Skip to main content
Top
Published in:

01-08-2024

High Temperature Melt Viscosity Prediction Model Based on BP Neural Network

Authors: Xiaoyue Fan, Shanchao Gao, Jianliang Zhang, Kexin Jiao

Published in: Metals and Materials International | Issue 8/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper comprehensively considers 12 indicators, including temperature, component content, solid–liquid ratio, free volume ratio, atomic cluster as characteristic parameters, to establish a back-propagation (BP) neural network prediction model for the viscosity of multi-element titanium-containing iron-based melts. The comprehensive model is dissected into distinct sub-models based on specific characteristic parameters, including the temperature and composition (T&C)-BP, Liquid structure parameters (LS)-BP, and Solid-phase particle parameters (S)-BP sub-models. The performance and applicability of each sub-model are rigorously analyzed, providing valuable insights into their respective scopes and limitations. By comparing the actual molten iron viscosity with the model predicted value, it was found that, the relative errors for all predicted values were found to be within 10%. The relative error for individual samples at 1350 °C was an impressive 1.3%. Furthermore, a substantial 56% of the predictions exhibited a relative error of less than 5%.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference M. Geerdes, R. Chaigneau, O. Lingiardi, R. Molenaar, R. van Opbergen, Y. Sha, J. Warren, Modern Blast Furnace Ironmaking: An Introduction (IOS Press, Amsterdam, 2020)CrossRef M. Geerdes, R. Chaigneau, O. Lingiardi, R. Molenaar, R. van Opbergen, Y. Sha, J. Warren,  Modern Blast Furnace Ironmaking: An Introduction (IOS Press, Amsterdam, 2020)CrossRef
2.
go back to reference K.-X. Jiao, J.-L. Zhang, Z.-J. Liu, C.-L. Chen, Y.-X. Liu, Analysis of blast furnace hearth sidewall erosion and protective layer formation. ISIJ Int. 56, 1956–1963 (2016)CrossRef K.-X. Jiao, J.-L. Zhang, Z.-J. Liu, C.-L. Chen, Y.-X. Liu, Analysis of blast furnace hearth sidewall erosion and protective layer formation. ISIJ Int. 56, 1956–1963 (2016)CrossRef
3.
go back to reference J.L. Zhang, D.W. Luo, H. Zeng, H.B. Zuo, K.X. Jiao, Blast Furnace Anatomy Research (Metallurgical Industry Press, Beijing, 2019) J.L. Zhang, D.W. Luo, H. Zeng, H.B. Zuo, K.X. Jiao, Blast Furnace Anatomy Research (Metallurgical Industry Press, Beijing, 2019)
4.
go back to reference X. Fan, K. Jiao, J. Zhang, R. Cao, R. He, K. Wang, Study on physicochemical properties of Al2O3SiC C castable for blast furnace. Ceram. Int. 45, 13903–13911 (2019)CrossRef X. Fan, K. Jiao, J. Zhang, R. Cao, R. He, K. Wang, Study on physicochemical properties of Al2O3SiC C castable for blast furnace. Ceram. Int. 45, 13903–13911 (2019)CrossRef
5.
go back to reference S.L. Wu, X.L. Wang, J.L. Zhang, Iron and Steel Metallurgy (Ironmaking Part), 4th edn. (Metallurgical Industry Press, Beijing, 2019) S.L. Wu, X.L. Wang, J.L. Zhang, Iron and Steel Metallurgy (Ironmaking Part), 4th edn. (Metallurgical Industry Press, Beijing, 2019)
6.
go back to reference E.D. Andrade, Atheoryoftheviscosityofliquids-Part I. Phil. Mag. 17, 497–511 (1934)CrossRef E.D. Andrade, Atheoryoftheviscosityofliquids-Part I. Phil. Mag. 17, 497–511 (1934)CrossRef
7.
go back to reference G. Kaptay, A unified equation for the viscosity of pure liquid metals. Int. J. Mater. Res. 96, 24–31 (2021) G. Kaptay, A unified equation for the viscosity of pure liquid metals. Int. J. Mater. Res. 96, 24–31 (2021)
