Skip to main content
Top

2009 | OriginalPaper | Chapter

12. High-Temperature Samarium Cobalt Permanent Magnets

Author : Oliver Gutfleisch

Published in: Nanoscale Magnetic Materials and Applications

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter reviews the development of SmCo-type magnets over the last 40 years. First, the physical metallurgy and crystal structures are considered; then the focus is on the recent developments in high-temperature Sm(CobalFe w Cu x Zr y ) z magnets suitable for operation temperatures up to 500°C. It is elucidated that the evolution of coercivity and microchemistry in the respective phases of the heterogeneous nanostructure as well as magnetic domain structure is very sensitive to details of the processing procedure, especially to the slow cooling ramp as the last step where the hard magnetic properties evolve. These changes give rise to rather complex pinning mechanisms in a three-phase precipitation structure, which again depend in a subtle manner on the microchemistry of the 1:5-type cell boundary phase in the 2:17-type magnets. It is the amount and distribution of Cu in and at the cell boundary phase which is the prevalent factor determining the pinning strength and which can yield a non-monotonic temperature dependence of coercivity. The chapter concludes with an overview of novel non-equilibrium processing routes used to obtain SmCo-type nanocomposites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Al-Omari, I.A., J. Shobaki, R. Skomski, D. Leslie-Pelecky, J. Zhou and D.J. Sellmyer. (2002). High-temperature magnetic properties of SmCo6.7 − xCu0.6Tix magnets. Physica B: Cond. Matter 321: 107–111.CrossRef Al-Omari, I.A., J. Shobaki, R. Skomski, D. Leslie-Pelecky, J. Zhou and D.J. Sellmyer. (2002). High-temperature magnetic properties of SmCo6.7 xCu0.6Tix magnets. Physica B: Cond. Matter 321: 107–111.CrossRef
2.
go back to reference Barthem, V.M.T.S., D. Givord, M.F. Rossignol and P. Tenaud. (2002). An approach to coercivity relating coercive field and activation volume. Physica B 319: 127–132.CrossRef Barthem, V.M.T.S., D. Givord, M.F. Rossignol and P. Tenaud. (2002). An approach to coercivity relating coercive field and activation volume. Physica B 319: 127–132.CrossRef
3.
go back to reference Buschow, K.H.J. and A.S. van der Goot. (1968). Intermetallic compounds in the system samarium-cobalt. J. Less-Common Met. 14: 323–328.CrossRef Buschow, K.H.J. and A.S. van der Goot. (1968). Intermetallic compounds in the system samarium-cobalt. J. Less-Common Met. 14: 323–328.CrossRef
4.
go back to reference Buschow, K.H.J. and A.S. van der Goot. (1971). Composition and crystal structure of hexagonal Cu-rich rare earth-copper compounds. Acta Cryst. B 27: 1085–1088.CrossRef Buschow, K.H.J. and A.S. van der Goot. (1971). Composition and crystal structure of hexagonal Cu-rich rare earth-copper compounds. Acta Cryst. B 27: 1085–1088.CrossRef
5.
go back to reference Buschow, K.H.J., (1989). Chapter 1, Permanent magnet materials based on 3d-rich ternary compounds. In: Ferromagnetic Materials, vol. 4, E. P. Wohlfarth and K.H.J. Buschow (eds.), North-Holland Elsevier, Amsterdam, Netherlands. Buschow, K.H.J., (1989). Chapter 1, Permanent magnet materials based on 3d-rich ternary compounds. In: Ferromagnetic Materials, vol. 4, E. P. Wohlfarth and K.H.J. Buschow (eds.), North-Holland Elsevier, Amsterdam, Netherlands.
6.
go back to reference Buschow, K.H.J. (1997). Chapter 4, Magnetism and processing of permanent magnet materials. In: Handbook of Magnetic Materials, vol. 10, K.H.J. Buschow (ed.), North Holland Elsevier, Amsterdam, Netherlands. Buschow, K.H.J. (1997). Chapter 4, Magnetism and processing of permanent magnet materials. In: Handbook of Magnetic Materials, vol. 10, K.H.J. Buschow (ed.), North Holland Elsevier, Amsterdam, Netherlands.
7.
go back to reference Cataldo, L., A. Lefevre, F. Ducret, M.Th. Cohen-Adat, C.H. Allibert and N. Valignat. (1996). Binary system Sm-Co: revision of the phase diagram in the Co rich field. J. Alloys Comp. 241: 216–223.CrossRef Cataldo, L., A. Lefevre, F. Ducret, M.Th. Cohen-Adat, C.H. Allibert and N. Valignat. (1996). Binary system Sm-Co: revision of the phase diagram in the Co rich field. J. Alloys Comp. 241: 216–223.CrossRef
8.
go back to reference Chen, C., M.S. Walmer, M.H. Walmer, S. Liu, G.E. Kuhl and G. Simon. (1998). Sm2(Co, Fe, Cu, Zr)17 magnets for use at temperature ≥ 400ºC. J. Appl. Phys. 83: 6706–6708.CrossRef Chen, C., M.S. Walmer, M.H. Walmer, S. Liu, G.E. Kuhl and G. Simon. (1998). Sm2(Co, Fe, Cu, Zr)17 magnets for use at temperature ≥ 400ºC. J. Appl. Phys. 83: 6706–6708.CrossRef
9.
go back to reference Chen, C., M.S. Walmer, M.H. Walmer, S. Liu, G.E. Kuhl and G.K. Simon. (1999). New series of Sm2TM17 magnet materials for application at temperatures up to 550°C. In: MRS Symp. Proc. Advanced Hard and Soft Magnets, vol. 577, J. Fidler, M. Coey et al. (eds.), Materials Research Society, Pittsburgh, USA, pp. 277–287. Chen, C., M.S. Walmer, M.H. Walmer, S. Liu, G.E. Kuhl and G.K. Simon. (1999). New series of Sm2TM17 magnet materials for application at temperatures up to 550°C. In: MRS Symp. Proc. Advanced Hard and Soft Magnets, vol. 577, J. Fidler, M. Coey et al. (eds.), Materials Research Society, Pittsburgh, USA, pp. 277–287.
