips, vol 112204. Ames Research Centre, Moffett Field, California, USA: NASA Technical Memorandum Kolodziej P (1997) Aerothermal performance constraints for hypervelocity small radius unswept leading edges and nose-tips, vol 112204. Ames Research Centre, Moffett Field, California, USA: NASA Technical Memorandum
4.
go back to reference Cutler RA (1992) Engineering properties of borides. In: Schneider SJ (ed) Ceramics and glasses, Engineered materials handbook, vol 4. ASM International, Materials Park, pp 787–803 Cutler RA (1992) Engineering properties of borides. In: Schneider SJ (ed) Ceramics and glasses, Engineered materials handbook, vol 4. ASM International, Materials Park, pp 787–803
5.
go back to reference Opeka MM, Talmy IG, Wuchina EJ, Zaykoski JA, Causey SJ (1999) Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J Eur Ceram Soc 19:2405–2414CrossRef Opeka MM, Talmy IG, Wuchina EJ, Zaykoski JA, Causey SJ (1999) Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J Eur Ceram Soc 19:2405–2414CrossRef
6.
go back to reference Levine SR, Opila EJ, Halbig MC, Kiser JD, Singh M, Salem JA (2002) Evaluation of ultra high temperature ceramics for aeropropulsion use. J Eur Ceram Soc 22:2757–3276CrossRef Levine SR, Opila EJ, Halbig MC, Kiser JD, Singh M, Salem JA (2002) Evaluation of ultra high temperature ceramics for aeropropulsion use. J Eur Ceram Soc 22:2757–3276CrossRef
7.
go back to reference Talmy IG, Zaykoski JA, Opeka MM (2008) High- temperature chemistry and oxidation of ZrB2 ceramics containing SiC, Si3N4, Ta5Si3 and TaSi2. J Am Ceram Soc 91:2250–2257CrossRef Talmy IG, Zaykoski JA, Opeka MM (2008) High- temperature chemistry and oxidation of ZrB2 ceramics containing SiC, Si3N4, Ta5Si3 and TaSi2. J Am Ceram Soc 91:2250–2257CrossRef
8.
go back to reference Sciti D, Brach M, Bellosi A (2005) Long-term oxidation behavior and mechanical strength degradation of a pressurelessly sintered ZrB2-MoSi2 ceramic. Scr Mater 53:1297–1302CrossRef Sciti D, Brach M, Bellosi A (2005) Long-term oxidation behavior and mechanical strength degradation of a pressurelessly sintered ZrB2-MoSi2 ceramic. Scr Mater 53:1297–1302CrossRef
9.
go back to reference Bellosi A, Montevede F (2003) Ultra-refractory ceramics: the use of sintering aids to obtain microstructural control and properties improvement. Key Eng Mater 264–268:787–792 Bellosi A, Montevede F (2003) Ultra-refractory ceramics: the use of sintering aids to obtain microstructural control and properties improvement. Key Eng Mater 264–268:787–792
10.
go back to reference Monteverde F, Bellosi A (2005) The resistance to oxidation of an HfB2–SiC composite. J Eur Ceram Soc 25:1025–1031CrossRef Monteverde F, Bellosi A (2005) The resistance to oxidation of an HfB2–SiC composite. J Eur Ceram Soc 25:1025–1031CrossRef
11.
go back to reference Meier GH, Pettit FS (1992) The oxidation behavior of intermetallic compounds. Mater Sci Eng A 153:548–560CrossRef Meier GH, Pettit FS (1992) The oxidation behavior of intermetallic compounds. Mater Sci Eng A 153:548–560CrossRef
12.
go back to reference Kuriakose AK, Margrave JL (1964) The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures. J Electrochem Soc 111:827–831CrossRef Kuriakose AK, Margrave JL (1964) The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures. J Electrochem Soc 111:827–831CrossRef
13.