8.
go back to reference I. Budai, M.Z. Benkő, G. Kaptay, Comparison of different theoretical models to experimental data on viscosity of binary liquid alloys, Materials science forum (Trans Tech Publ, Switzerland, 2007), pp.489–496 I. Budai, M.Z. Benkő, G. Kaptay, Comparison of different theoretical models to experimental data on viscosity of binary liquid alloys, Materials science forum (Trans Tech Publ, Switzerland, 2007), pp.489–496
9.
go back to reference M. Hirai, Estimation of viscosities of liquid alloys. ISIJ Int. 33, 251–258 (1993)CrossRef M. Hirai, Estimation of viscosities of liquid alloys. ISIJ Int. 33, 251–258 (1993)CrossRef
10.
go back to reference H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)CrossRef H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)CrossRef
11.
go back to reference S. Seetharaman, D. Sichen, Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing. Metall. and Mater. Trans. B. 25, 589–595 (1994)CrossRef S. Seetharaman, D. Sichen, Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing. Metall. and Mater. Trans. B. 25, 589–595 (1994)CrossRef
12.
go back to reference G. Kaptay, (2003) A new equation to estimate the concentration dependence of the viscosity of liquid metallic alloys from the heat of mixing data, in Proceedings of microCAD 2003 Conference. Section Metallurgy, University of Miskolc, 2003, pp. 23–28. G. Kaptay, (2003) A new equation to estimate the concentration dependence of the viscosity of liquid metallic alloys from the heat of mixing data, in Proceedings of microCAD 2003 Conference. Section Metallurgy, University of Miskolc, 2003, pp. 23–28.
13.
go back to reference P.W. Atkins, J. De Paula, Physikalische Chemie (John Wiley & Sons, New Jersey, 2013) P.W. Atkins, J. De Paula, Physikalische Chemie (John Wiley & Sons, New Jersey, 2013)
14.
go back to reference Z. Morita, T. Iida, M. Ueda, The excess viscosity of liquid binary alloys. Liquid Metals 1977, 600–606 (1976) Z. Morita, T. Iida, M. Ueda, The excess viscosity of liquid binary alloys. Liquid Metals 1977, 600–606 (1976)
15.
go back to reference L.Y. Kozlov, L. Romanov, N. Petrov, (1983) Prediction of multicomponent metallic melt viscosity, Izv. Vuz. Chern Metallurg 3. L.Y. Kozlov, L. Romanov, N. Petrov, (1983) Prediction of multicomponent metallic melt viscosity, Izv. Vuz. Chern Metallurg 3.
16.
go back to reference H.-C. Liao, G. Yuan, Q.-G. Wang, D. Wilson, Development of viscosity model for aluminum alloys using BP neural network. Trans. Nonferrous Metals Soc. China 31(2978), 2985 (2021) H.-C. Liao, G. Yuan, Q.-G. Wang, D. Wilson, Development of viscosity model for aluminum alloys using BP neural network. Trans. Nonferrous Metals Soc. China 31(2978), 2985 (2021)
17.
go back to reference K. Yang, Modeling of silicon content in blast furnace hot metal based on neural network, Dissertation, Yanshan University (2016) K. Yang, Modeling of silicon content in blast furnace hot metal based on neural network, Dissertation, Yanshan University (2016)
18.
go back to reference T.D. Sun, Z.Y. Yang, Z.H. Xu, Research on the application of neural network method in predicting the silicon content of blast furnace hot metal. Steel & Iron 31, 18–20 (1996) T.D. Sun, Z.Y. Yang, Z.H. Xu, Research on the application of neural network method in predicting the silicon content of blast furnace hot metal. Steel & Iron 31, 18–20 (1996)