10.
go back to reference Chen, C., M.H. Walmer, E.H. Kottcamp and W. Gong. (2001). Surface reaction and Sm depletion at 550°C for high temperature Sm-TM magnets. IEEE Trans. Mag. 37: 2531–2533.CrossRef Chen, C., M.H. Walmer, E.H. Kottcamp and W. Gong. (2001). Surface reaction and Sm depletion at 550°C for high temperature Sm-TM magnets. IEEE Trans. Mag. 37: 2531–2533.CrossRef
11.
go back to reference Chikazumi, S. (1997). Physics of Ferromagnetism, 2nd ed. Oxford Science Publications, Oxford, p. 276. Chikazumi, S. (1997). Physics of Ferromagnetism, 2nd ed. Oxford Science Publications, Oxford, p. 276.
12.
go back to reference Coey, J.M.D. (ed.). (1996) Rare Earth Iron Permanent Magnets. Clarendon Press, Oxford, UK. Coey, J.M.D. (ed.). (1996) Rare Earth Iron Permanent Magnets. Clarendon Press, Oxford, UK.
13.
go back to reference Craik, D.J. and E.D. Isaac. (1960). Magnetic interaction domains. Proc. Phys. Soc. (Research Notes) 76. Craik, D.J. and E.D. Isaac. (1960). Magnetic interaction domains. Proc. Phys. Soc. (Research Notes) 76.
14.
go back to reference Cullity, B.D. (1972). Introduction to Magnetic Materials. Addison-Wesley Publishing Company, Reading, MA. Cullity, B.D. (1972). Introduction to Magnetic Materials. Addison-Wesley Publishing Company, Reading, MA.
15.
go back to reference Delannay, F., S. Derkaoui and C.H. Allibert. (1987a). The influence of zirconium on Sm(CoFeCuZr)7.2 alloys for permanent magnets I: identification of the phases by transmission electron microscopy. J. Less-Common Met. 134: 249–262.CrossRef Delannay, F., S. Derkaoui and C.H. Allibert. (1987a). The influence of zirconium on Sm(CoFeCuZr)7.2 alloys for permanent magnets I: identification of the phases by transmission electron microscopy. J. Less-Common Met. 134: 249–262.CrossRef
16.
go back to reference Delannay, F., S. Derkaoui and C.H. Allibert. (1987b). Transmission electron microscopy of Sm(CoFeCuZr)7.2 alloys for permanent magnet. Micron Microscopica Acta 18: 243.CrossRef Delannay, F., S. Derkaoui and C.H. Allibert. (1987b). Transmission electron microscopy of Sm(CoFeCuZr)7.2 alloys for permanent magnet. Micron Microscopica Acta 18: 243.CrossRef
17.
go back to reference Derkaoui, S., C.H. Allibert, F. Delannay and J. Laforest. (1987). The influence of zirconium on Sm(Co,Fe,Cu,Zr)7.2 alloys for permanent magnets II: composition and lattice constants of the phases in heat-treated materials. J. Less-Common Met. 136: 75–86.CrossRef Derkaoui, S., C.H. Allibert, F. Delannay and J. Laforest. (1987). The influence of zirconium on Sm(Co,Fe,Cu,Zr)7.2 alloys for permanent magnets II: composition and lattice constants of the phases in heat-treated materials. J. Less-Common Met. 136: 75–86.CrossRef
18.
go back to reference Derkaoui, S. and C.H. Allibert. (1989). Redetermination of the phase equilibria in the system Sm-Co-Cu for Sm content 0–20 at.% at 850°C. J. Less-Common Met. 154: 309–315.CrossRef Derkaoui, S. and C.H. Allibert. (1989). Redetermination of the phase equilibria in the system Sm-Co-Cu for Sm content 0–20 at.% at 850°C. J. Less-Common Met. 154: 309–315.CrossRef
19.
go back to reference Derkaoui, S., N. Valignat and C.H. Allibert. (1996a). Co corner of the system Sm-Co-Zr: decomposition of the phase 1:7 and equilibria at 850°C. J. Alloys Comp. 235: 112–119.CrossRef Derkaoui, S., N. Valignat and C.H. Allibert. (1996a). Co corner of the system Sm-Co-Zr: decomposition of the phase 1:7 and equilibria at 850°C. J. Alloys Comp. 235: 112–119.CrossRef
20.
go back to reference Derkaoui, S., N. Valignat and C.H. Allibert. (1996b). Phase equilibria at 1150°C in the Co-rich alloys Sm-Co-Zr and structure of the 1:7 phase. J. Alloys Comp. 232: 296–301.CrossRef Derkaoui, S., N. Valignat and C.H. Allibert. (1996b). Phase equilibria at 1150°C in the Co-rich alloys Sm-Co-Zr and structure of the 1:7 phase. J. Alloys Comp. 232: 296–301.CrossRef
21.
go back to reference Ding, J., P.G. McCormick and R. Street. (1994). A study of Sm13(Co1-xFex)87 prepared by mechanical alloying. J. Magn. Magn. Mat. 135: 200–204.CrossRef Ding, J., P.G. McCormick and R. Street. (1994). A study of Sm13(Co1-xFex)87 prepared by mechanical alloying. J. Magn. Magn. Mat. 135: 200–204.CrossRef
22.
go back to reference Durst, K.D. and H. Kronmüller. (1985). Magnetic hardening mechanisms in sintered Nd-Fe-B and Sm(Co,Fe,Cu,Zr)7.6 permanent magnets. Proc. 4th Int. Symp. Magn. Anisotropy and Coercivity in RETM Alloys, Dayton, USA, pp. 725–735. Durst, K.D. and H. Kronmüller. (1985). Magnetic hardening mechanisms in sintered Nd-Fe-B and Sm(Co,Fe,Cu,Zr)7.6 permanent magnets. Proc. 4th Int. Symp. Magn. Anisotropy and Coercivity in RETM Alloys, Dayton, USA, pp. 725–735.