go back to reference Berkowitz-Mattuck JB (1966) High-temperature oxidation III. Zirconium and hafnium Diboride. J Electrochem Soc 113(9):908–994CrossRef Berkowitz-Mattuck JB (1966) High-temperature oxidation III. Zirconium and hafnium Diboride. J Electrochem Soc 113(9):908–994CrossRef
14.
go back to reference Tripp WC, Graham HC (1971) Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800–1500 °C. J Electrochem Soc 118:1195–1199CrossRef Tripp WC, Graham HC (1971) Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800–1500 °C. J Electrochem Soc 118:1195–1199CrossRef
15.
go back to reference Fahrenholtz WG (2005) The ZrB2 volatility diagram. J Am Ceram Soc 88(12):3509–3512CrossRef Fahrenholtz WG (2005) The ZrB2 volatility diagram. J Am Ceram Soc 88(12):3509–3512CrossRef
16.
go back to reference Levine SR, Opila EJ, Halbig MC, Kiser JD, Singh M, Salem JA (2002) Evaluation of ultra-high temperature ceramics for aeropropulsion use. J Eur Ceram Soc 22:2757–2767CrossRef Levine SR, Opila EJ, Halbig MC, Kiser JD, Singh M, Salem JA (2002) Evaluation of ultra-high temperature ceramics for aeropropulsion use. J Eur Ceram Soc 22:2757–2767CrossRef
17.
go back to reference Monteverde F (2005) The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures. Corr Sci 47:2020–2033CrossRef Monteverde F (2005) The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures. Corr Sci 47:2020–2033CrossRef
18.
go back to reference Loehman RE (2004) Ultrahigh-temperature ceramics for hypersonic vehicle applications. Indus Heating Pittsburgh and Troy 71:36–38 Loehman RE (2004) Ultrahigh-temperature ceramics for hypersonic vehicle applications. Indus Heating Pittsburgh and Troy 71:36–38
19.
go back to reference Fahrenholtz WG, Hilmas GE, Chamberlain AL, Zimmermann JW (2004) Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics. J Mater Sci 39:5951–5957CrossRef Fahrenholtz WG, Hilmas GE, Chamberlain AL, Zimmermann JW (2004) Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics. J Mater Sci 39:5951–5957CrossRef
20.
go back to reference Rezaie A, Fahrenholtz WG, Hilmas GE (2007) Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2–SiC. J Mater Sci 42:2735–2744CrossRef Rezaie A, Fahrenholtz WG, Hilmas GE (2007) Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2–SiC. J Mater Sci 42:2735–2744CrossRef
21.
go back to reference Chemberlain A, Fahrenholtz W, Hilmas G, Ellerby D (2005) Oxidation of ZrB2-SiC ceramics under atmospheric and re-entry conditions. Refract Appl Trans 1(2):1–8 Chemberlain A, Fahrenholtz W, Hilmas G, Ellerby D (2005) Oxidation of ZrB2-SiC ceramics under atmospheric and re-entry conditions. Refract Appl Trans 1(2):1–8
22.
go back to reference Chase MW Jr (1998) NIST-JANAF thermochemical tables, 4th edn. American Chemical Society and the American Institute of Physics, Woodbury Chase MW Jr (1998) NIST-JANAF thermochemical tables, 4th edn. American Chemical Society and the American Institute of Physics, Woodbury
23.
go back to reference Barin I (1995) Therrnochernical data of pure substances, 3rd edn. VCH Publishers, Inc., New YorkCrossRef Barin I (1995) Therrnochernical data of pure substances, 3rd edn. VCH Publishers, Inc., New YorkCrossRef
24.
go back to reference Raj SV (1995) An evaluation of the properties of Cr3Si alloyed with Mo. Mater Sci Eng A 201:229–241CrossRef Raj SV (1995) An evaluation of the properties of Cr3Si alloyed with Mo. Mater Sci Eng A 201:229–241CrossRef
25.