19.
go back to reference W. Liang, G. Wang, X. Ning, J. Zhang, Y. Li, C. Jiang, N. Zhang, Application of BP neural network to the prediction of coal ash melting characteristic temperature. Fuel 260, 116324 (2020)CrossRef W. Liang, G. Wang, X. Ning, J. Zhang, Y. Li, C. Jiang, N. Zhang, Application of BP neural network to the prediction of coal ash melting characteristic temperature. Fuel 260, 116324 (2020)CrossRef
20.
go back to reference Y.D. Zeng, J. Qu, Application of fuzzy neural network in Cupola Molten iron quality prediction. Casting Technology 2010, 487–490 (2010) Y.D. Zeng, J. Qu, Application of fuzzy neural network in Cupola Molten iron quality prediction. Casting Technology 2010, 487–490 (2010)
21.
go back to reference M.A. Duchesne, A. Macchi, D.Y. Lu, R.W. Hughes, D. McCalden, E.J. Anthony, Artificial neural network model to predict slag viscosity over a broad range of temperatures and slag compositions. Fuel Process. Technol. 91, 831–836 (2010)CrossRef M.A. Duchesne, A. Macchi, D.Y. Lu, R.W. Hughes, D. McCalden, E.J. Anthony, Artificial neural network model to predict slag viscosity over a broad range of temperatures and slag compositions. Fuel Process. Technol. 91, 831–836 (2010)CrossRef
22.
go back to reference Z. Chen, M. Wang, Z. Meng, H. Wang, L. Liu, X. Wang, Development of structure-informed artificial neural network for accurately modeling viscosity of multicomponent molten slags. Ceram. Int. 47, 30691–30701 (2021)CrossRef Z. Chen, M. Wang, Z. Meng, H. Wang, L. Liu, X. Wang, Development of structure-informed artificial neural network for accurately modeling viscosity of multicomponent molten slags. Ceram. Int. 47, 30691–30701 (2021)CrossRef
23.
go back to reference M. Wu, B. Lv, Prediction of viscosity of ternary tin-based lead-free solder melt using BP neural network. Solder. Surf. Mount Technol. 32, 173–180 (2020)CrossRef M. Wu, B. Lv, Prediction of viscosity of ternary tin-based lead-free solder melt using BP neural network. Solder. Surf. Mount Technol. 32, 173–180 (2020)CrossRef
24.
go back to reference I. Balyakin, A. Yuryev, V. Filippov, B. Gelchinski, Viscosity of liquid gallium: neural network potential molecular dynamics and experimental study. Comput. Mater. Sci. 215, 111802 (2022)CrossRef I. Balyakin, A. Yuryev, V. Filippov, B. Gelchinski, Viscosity of liquid gallium: neural network potential molecular dynamics and experimental study. Comput. Mater. Sci. 215, 111802 (2022)CrossRef
25.
go back to reference S. Gao, K. Jiao, J. Zhang, X. Fan, Z. Liu, A. Zheng, Review on the viscosity of iron-based melts in metallurgical process. ISIJ Int. 62, 2172–2182 (2022)CrossRef S. Gao, K. Jiao, J. Zhang, X. Fan, Z. Liu, A. Zheng, Review on the viscosity of iron-based melts in metallurgical process. ISIJ Int. 62, 2172–2182 (2022)CrossRef
26.
go back to reference D.H. Schwitalla, A.M. Bronsch, M. Klinger, S. Guhl, B. Meyer, Analysis of solid phase formation and its impact on slag rheology. Fuel 203, 932–941 (2017)CrossRef D.H. Schwitalla, A.M. Bronsch, M. Klinger, S. Guhl, B. Meyer, Analysis of solid phase formation and its impact on slag rheology. Fuel 203, 932–941 (2017)CrossRef
27.