23.
go back to reference Durst, K.D., H. Kronmüller, F.T. Parker and H. Oesterreicher. (1986). Temperature dependence of coercivity of cellular Sm2Co17-SmCo5 permanent magnets. Phys. Stat. Sol. (a) 95: 213–219.CrossRef Durst, K.D., H. Kronmüller, F.T. Parker and H. Oesterreicher. (1986). Temperature dependence of coercivity of cellular Sm2Co17-SmCo5 permanent magnets. Phys. Stat. Sol. (a) 95: 213–219.CrossRef
24.
go back to reference Durst, K.D., H. Kronmüller and W. Ervens. (1988a). Investigations of the magnetic properties and demagnetisation processes of an extremely high coercive Sm(Co,Cu,Fe,Zr)7.6 permanent magnet – I Determination of intrinsic magnetic material parameters. Phys. Stat. Sol. (a) 108: 403–416.CrossRef Durst, K.D., H. Kronmüller and W. Ervens. (1988a). Investigations of the magnetic properties and demagnetisation processes of an extremely high coercive Sm(Co,Cu,Fe,Zr)7.6 permanent magnet – I Determination of intrinsic magnetic material parameters. Phys. Stat. Sol. (a) 108: 403–416.CrossRef
25.
go back to reference Durst, K.D., H. Kronmüller and W. Ervens. (1988b). Investigations of the magnetic properties and demagnetisation processes of an extremely high coercive Sm(Co,Cu,Fe,Zr)7.6 permanent magnet – II The coercivity mechanism. Phys. Stat. Sol. (a) 108: 705–719.CrossRef Durst, K.D., H. Kronmüller and W. Ervens. (1988b). Investigations of the magnetic properties and demagnetisation processes of an extremely high coercive Sm(Co,Cu,Fe,Zr)7.6 permanent magnet – II The coercivity mechanism. Phys. Stat. Sol. (a) 108: 705–719.CrossRef
26.
go back to reference Ervens, W. (1979). Rare earth-transition metal 2:17 permanent magnet alloys, state and trends. Goldschmidt Informiert 48: 3–9. Ervens, W. (1979). Rare earth-transition metal 2:17 permanent magnet alloys, state and trends. Goldschmidt Informiert 48: 3–9.
27.
go back to reference Fidler, J. and P. Skalicky. (1982a). Coercivity of precipitation hardened cobalt rare earth 17:2 permanent magnets. J. Magn. Magn. Mat. 30: 58–70.CrossRef Fidler, J. and P. Skalicky. (1982a). Coercivity of precipitation hardened cobalt rare earth 17:2 permanent magnets. J. Magn. Magn. Mat. 30: 58–70.CrossRef
28.
go back to reference Fidler, J. and P. Skalicky (1982b, September). Domain wall pinning in REPM. In: Proc. 3rd Int. Symp. Magnetic Anisotropy and Coercivity in Rare Earth-Transition Metal Alloys, J. Fidler(ed.), Baden, Austria, pp. 585–597. Fidler, J. and P. Skalicky (1982b, September). Domain wall pinning in REPM. In: Proc. 3rd Int. Symp. Magnetic Anisotropy and Coercivity in Rare Earth-Transition Metal Alloys, J. Fidler(ed.), Baden, Austria, pp. 585–597.
29.
go back to reference Gavigan, J.P. and D. Givord. (1990). Intrinsic and extrinsic properties of rare earth-transition metal compounds and permanent magnets. J. Magn. Magn. Mat. 84: 288–298.CrossRef Gavigan, J.P. and D. Givord. (1990). Intrinsic and extrinsic properties of rare earth-transition metal compounds and permanent magnets. J. Magn. Magn. Mat. 84: 288–298.CrossRef
30.
go back to reference Givord, D., A. Lienard, P. Tenaud and T. Viadieu. (1987). Magnetic viscosity in Nd-Fe-B sintered magnets. J. Magn. Magn. Mat. 67: L281–L285.CrossRef Givord, D., A. Lienard, P. Tenaud and T. Viadieu. (1987). Magnetic viscosity in Nd-Fe-B sintered magnets. J. Magn. Magn. Mat. 67: L281–L285.CrossRef
31.
go back to reference Givord, D., P. Tenaud and T. Viadieu. (1988). Coercivity mechanisms in ferrites and rare earth transition metal sintered magnets(SmCo5,Nd-Fe-B). IEEE Trans. Magn. 24: 1921–1923.CrossRef Givord, D., P. Tenaud and T. Viadieu. (1988). Coercivity mechanisms in ferrites and rare earth transition metal sintered magnets(SmCo5,Nd-Fe-B). IEEE Trans. Magn. 24: 1921–1923.CrossRef
32.
go back to reference Givord, D., M. Rossignol and V.M.T.S. Barthem. (2003). The physics of coercivity. J. Magn. Magn. Mat. 258–259: 1–5.CrossRef Givord, D., M. Rossignol and V.M.T.S. Barthem. (2003). The physics of coercivity. J. Magn. Magn. Mat. 258–259: 1–5.CrossRef
33.
go back to reference Goll, D., I. Kleinschroth, W. Sigle and H. Kronmüller. (2000). Melt-spun precipitation-hardened Sm2(Co,Cu,Fe,Zr)17 magnets with abnormal temperature dependence of coercivity. Appl. Phys. Lett. 76: 1054–1056.CrossRef Goll, D., I. Kleinschroth, W. Sigle and H. Kronmüller. (2000). Melt-spun precipitation-hardened Sm2(Co,Cu,Fe,Zr)17 magnets with abnormal temperature dependence of coercivity. Appl. Phys. Lett. 76: 1054–1056.CrossRef
34.
go back to reference Goll, D. and H. Kronmüller. (2002). Micromagnetic analysis of pinning-hardened nanostructured, nanocrystalline Sm2Co17 based alloys. Scripta Mat. 47: 545–550.CrossRef Goll, D. and H. Kronmüller. (2002). Micromagnetic analysis of pinning-hardened nanostructured, nanocrystalline Sm2Co17 based alloys. Scripta Mat. 47: 545–550.CrossRef
35.
go back to reference Goll, D., H. Kronmüller and H.H. Stadelmaier. (2004). Micromagnetism and the microstructure of high-temperature permanent magnets. J. Appl. Phys. 96: 6534–6545.CrossRef Goll, D., H. Kronmüller and H.H. Stadelmaier. (2004). Micromagnetism and the microstructure of high-temperature permanent magnets. J. Appl. Phys. 96: 6534–6545.CrossRef
36.
go back to reference Gopalan, R., K. Hono, A. Yan and O. Gutfleisch. (2009). Direct evidence on Cu-concentration variation and its correlation to coercivity in Sm(Co0.74Fe0.1Cu0.12Zr0.4)7.4 ribbons, Scripta. Mat. 60: 764–767. Gopalan, R., K. Hono, A. Yan and O. Gutfleisch. (2009). Direct evidence on Cu-concentration variation and its correlation to coercivity in Sm(Co0.74Fe0.1Cu0.12Zr0.4)7.4 ribbons, Scripta. Mat. 60: 764–767.