go back to reference Nesbitt JM, Lowell CE (1993) High temperature oxidation of intermetallics. In: High temperature ordered intermetallic alloys V. MRS Symposium Proceedings, vol 288, pp 107–118 Nesbitt JM, Lowell CE (1993) High temperature oxidation of intermetallics. In: High temperature ordered intermetallic alloys V. MRS Symposium Proceedings, vol 288, pp 107–118
26.
go back to reference Rockett TJ, Foster WR (1965) Phase relations in the system boron oxide-silica. J Am Ceram Soc 48(2):75–80CrossRef Rockett TJ, Foster WR (1965) Phase relations in the system boron oxide-silica. J Am Ceram Soc 48(2):75–80CrossRef
27.
go back to reference Monteverde F, Bellosi A (2003) Oxidation of ZrB2-based ceramics in dry air. J Electrochem Soc 150:B552–B559CrossRef Monteverde F, Bellosi A (2003) Oxidation of ZrB2-based ceramics in dry air. J Electrochem Soc 150:B552–B559CrossRef
28.
go back to reference Mitra R, Upender S, Mallik M, Chakraborty S, Ray KK (2009) Mechanical, thermal, and oxidation behaviour of zirconium diboride based ultra-high temperature ceramic composites. Key Eng Mater 395:55–68CrossRef Mitra R, Upender S, Mallik M, Chakraborty S, Ray KK (2009) Mechanical, thermal, and oxidation behaviour of zirconium diboride based ultra-high temperature ceramic composites. Key Eng Mater 395:55–68CrossRef
29.
go back to reference Mallik M, Ray KK, Mitra R (2011) Oxidation behavior of hot pressed ZrB2–SiC and HfB2–SiC composites. J Eur Ceram Soc 31(1–2):199–215CrossRef Mallik M, Ray KK, Mitra R (2011) Oxidation behavior of hot pressed ZrB2–SiC and HfB2–SiC composites. J Eur Ceram Soc 31(1–2):199–215CrossRef
30.
go back to reference Tripp WC, Davis HH, Graham HC (1973) Effect of an SiC addition on the oxidation of ZrB2. Am Ceram Soc Bull 52:612–616 Tripp WC, Davis HH, Graham HC (1973) Effect of an SiC addition on the oxidation of ZrB2. Am Ceram Soc Bull 52:612–616
31.
go back to reference Shimada S, Ishil T (1990) Oxidation kinetics of zirconium carbide at relatively low temperatures. J Am Ceram Soc 73(10):2804–2808CrossRef Shimada S, Ishil T (1990) Oxidation kinetics of zirconium carbide at relatively low temperatures. J Am Ceram Soc 73(10):2804–2808CrossRef
32.
go back to reference Sciti D, Medri V, Silvestroni L (2010) Oxidation behaviour of HfB2–15 vol.% TaSi2 at low, intermediate and high temperatures. Scr Mater 63:601–604CrossRef Sciti D, Medri V, Silvestroni L (2010) Oxidation behaviour of HfB2–15 vol.% TaSi2 at low, intermediate and high temperatures. Scr Mater 63:601–604CrossRef
33.
go back to reference Monteverde F (2009) The addition of SiC particles into a MoSi2-doped ZrB2 matrix: effects on densification, microstructure and thermo-physical properties. Mater Chem Phy 113:626–633CrossRef Monteverde F (2009) The addition of SiC particles into a MoSi2-doped ZrB2 matrix: effects on densification, microstructure and thermo-physical properties. Mater Chem Phy 113:626–633CrossRef
34.
go back to reference Guo WM, Zhang GJ (2010) Oxidation resistance and strength retention of ZrB2–SiC ceramics. J Eur Ceram Soc 30:2387–2395CrossRef Guo WM, Zhang GJ (2010) Oxidation resistance and strength retention of ZrB2–SiC ceramics. J Eur Ceram Soc 30:2387–2395CrossRef
35.