go back to reference Q. Zhang, J. Wang, S. Tang, Y. Wang, J. Li, W. Zhou, Z. Wang, Molecular dynamics investigation of the local structure in iron melts and its role in crystal nucleation during rapid solidification. Phys. Chem. Chem. Phys. 21, 4122–4135 (2019)CrossRefPubMed Q. Zhang, J. Wang, S. Tang, Y. Wang, J. Li, W. Zhou, Z. Wang, Molecular dynamics investigation of the local structure in iron melts and its role in crystal nucleation during rapid solidification. Phys. Chem. Chem. Phys. 21, 4122–4135 (2019)CrossRefPubMed
28.
go back to reference X. Fan, S. Gao, J. Zhang, K. Jiao, Analysis of the structure and viscosity of iron melts containing titanium at various concentration. J. Mol. Liq. 386, 122519 (2023)CrossRef X. Fan, S. Gao, J. Zhang, K. Jiao, Analysis of the structure and viscosity of iron melts containing titanium at various concentration. J. Mol. Liq. 386, 122519 (2023)CrossRef
30.
go back to reference N. Ketkar, Introduction to keras, in Deep Learning with Python: A Hands-on Introduction (Apress, Berkeley, 2017), pp. 97–111 N. Ketkar, Introduction to keras, in Deep Learning with Python: A Hands-on Introduction (Apress, Berkeley, 2017), pp. 97–111
31.
go back to reference W. Python, Python, Python Releases for Windows 24 (2021) W. Python, Python, Python Releases for Windows 24 (2021)
32.
go back to reference T. Kluyver, B. Ragan-Kelley, F. Pérez, B.E. Granger, M. Bussonnier, J. Frederic, K. Kelley, J.B. Hamrick, J. Grout, S. Corlay, Jupyter Notebooks-a publishing format for reproducible computational workflows. Elpub 2016, 87–90 (2016) T. Kluyver, B. Ragan-Kelley, F. Pérez, B.E. Granger, M. Bussonnier, J. Frederic, K. Kelley, J.B. Hamrick, J. Grout, S. Corlay, Jupyter Notebooks-a publishing format for reproducible computational workflows. Elpub 2016, 87–90 (2016)
33.
go back to reference D.P. Bertsekas, Nonlinear programming. J. Oper. Res. Soc.Oper. Res. Soc. 48, 334–334 (1997)CrossRef D.P. Bertsekas, Nonlinear programming. J. Oper. Res. Soc.Oper. Res. Soc. 48, 334–334 (1997)CrossRef
34.
go back to reference F. Zou, L. Shen, Z. Jie, W. Zhang, W. Liu, (2019) A sufficient condition for convergences of adam and rmsprop, in Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp. 11127–11135. F. Zou, L. Shen, Z. Jie, W. Zhang, W. Liu, (2019) A sufficient condition for convergences of adam and rmsprop, in Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp. 11127–11135.
35.
go back to reference F. Shi, X.C. Wang, L. Yu, Y. Li, MATLAB neural network 30 case studies (Beijing University of Aeronautics and Astronautics Press, Beijing, 2010), pp.102–112 F. Shi, X.C. Wang, L. Yu, Y. Li, MATLAB neural network 30 case studies (Beijing University of Aeronautics and Astronautics Press, Beijing, 2010), pp.102–112
36.
go back to reference S. Gao, K. Jiao, J. Zhang, X. Fan, Y. Zong, Association of atomic clusters and free volume with the viscosity of Fe-C melts. Chem. Phys. Lett. 806, 139983 (2022)CrossRef S. Gao, K. Jiao, J. Zhang, X. Fan, Y. Zong, Association of atomic clusters and free volume with the viscosity of Fe-C melts. Chem. Phys. Lett. 806, 139983 (2022)CrossRef
Metadata
Title
High Temperature Melt Viscosity Prediction Model Based on BP Neural Network
Authors
Xiaoyue Fan
Shanchao Gao
Jianliang Zhang
Kexin Jiao
Publication date
01-08-2024
Publisher
The Korean Institute of Metals and Materials
Published in
Metals and Materials International / Issue 8/2024
Print ISSN: 1598-9623
Electronic ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-024-01644-6

Other articles of this Issue 8/2024

Metals and Materials International 8/2024 Go to the issue

Premium Partners