37.
go back to reference Gutfleisch, O. and I.R. Harris. (1996). Fundamental and practical aspects of the hydrogenation, disproportionation, desorption and recombination process. J. Phys. D: Appl. Phys. 29: 2255–2265.CrossRef Gutfleisch, O. and I.R. Harris. (1996). Fundamental and practical aspects of the hydrogenation, disproportionation, desorption and recombination process. J. Phys. D: Appl. Phys. 29: 2255–2265.CrossRef
38.
go back to reference Gutfleisch, O., M. Kubis, A. Handstein, K.H. Müller and L. Schultz. (1998). Hydrogenation disproportionation desorption recombination in Sm–Co alloys by means of reactive milling. Appl. Phys. Lett. 73: 3001–3003.CrossRef Gutfleisch, O., M. Kubis, A. Handstein, K.H. Müller and L. Schultz. (1998). Hydrogenation disproportionation desorption recombination in Sm–Co alloys by means of reactive milling. Appl. Phys. Lett. 73: 3001–3003.CrossRef
39.
go back to reference Gutfleisch, O. (2000). Controlling the properties of high energy density permanent magnetic materials by different processing routes. J. Phys. D: Appl. Phys. 33: R157–R172.CrossRef Gutfleisch, O. (2000). Controlling the properties of high energy density permanent magnetic materials by different processing routes. J. Phys. D: Appl. Phys. 33: R157–R172.CrossRef
40.
go back to reference Gutfleisch, O., N.M. Dempsey, A. Yan, K.-H. Müller and D. Givord. (2004). Coercivity analysis of melt-spun Sm2(Co,Fe,Cu,Zr)17. J . Magn. Magn. Mat. 272–276: 647–649.CrossRef Gutfleisch, O., N.M. Dempsey, A. Yan, K.-H. Müller and D. Givord. (2004). Coercivity analysis of melt-spun Sm2(Co,Fe,Cu,Zr)17. J . Magn. Magn. Mat. 272–276: 647–649.CrossRef
41.
go back to reference Gutfleisch, O., K.-H. Müller, K. Khlopkov, M. Wolf, A. Yan, R. Schäfer, T. Gemming and L. Schultz. (2006). Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17 type permanent magnets. Acta Mat. 54: 997–1008.CrossRef Gutfleisch, O., K.-H. Müller, K. Khlopkov, M. Wolf, A. Yan, R. Schäfer, T. Gemming and L. Schultz. (2006). Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17 type permanent magnets. Acta Mat. 54: 997–1008.CrossRef
42.
go back to reference Hadjipanayis, G.C. (1996). Microstructure and magnetic domains. In: Rare-Earth Iron Permanent Magnets, J.M.D. Coey (ed.), Oxford University Press, Oxford, UK, pp. 286–335. Hadjipanayis, G.C. (1996). Microstructure and magnetic domains. In: Rare-Earth Iron Permanent Magnets, J.M.D. Coey (ed.), Oxford University Press, Oxford, UK, pp. 286–335.
43.
go back to reference Hadjipanayis, G.C., W. Tang, Y. Zhang, S.T. Chui, J.F. Liu, C. Chen and H. Kronmüller. (2000). High temperature 2:17 magnets: relationship of magnetic properties to microstructure and processing. IEEE Trans. Magn. 36: 3382–3387.CrossRef Hadjipanayis, G.C., W. Tang, Y. Zhang, S.T. Chui, J.F. Liu, C. Chen and H. Kronmüller. (2000). High temperature 2:17 magnets: relationship of magnetic properties to microstructure and processing. IEEE Trans. Magn. 36: 3382–3387.CrossRef
44.
go back to reference Handstein, A., M. Kubis, O. Gutfleisch, B. Gebel and K.H. Müller. (1999). HDDR of Sm–Co alloys using high hydrogen pressures. J. Magn. Magn. Mat. 192: 73–76.CrossRef Handstein, A., M. Kubis, O. Gutfleisch, B. Gebel and K.H. Müller. (1999). HDDR of Sm–Co alloys using high hydrogen pressures. J. Magn. Magn. Mat. 192: 73–76.CrossRef
45.
go back to reference Handstein, A., A. Yan, G. Martinek, O. Gutfleisch, K.H. Müller and L. Schultz. (2003). Stability of magnetic properties of Sm2Co17-type magnets at operating temperatures larger than 400ºC. IEEE Trans. Magn. 39: 2923–2925.CrossRef Handstein, A., A. Yan, G. Martinek, O. Gutfleisch, K.H. Müller and L. Schultz. (2003). Stability of magnetic properties of Sm2Co17-type magnets at operating temperatures larger than 400ºC. IEEE Trans. Magn. 39: 2923–2925.CrossRef
46.
go back to reference Hofer, F. (1970). Physical metallurgy and magnetic measurements of SmCo5-SmCu5 alloys. IEEE Trans. Magn. 6: 221–224.CrossRef Hofer, F. (1970). Physical metallurgy and magnetic measurements of SmCo5-SmCu5 alloys. IEEE Trans. Magn. 6: 221–224.CrossRef
47.
go back to reference Hubert, A. and R. Schäfer (1998). Magnetic Domains – The Analysis of Magnetic Microstructures. Springer Verlag, Berlin, Germany. Hubert, A. and R. Schäfer (1998). Magnetic Domains – The Analysis of Magnetic Microstructures. Springer Verlag, Berlin, Germany.