go back to reference Opila E, Levine S, Lorincz J (2004) Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: effect of Ta additions. J Mater Sci 39:5969–5977 Opila E, Levine S, Lorincz J (2004) Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: effect of Ta additions. J Mater Sci 39:5969–5977
36.
go back to reference Li X, Zhang X, Han J, Hong C, Han W (2008) A technique for ultrahigh temperature oxidation studies of ZrB2-SiC. Mater Let 62(17–18):2848–2850CrossRef Li X, Zhang X, Han J, Hong C, Han W (2008) A technique for ultrahigh temperature oxidation studies of ZrB2-SiC. Mater Let 62(17–18):2848–2850CrossRef
37.
go back to reference Carney CM (2009) Oxidation resistance of hafnium diboride–silicon carbide from 1400 to 2000 °C. J Mater Sci 44:5673–5681CrossRef Carney CM (2009) Oxidation resistance of hafnium diboride–silicon carbide from 1400 to 2000 °C. J Mater Sci 44:5673–5681CrossRef
38.
go back to reference Sciti D, Balbo A, Bellosi A (2009) Oxidation behaviour of a pressureless sintered HfB2–MoSi2 composite. J Eur Ceram Soc 29(9):1809–1815CrossRef Sciti D, Balbo A, Bellosi A (2009) Oxidation behaviour of a pressureless sintered HfB2–MoSi2 composite. J Eur Ceram Soc 29(9):1809–1815CrossRef
39.
go back to reference Monteverde F (2005) Progress in the fabrication of ultra-high-temperature ceramics, “in situ” synthesis, microstructure and properties of a reactive hot-pressed HfB2–SiC composite. Comp Sci Tech 65:1869–1879CrossRef Monteverde F (2005) Progress in the fabrication of ultra-high-temperature ceramics, “in situ” synthesis, microstructure and properties of a reactive hot-pressed HfB2–SiC composite. Comp Sci Tech 65:1869–1879CrossRef
40.
go back to reference Han J, Hu P, Zhang X, Meng S (2007) Oxidation behavior of zirconium diboride–silicon carbide at 1800 °C. Scr Mater 57:825–828CrossRef Han J, Hu P, Zhang X, Meng S (2007) Oxidation behavior of zirconium diboride–silicon carbide at 1800 °C. Scr Mater 57:825–828CrossRef
41.
go back to reference Han W, Hu P, Zhang X, Han J, Meng S (2008) High-temperature oxidation at 1900 °C of ZrB2–xSiC ultrahigh-temperature ceramic composites. J Am Ceram Soc 91(10):3328–3334CrossRef Han W, Hu P, Zhang X, Han J, Meng S (2008) High-temperature oxidation at 1900 °C of ZrB2–xSiC ultrahigh-temperature ceramic composites. J Am Ceram Soc 91(10):3328–3334CrossRef
42.
go back to reference Han J, Hu P, Zhang X, Meng S, Han W (2008b) Oxidation-resistant ZrB2–SiC composites at 2200 °C. Comp Sci Tech 68:799–806CrossRef Han J, Hu P, Zhang X, Meng S, Han W (2008b) Oxidation-resistant ZrB2–SiC composites at 2200 °C. Comp Sci Tech 68:799–806CrossRef
43.
go back to reference Hu P, Zhang X, Han J, Luo DS (2010) Effect of various additives on the oxidation behavior of ZrB2–based ultra-high-temperature ceramics at 1800 °C. J Am Ceram Soc 93(2):345–349CrossRef Hu P, Zhang X, Han J, Luo DS (2010) Effect of various additives on the oxidation behavior of ZrB2–based ultra-high-temperature ceramics at 1800 °C. J Am Ceram Soc 93(2):345–349CrossRef
44.