48.
go back to reference Kardelky, S., A. Gebert, O. Gutfleisch, A. Handstein, G. Martinek and L. Schultz. (2004). Corrosion behavior of Sm-Co based permanent magnets in oxidizing environments. IEEE Trans. Magn. 40: 2931–2933.CrossRef Kardelky, S., A. Gebert, O. Gutfleisch, A. Handstein, G. Martinek and L. Schultz. (2004). Corrosion behavior of Sm-Co based permanent magnets in oxidizing environments. IEEE Trans. Magn. 40: 2931–2933.CrossRef
49.
go back to reference Katter, M., J. Weber, W. Assmus, P. Schrey and W. Rodewald. (1996). A new model for the coercivity mechanism of Sm2(Co,Fe,Cu,Zr)17 magnets. IEEE Trans. Magn. 32: 4815–4817.CrossRef Katter, M., J. Weber, W. Assmus, P. Schrey and W. Rodewald. (1996). A new model for the coercivity mechanism of Sm2(Co,Fe,Cu,Zr)17 magnets. IEEE Trans. Magn. 32: 4815–4817.CrossRef
50.
go back to reference Katter, M. (1998). Coercivity calculation of Sm2(Co,Fe,Cu,Zr)17 magnets. J. Appl. Phys. 83: 6721–6723.CrossRef Katter, M. (1998). Coercivity calculation of Sm2(Co,Fe,Cu,Zr)17 magnets. J. Appl. Phys. 83: 6721–6723.CrossRef
51.
go back to reference Kerschl, P., A. Handstein, K. Khlopkov, O. Gutfleisch, D. Eckert, K. Nenkov, J.-C. Téllez-Blanco, R. Grössinger, K.-H. Müller and L. Schultz. (2005). High-field magnetisation of SmCo5 − xCux (x ≈ 2.5) determined in pulse fields up to 48 T. J. Magn. Magn. Mat. 290–291(part 1): 420–423. Kerschl, P., A. Handstein, K. Khlopkov, O. Gutfleisch, D. Eckert, K. Nenkov, J.-C. Téllez-Blanco, R. Grössinger, K.-H. Müller and L. Schultz. (2005). High-field magnetisation of SmCo5 xCux (x ≈ 2.5) determined in pulse fields up to 48 T. J. Magn. Magn. Mat. 290–291(part 1): 420–423.
52.
go back to reference Khan, Y. (1973). The crystal structures of R2Co17 intermetallic compounds. Acta Crystall. Section B 29: 2502–2507.CrossRef Khan, Y. (1973). The crystal structures of R2Co17 intermetallic compounds. Acta Crystall. Section B 29: 2502–2507.CrossRef
53.
go back to reference Khlopkov, K., O. Gutfleisch, D. Eckert, D. Hinz, B. Wall, W. Rodewald, K.-H. Müller, and L. Schultz. (2004). Local texture in Nd-Fe-B sintered magnets with maximised energy density. J. Alloys Comp. 365: 259–265.CrossRef Khlopkov, K., O. Gutfleisch, D. Eckert, D. Hinz, B. Wall, W. Rodewald, K.-H. Müller, and L. Schultz. (2004). Local texture in Nd-Fe-B sintered magnets with maximised energy density. J. Alloys Comp. 365: 259–265.CrossRef
54.
go back to reference Kronmüller, H., K.-D. Durst, W. Ervens and W. Fernengel. (1984). Micromagnetic analysis of precipitation hardened permanent magnets. IEEE Trans. Magn. 20: 1569–1571.CrossRef Kronmüller, H., K.-D. Durst, W. Ervens and W. Fernengel. (1984). Micromagnetic analysis of precipitation hardened permanent magnets. IEEE Trans. Magn. 20: 1569–1571.CrossRef
55.
go back to reference Kronmüller, H. and D. Goll. (2002). Micromagnetic theory of the pinning of domain walls at phase boundaries. Physica B 319: 122–126.CrossRef Kronmüller, H. and D. Goll. (2002). Micromagnetic theory of the pinning of domain walls at phase boundaries. Physica B 319: 122–126.CrossRef
56.
go back to reference Kubis, M., A. Handstein, B. Gebel, O. Gutfleisch, K.H. Müller and L. Schultz. (1999). Highly coercive SmCo5 magnets prepared by a modified hydrogenation-disproportionation-desorption-recombination process. J. Appl. Phys. 85: 5666–5668.CrossRef Kubis, M., A. Handstein, B. Gebel, O. Gutfleisch, K.H. Müller and L. Schultz. (1999). Highly coercive SmCo5 magnets prepared by a modified hydrogenation-disproportionation-desorption-recombination process. J. Appl. Phys. 85: 5666–5668.CrossRef
57.
go back to reference Kumar, K. (1988). RETM5 and RE2TM17 permanent magnets development. J. Appl. Phys. 63: R13–R57.CrossRef Kumar, K. (1988). RETM5 and RE2TM17 permanent magnets development. J. Appl. Phys. 63: R13–R57.CrossRef
58.
go back to reference Lectard, E., C.H. Allibert and R. Ballou. (1994). Saturation magnetization and anisotropy fields in the Sm(Co1–xCux)5 phases. J. Appl. Phys. 75: 6277–6279.CrossRef Lectard, E., C.H. Allibert and R. Ballou. (1994). Saturation magnetization and anisotropy fields in the Sm(Co1–xCux)5 phases. J. Appl. Phys. 75: 6277–6279.CrossRef
59.
go back to reference Lefèvre, A., L. Cataldo, M.Th. Cohen-Adad, and B.F. Mentzen. (1997). A representation of the Sm-Co-Zr-Cu-Fe quinary system: a tool for optimisation of 2/17 permanent magnets. J. Alloys Comp. 262–263: 129–133.CrossRef Lefèvre, A., L. Cataldo, M.Th. Cohen-Adad, and B.F. Mentzen. (1997). A representation of the Sm-Co-Zr-Cu-Fe quinary system: a tool for optimisation of 2/17 permanent magnets. J. Alloys Comp. 262–263: 129–133.CrossRef
60.
go back to reference Li, D. and K.J. Strnat. (1984). Domain structures of two Sm-Co-Cu-Fe-Zr “2–17” magnets during magnetization reversal. J. Appl. Phys. 55: 2103–2105.CrossRef Li, D. and K.J. Strnat. (1984). Domain structures of two Sm-Co-Cu-Fe-Zr “2–17” magnets during magnetization reversal. J. Appl. Phys. 55: 2103–2105.CrossRef
61.
go back to reference Liu, J.F., T. Chui, D. Dimitrov and G.C. Hadjipanayis. (1998a). Abnormal temperature dependence of intrinsic coercivity in Sm(Co, Fe, Cu, Zr)z powder materials. Appl. Phys. Lett. 73: 3007–3009.CrossRef Liu, J.F., T. Chui, D. Dimitrov and G.C. Hadjipanayis. (1998a). Abnormal temperature dependence of intrinsic coercivity in Sm(Co, Fe, Cu, Zr)z powder materials. Appl. Phys. Lett. 73: 3007–3009.CrossRef
62.
go back to reference Liu, J.F., Y. Zhang, Y. Ding, D. Dimitrov, and G.C. Hadjipanayis (1998b). Rare earth permanent magnets for high temperature applications. In: Proc. of 15th Int. Workshop on Rare Earth Magnets and their Appl., Dresden, Germany, vol. 2, pp. 607–622. Liu, J.F., Y. Zhang, Y. Ding, D. Dimitrov, and G.C. Hadjipanayis (1998b). Rare earth permanent magnets for high temperature applications. In: Proc. of 15th Int. Workshop on Rare Earth Magnets and their Appl., Dresden, Germany, vol. 2, pp. 607–622.
63.
go back to reference Liu, J.F., Y. Zhang, D. Dimitrov and G.C. Hadjipanayis. (1999). Microstructure and high temperature magnetic properties of Sm(Co,Cu,Fe,Zr)z (z = 6.7–9.1) permanent magnets. J. Appl. Phys. 85: 2800–2804.CrossRef Liu, J.F., Y. Zhang, D. Dimitrov and G.C. Hadjipanayis. (1999). Microstructure and high temperature magnetic properties of Sm(Co,Cu,Fe,Zr)z (z = 6.7–9.1) permanent magnets. J. Appl. Phys. 85: 2800–2804.CrossRef
64.
go back to reference Livingston, J.D. and M.D. McConnell. (1972). Domain-wall energy in cobalt-rare-earth compounds. J. Appl. Phys. 43: 4756–4762.CrossRef Livingston, J.D. and M.D. McConnell. (1972). Domain-wall energy in cobalt-rare-earth compounds. J. Appl. Phys. 43: 4756–4762.CrossRef
65.
go back to reference Livingston, J.D. (1975). Domains in sintered Co-Cu-Fe-Sm magnets. J. Appl. Phys. 46: 5259–5262.CrossRef Livingston, J.D. (1975). Domains in sintered Co-Cu-Fe-Sm magnets. J. Appl. Phys. 46: 5259–5262.CrossRef
66.
go back to reference Livingston, J.D. and D.L. Martin. (1977). Microstructure of aged (Co,Cu,Fe)7Sm magnets. J. Appl. Phys. 48: 1350–1354.CrossRef Livingston, J.D. and D.L. Martin. (1977). Microstructure of aged (Co,Cu,Fe)7Sm magnets. J. Appl. Phys. 48: 1350–1354.CrossRef
67.
go back to reference Matthias, T., G. Zehetner, J. Fidler, W. Scholz, T. Schrefl, D. Schobinger and G. Martinek. (2002). TEM-analysis of Sm(Co,Fe,Cu,Zr)z magnets for high-temperature applications. J. Magn. Magn. Mat. 242–245: 1353–1355.CrossRef Matthias, T., G. Zehetner, J. Fidler, W. Scholz, T. Schrefl, D. Schobinger and G. Martinek. (2002). TEM-analysis of Sm(Co,Fe,Cu,Zr)z magnets for high-temperature applications. J. Magn. Magn. Mat. 242–245: 1353–1355.CrossRef
68.
go back to reference Maury, C., L. Rabenberg and C.H. Allibert. (1993). Genesis of the cell microstructure in the Sm(Co,Fe,Cu,Zr) permanent magnets with 2:17 type. Phys. Stat. Sol. (a) 140: 57–72.CrossRef Maury, C., L. Rabenberg and C.H. Allibert. (1993). Genesis of the cell microstructure in the Sm(Co,Fe,Cu,Zr) permanent magnets with 2:17 type. Phys. Stat. Sol. (a) 140: 57–72.CrossRef
69.
go back to reference Meyer-Liautaud, F., S. Derkaoui, C.H. Allibert and R. Castanet. (1987). Structural and thermodynamic data on the pseudobinary phases R(Co1 − xCux)5 with R ≡ Sm, Y, Ce. J. Less-Common Met. 127: 231–242.CrossRef Meyer-Liautaud, F., S. Derkaoui, C.H. Allibert and R. Castanet. (1987). Structural and thermodynamic data on the pseudobinary phases R(Co1 xCux)5 with R ≡ Sm, Y, Ce. J. Less-Common Met. 127: 231–242.CrossRef
70.
go back to reference Morita, Y., T. Umeda and Y. Kimura. (1987). Phase transformation at high temperature and coercivity of Sm(Co,Cu,Fe,Zr)7-9 magnet alloys. IEEE Trans. Magn. 23: 2702–2704.CrossRef Morita, Y., T. Umeda and Y. Kimura. (1987). Phase transformation at high temperature and coercivity of Sm(Co,Cu,Fe,Zr)7-9 magnet alloys. IEEE Trans. Magn. 23: 2702–2704.CrossRef
71.
go back to reference Nagel, H. (1979). Coercivity and microstructure of Sm(Co0.87Cu0.13)7.8. J. Appl. Phys. 50: 1026–1030.CrossRef Nagel, H. (1979). Coercivity and microstructure of Sm(Co0.87Cu0.13)7.8. J. Appl. Phys. 50: 1026–1030.CrossRef
72.
go back to reference Nesbitt, E.A., R.H. Willens, R.C. Sherwood and E. Bühler. (1968). New permanent magnet materials. Appl. Phys. Lett. 12: 361–362.CrossRef Nesbitt, E.A., R.H. Willens, R.C. Sherwood and E. Bühler. (1968). New permanent magnet materials. Appl. Phys. Lett. 12: 361–362.CrossRef
73.