go back to reference Peng F, Speyer RF (2008) Oxidation resistance of fully dense ZrB2 with SiC, TaB2, and TaSi2 additives. J Am Ceram Soc 91(5):1489–1494CrossRef Peng F, Speyer RF (2008) Oxidation resistance of fully dense ZrB2 with SiC, TaB2, and TaSi2 additives. J Am Ceram Soc 91(5):1489–1494CrossRef
45.
go back to reference Zhang SC, Hilmas GE, Fahrenholtz WG (2008) Improved oxidation resistance of zirconium diboride by tungsten carbide additions. J Am Ceram Soc 91(11):3530–3535CrossRef Zhang SC, Hilmas GE, Fahrenholtz WG (2008) Improved oxidation resistance of zirconium diboride by tungsten carbide additions. J Am Ceram Soc 91(11):3530–3535CrossRef
46.
go back to reference Mallik M, Mitra R, Ray KK (2009) Oxidation behavior of three ZrB2 based ultra-high temperature ceramic composites. In: Sampe Europe 30th international jubilee conference and forum session, vol 7B, pp 467–474 Mallik M, Mitra R, Ray KK (2009) Oxidation behavior of three ZrB2 based ultra-high temperature ceramic composites. In: Sampe Europe 30th international jubilee conference and forum session, vol 7B, pp 467–474
48.
go back to reference Opeka MM, Talmy IG, Zaykoski JA (2004) Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: theoretical considerations and historical experience. J Mater Sci 39:5887–5904CrossRef Opeka MM, Talmy IG, Zaykoski JA (2004) Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: theoretical considerations and historical experience. J Mater Sci 39:5887–5904CrossRef
49.
go back to reference Mallik M (2014) Structure-property relations in zirconium and hafnium diboride based ultra high temperature ceramic composites. Ph.D dissertation, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal Mallik M (2014) Structure-property relations in zirconium and hafnium diboride based ultra high temperature ceramic composites. Ph.D dissertation, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal
50.
go back to reference Talmy IG, Zaykoski JA, Opeka MM, Dallek S (2001) Oxidation of ZrB2 ceramics modified with SiC and group IV-VI transition metal borides. In: McNallan M, Opila E (eds) High temperature corrosion and materials chemistry III. The Electrochemical Society, Inc., Pennington, pp 144–158 Talmy IG, Zaykoski JA, Opeka MM, Dallek S (2001) Oxidation of ZrB2 ceramics modified with SiC and group IV-VI transition metal borides. In: McNallan M, Opila E (eds) High temperature corrosion and materials chemistry III. The Electrochemical Society, Inc., Pennington, pp 144–158
51.
go back to reference Parthasarathy TA, Rapp RA, Opeka M, Kerans RJ (2009) Effects of phase change and oxygen permeability in oxide scales on oxidation kinetics of ZrB2 and HfB2. J Am Ceram Soc 92(5):1079–1086CrossRef Parthasarathy TA, Rapp RA, Opeka M, Kerans RJ (2009) Effects of phase change and oxygen permeability in oxide scales on oxidation kinetics of ZrB2 and HfB2. J Am Ceram Soc 92(5):1079–1086CrossRef
52.
go back to reference Krishnamurty R, Srolovitz DJ (2003) Stress distributions in growing oxide films. Acta Mater 51(8):2171–2190CrossRef Krishnamurty R, Srolovitz DJ (2003) Stress distributions in growing oxide films. Acta Mater 51(8):2171–2190CrossRef
53.
go back to reference Chatterjee UK, Bose SK, Roy SK (2001) Environmental degradation of metals. Marcel Dakker Inc., New YorkCrossRef Chatterjee UK, Bose SK, Roy SK (2001) Environmental degradation of metals. Marcel Dakker Inc., New YorkCrossRef
54.
go back to reference Mallik M, Ray KK, Mitra R (2014) Effect of Si3N4 addition on compressive creep behavior of hot pressed ZrB2-SiC composites. J Am Ceram Soc 97(9):2957–2964CrossRef Mallik M, Ray KK, Mitra R (2014) Effect of Si3N4 addition on compressive creep behavior of hot pressed ZrB2-SiC composites. J Am Ceram Soc 97(9):2957–2964CrossRef
55.