go back to reference Oesterreicher, H., F.T. Parker and M. Misroch. (1979). Giant intrinsic magnetic hardness in SmCo5-xCux. J. Appl. Phys. 50: 4273–4278.CrossRef Oesterreicher, H., F.T. Parker and M. Misroch. (1979). Giant intrinsic magnetic hardness in SmCo5-xCux. J. Appl. Phys. 50: 4273–4278.CrossRef
74.
go back to reference Ojima, T., S. Tomizawa, T. Yoneyama and T. Hori. (1977). Magnetic properties of new type of rare-earth cobalt magnets. IEEE Trans. Magn. 13: 1317–1319.CrossRef Ojima, T., S. Tomizawa, T. Yoneyama and T. Hori. (1977). Magnetic properties of new type of rare-earth cobalt magnets. IEEE Trans. Magn. 13: 1317–1319.CrossRef
75.
go back to reference Panagiotopoulos, I., M. Gjoka and D. Niarchos. (2002). Temperature dependence of the activation volume in high-temperature Sm(Co,Fe,Cu,Zr)Z magnets. J. Appl. Phys. 92: 7693–7695.CrossRef Panagiotopoulos, I., M. Gjoka and D. Niarchos. (2002). Temperature dependence of the activation volume in high-temperature Sm(Co,Fe,Cu,Zr)Z magnets. J. Appl. Phys. 92: 7693–7695.CrossRef
76.
go back to reference Perkins, R.S., S. Gaiffi and A. Menth. (1975). Permanent magnet properties of Sm2(Co,Fe)17. IEEE Trans. Magn. 11: 1431–1433CrossRef Perkins, R.S., S. Gaiffi and A. Menth. (1975). Permanent magnet properties of Sm2(Co,Fe)17. IEEE Trans. Magn. 11: 1431–1433CrossRef
77.
go back to reference Perkins, R.S. and S. Strässler. (1977). Interpretation of the magnetic properties of pseudobinary Sm2(Co,M)17 compounds. I. Magnetocrystalline anisotropy. Phys. Rev. B 15: 477–489; Interpretation of the magnetic properties of pseudobinary Sm2(Co,M)17 compounds. II. Magnetization. Phys. Rev. B 15: 490–495.CrossRef Perkins, R.S. and S. Strässler. (1977). Interpretation of the magnetic properties of pseudobinary Sm2(Co,M)17 compounds. I. Magnetocrystalline anisotropy. Phys. Rev. B 15: 477–489; Interpretation of the magnetic properties of pseudobinary Sm2(Co,M)17 compounds. II. Magnetization. Phys. Rev. B 15: 490–495.CrossRef
78.
go back to reference Perry, A.J. and A. Menth. (1975). Permanent magnets based on Sm(Co,Cu,Fe)z. IEEE Trans. Magn. 11: 1423–1425.CrossRef Perry, A.J. and A. Menth. (1975). Permanent magnets based on Sm(Co,Cu,Fe)z. IEEE Trans. Magn. 11: 1423–1425.CrossRef
79.
go back to reference Perry, A.J. (1977). The constitution of copper-hardened samarium-cobalt permanent magnets. J. Less-Common Met. 51: 153–162.CrossRef Perry, A.J. (1977). The constitution of copper-hardened samarium-cobalt permanent magnets. J. Less-Common Met. 51: 153–162.CrossRef
80.
go back to reference Popov, A.G., A.V. Korolev and N.N. Shchegoleva. (1990). Temperature dependence of the coercive force of Sm(Co,Fe,Cu,Zr)7.3 alloys. Phys. Met. Metall. 69: 100–106. Popov, A.G., A.V. Korolev and N.N. Shchegoleva. (1990). Temperature dependence of the coercive force of Sm(Co,Fe,Cu,Zr)7.3 alloys. Phys. Met. Metall. 69: 100–106.
81.
go back to reference Rabenberg, L., R.K. Mishra, and G. Thomas. (1982a). Microstructure of precipitation hardened SmCo permanent magnets. J. Appl. Phys. 53: 2389–2391.CrossRef Rabenberg, L., R.K. Mishra, and G. Thomas. (1982a). Microstructure of precipitation hardened SmCo permanent magnets. J. Appl. Phys. 53: 2389–2391.CrossRef
82.
go back to reference Rabenberg, L., R.K. Mishra, and G. Thomas. (1982b, September). Development of the cellular microstructure in the SmCo7.4-type magnets. In: Proc. 3rd Int. Symp. Magnetic Anisotropy and Coercivity in Rare Earth-Transition Metal Alloys, J. Fidler (ed.), Baden, Austria, pp. 599–608. Rabenberg, L., R.K. Mishra, and G. Thomas. (1982b, September). Development of the cellular microstructure in the SmCo7.4-type magnets. In: Proc. 3rd Int. Symp. Magnetic Anisotropy and Coercivity in Rare Earth-Transition Metal Alloys, J. Fidler (ed.), Baden, Austria, pp. 599–608.
83.
go back to reference Ray, A.E. (1984). Metallurgical behavior of Sm(Co,Fe,Cu,Zr)z alloys. J. Appl. Phys. 55: 2094–2096.CrossRef Ray, A.E. (1984). Metallurgical behavior of Sm(Co,Fe,Cu,Zr)z alloys. J. Appl. Phys. 55: 2094–2096.CrossRef
84.
go back to reference Ray, A.E. and S. Liu. (1992). Recent progress in 2:17 type permanent magnets. Proc. 12th Int. Workshop on RE Magnets and their Appl., Canberra, Australia, pp. 552–573. Ray, A.E. and S. Liu. (1992). Recent progress in 2:17 type permanent magnets. Proc. 12th Int. Workshop on RE Magnets and their Appl., Canberra, Australia, pp. 552–573.