go back to reference Kashyap SK, Mitra R (2019) Effect of LaB6 additions on densification, microstructure, and creep with oxide scale formation in ZrB2-SiC composites sintered by spark plasma sintering. J Eur Ceram Soc 39:2782–2793CrossRef Kashyap SK, Mitra R (2019) Effect of LaB6 additions on densification, microstructure, and creep with oxide scale formation in ZrB2-SiC composites sintered by spark plasma sintering. J Eur Ceram Soc 39:2782–2793CrossRef
56.
go back to reference Gasch M, Ellerby D, Irby E, Beckman S, Gusman M, Johson S (2004) Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra-high temperature ceramics. J Mater Sci 39(19):5925–5937CrossRef Gasch M, Ellerby D, Irby E, Beckman S, Gusman M, Johson S (2004) Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra-high temperature ceramics. J Mater Sci 39(19):5925–5937CrossRef
57.
go back to reference Savino R, Fumo MDS, Silvestroni L, Sciti D (2008) Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials. J Eur Ceram Soc 28:1899–1907CrossRef Savino R, Fumo MDS, Silvestroni L, Sciti D (2008) Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials. J Eur Ceram Soc 28:1899–1907CrossRef
58.
go back to reference Bull J, White MJ, Kaufman L (1998) Ablation resistant zirconium and hafnium ceramics. US Patent No 5 750 450 Bull J, White MJ, Kaufman L (1998) Ablation resistant zirconium and hafnium ceramics. US Patent No 5 750 450
59.
go back to reference Zhang X, Hu P, Han J, Meng S (2008) Ablation behavior of ZrB2–SiC ultra-high temperature ceramics under simulated atmospheric re-entry conditions. Comp Sci Tech 68:1718–1726CrossRef Zhang X, Hu P, Han J, Meng S (2008) Ablation behavior of ZrB2–SiC ultra-high temperature ceramics under simulated atmospheric re-entry conditions. Comp Sci Tech 68:1718–1726CrossRef
60.
go back to reference Wang C, Wang H, Huang Y, Fang D (2007) Preparation and flame ablation/oxidation behavior of ZrB2/SiC ultra-high temperature ceramic composites. Key Eng Mater 351:142–146CrossRef Wang C, Wang H, Huang Y, Fang D (2007) Preparation and flame ablation/oxidation behavior of ZrB2/SiC ultra-high temperature ceramic composites. Key Eng Mater 351:142–146CrossRef
61.
go back to reference Cheng Z, Zhou C, Tian T, Sun C, Shi Z, Fan J (2008) Pressureless sintering of ultra-high temperature ZrB2–SiC ceramics. Key Eng Mater 368-372:1746–1749CrossRef Cheng Z, Zhou C, Tian T, Sun C, Shi Z, Fan J (2008) Pressureless sintering of ultra-high temperature ZrB2–SiC ceramics. Key Eng Mater 368-372:1746–1749CrossRef
62.
go back to reference Li G, Han W, Zhang X, Han J, Meng S (2009) Ablation resistance of ZrB2–SiC–AlN ceramic composites. J Alloys Comp 479:299–302CrossRef Li G, Han W, Zhang X, Han J, Meng S (2009) Ablation resistance of ZrB2–SiC–AlN ceramic composites. J Alloys Comp 479:299–302CrossRef
63.
go back to reference Weng L, Zhang X, Han W, Han J (2009) Fabrication and evaluation on thermal stability of hafnium diboride matrix composite at severe oxidation condition. Int J Ref Met Hard Mater 27:711–717CrossRef Weng L, Zhang X, Han W, Han J (2009) Fabrication and evaluation on thermal stability of hafnium diboride matrix composite at severe oxidation condition. Int J Ref Met Hard Mater 27:711–717CrossRef
64.
go back to reference Wu H, Zhang W (2009) Mechanical properties and ablation behavior of machinable ZrB2-SiC-BN ceramics. Adv Mater Res 79-82:2011–2014CrossRef Wu H, Zhang W (2009) Mechanical properties and ablation behavior of machinable ZrB2-SiC-BN ceramics. Adv Mater Res 79-82:2011–2014CrossRef
65.
go back to reference Zhou S, Li W, Hu P, Hong C, Weng L (2009) Ablation behavior of ZrB2–SiC–ZrO2 ceramic composites by means of the oxyacetylene torch. Corr Sci 51:2071–2079CrossRef Zhou S, Li W, Hu P, Hong C, Weng L (2009) Ablation behavior of ZrB2–SiC–ZrO2 ceramic composites by means of the oxyacetylene torch. Corr Sci 51:2071–2079CrossRef
66.
go back to reference Zhou C, Wang Y, Cheng Z, Wang C, Sun JC, Feng B (2010) Ablation resistance of pressureless sintered ZrB2-based ceramics. Adv Mater Res 105-106:199–202CrossRef Zhou C, Wang Y, Cheng Z, Wang C, Sun JC, Feng B (2010) Ablation resistance of pressureless sintered ZrB2-based ceramics. Adv Mater Res 105-106:199–202CrossRef
67.
go back to reference Mallik M, Kailath AJ, Ray KK, Mitra R (2017) Effect of SiC content on electrical, thermal, and ablative properties of pressureless sintered ZrB2-based ultrahigh temperature ceramic composites. J Eur Ceram Soc 37(2):559–572CrossRef Mallik M, Kailath AJ, Ray KK, Mitra R (2017) Effect of SiC content on electrical, thermal, and ablative properties of pressureless sintered ZrB2-based ultrahigh temperature ceramic composites. J Eur Ceram Soc 37(2):559–572CrossRef
68.
go back to reference Rezaie A, Fahrenholtz WG, Hilmas GE (2007) Evolution of structure during the oxidation of zirconium diboride-silicon carbide in air up to 1500 °C. J Eur Ceram Soc 27:2495–2501CrossRef Rezaie A, Fahrenholtz WG, Hilmas GE (2007) Evolution of structure during the oxidation of zirconium diboride-silicon carbide in air up to 1500 °C. J Eur Ceram Soc 27:2495–2501CrossRef
69.
go back to reference Suzuki M, Sodeoka S, Inoue T (2005) Structure control of plasma sprayed zircon coating by substrate preheating and post heat treatment. Mater Trans JIM 46:669–674CrossRef Suzuki M, Sodeoka S, Inoue T (2005) Structure control of plasma sprayed zircon coating by substrate preheating and post heat treatment. Mater Trans JIM 46:669–674CrossRef
70.
go back to reference Nguyen QGN, Opila EJ, Robinson RC (2004) Oxidation of ultrahigh temperature ceramics in water vapor. J Electrochem Soc 151(8):B558–B562CrossRef Nguyen QGN, Opila EJ, Robinson RC (2004) Oxidation of ultrahigh temperature ceramics in water vapor. J Electrochem Soc 151(8):B558–B562CrossRef
71.
go back to reference Guérineau V, Julian-Jankowiak A (2018) Oxidation mechanisms under water vapour conditions of ZrB2-SiC and HfB2-SiC based materials up to 2400 °C. J Eur Ceram Soc 38:421–432CrossRef Guérineau V, Julian-Jankowiak A (2018) Oxidation mechanisms under water vapour conditions of ZrB2-SiC and HfB2-SiC based materials up to 2400 °C. J Eur Ceram Soc 38:421–432CrossRef
Metadata
Title
High-Temperature Environmental Degradation Behavior of Ultrahigh-Temperature Ceramic Composites
Authors
R. Mitra
M. Mallik
Sunil Kashyap
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-16347-1_41

Premium Partners