85.
go back to reference Schobinger, D., O. Gutfleisch, D. Hinz, K.H. Müller, L. Schultz and G. Martinek. (2002). High temperature magnetic properties of 2:17 Sm–Co magnets. J. Magn. Magn. Mat. 242–245: 1347–1349.CrossRef Schobinger, D., O. Gutfleisch, D. Hinz, K.H. Müller, L. Schultz and G. Martinek. (2002). High temperature magnetic properties of 2:17 Sm–Co magnets. J. Magn. Magn. Mat. 242–245: 1347–1349.CrossRef
86.
go back to reference Schultz, L., K. Schnitzke, J. Wecker, M. Katter and C. Kuhrt. (1991). Permanent magnets by mechanical alloying. J. Appl. Phys. 70: 6339–6344.CrossRef Schultz, L., K. Schnitzke, J. Wecker, M. Katter and C. Kuhrt. (1991). Permanent magnets by mechanical alloying. J. Appl. Phys. 70: 6339–6344.CrossRef
87.
go back to reference Skomski, R. (1997). Domain-wall curvature and coercivity in pinning type Sm-Co magnets. J. Appl. Phys. 81: 6527–5629. Skomski, R. (1997). Domain-wall curvature and coercivity in pinning type Sm-Co magnets. J. Appl. Phys. 81: 6527–5629.
88.
go back to reference Skomski, R. and J.M.D. Coey. (1999). Permanent Magnetism. Institute of Physics, Bristol. Skomski, R. and J.M.D. Coey. (1999). Permanent Magnetism. Institute of Physics, Bristol.
89.
go back to reference Skomski, R., A. Kashyap, Y. Qiang, and D.J. Sellmyer. (2003). Exchange through nonmagnetic insulating matrix. J. Appl. Phys. 93: 6477–6479.CrossRef Skomski, R., A. Kashyap, Y. Qiang, and D.J. Sellmyer. (2003). Exchange through nonmagnetic insulating matrix. J. Appl. Phys. 93: 6477–6479.CrossRef
90.
go back to reference Stadelmaier, H.H., E.-Th. Henig, G. Schneider and G. Petzow. (1988). The metallurgy of permanent magnets based on Co17Sm2. Z. Metallkd. 79: 313–316. Stadelmaier, H.H., E.-Th. Henig, G. Schneider and G. Petzow. (1988). The metallurgy of permanent magnets based on Co17Sm2. Z. Metallkd. 79: 313–316.
91.
go back to reference Stadelmaier, H.H., B. Reinsch, and G. Petzow. (1998). Samarium-cobalt phase equilibria revisited; relevance to permanent magnets. Z. Metallkd. 89: 114–118. Stadelmaier, H.H., B. Reinsch, and G. Petzow. (1998). Samarium-cobalt phase equilibria revisited; relevance to permanent magnets. Z. Metallkd. 89: 114–118.
92.
go back to reference Stadelmaier, H.H., D. Goll, H. Kronmüller. (2005). Permanent magnet alloys based on Sm2Co17; phase evolution in the quinary system Sm-Zr-Fe-Co-Cu. Z. Metallkd. 96: 17–23. Stadelmaier, H.H., D. Goll, H. Kronmüller. (2005). Permanent magnet alloys based on Sm2Co17; phase evolution in the quinary system Sm-Zr-Fe-Co-Cu. Z. Metallkd. 96: 17–23.
93.
go back to reference Streibl, B., J. Fidler and T. Schrefl. (2000). Domain wall pinning in high temperature Sm(Co,Fe,Cu,Zr)7-8 magnets. J. Appl. Phys. 87: 4765–4767.CrossRef Streibl, B., J. Fidler and T. Schrefl. (2000). Domain wall pinning in high temperature Sm(Co,Fe,Cu,Zr)7-8 magnets. J. Appl. Phys. 87: 4765–4767.CrossRef
94.
go back to reference Strnat, K.J., G. Hoffer, J. Olson, W. Ostertag and J.J. Becker. (1967). A family of new cobalt-base permanent magnetic materials. J. Appl. Phys. 38: 1001–1002.CrossRef Strnat, K.J., G. Hoffer, J. Olson, W. Ostertag and J.J. Becker. (1967). A family of new cobalt-base permanent magnetic materials. J. Appl. Phys. 38: 1001–1002.CrossRef
95.
go back to reference Strnat, K.J. (1988). Chapter 2, Rare earth–cobalt permanent magnets. In: Ferromagnetic Materials, vol. 4, E.P. Wohlfarth, K.H.J. Buschow (eds.), North-Holland, Amsterdam, Netherlands. Strnat, K.J. (1988). Chapter 2, Rare earth–cobalt permanent magnets. In: Ferromagnetic Materials, vol. 4, E.P. Wohlfarth, K.H.J. Buschow (eds.), North-Holland, Amsterdam, Netherlands.
96.
go back to reference Strnat, K.J. and R.M.W. Strnat. (1991). Rare earth–cobalt permanent magnets. J. Magn. Magn. Mat. 100: 38–56.CrossRef Strnat, K.J. and R.M.W. Strnat. (1991). Rare earth–cobalt permanent magnets. J. Magn. Magn. Mat. 100: 38–56.CrossRef
97.
go back to reference Tang, H., Y. Liu and D.J. Sellmyer. (2002). Nanocrystalline Sm12.5(Co,Zr)87.5 magnets: synthesis and magnetic properties. J. Magn. Magn. Mat. 241: 345–356.CrossRef Tang, H., Y. Liu and D.J. Sellmyer. (2002). Nanocrystalline Sm12.5(Co,Zr)87.5 magnets: synthesis and magnetic properties. J. Magn. Magn. Mat. 241: 345–356.CrossRef
98.
go back to reference Tang, W., Y. Zhang and G.C. Hadjipanayis. (2000). Effect of Zr on the microstructure and magnetic properties of Sm(CobalFe0.1Cu0.088Zrx)8.5 magnets. J. Appl. Phys. 87: 399–403.CrossRef Tang, W., Y. Zhang and G.C. Hadjipanayis. (2000). Effect of Zr on the microstructure and magnetic properties of Sm(CobalFe0.1Cu0.088Zrx)8.5 magnets. J. Appl. Phys. 87: 399–403.CrossRef
99.
go back to reference Tang, W., A.M. Gabbay, Y. Zhang, G.C. Hadjipanayis and H. Kronmüller. (2001). Temperature dependence of coercivity and magnetisation reversal in Sm(CobalFe0.1CuyZr0.4)7.0 magnets. IEEE Trans. Magn. 37: 2515–2517.CrossRef Tang, W., A.M. Gabbay, Y. Zhang, G.C. Hadjipanayis and H. Kronmüller. (2001). Temperature dependence of coercivity and magnetisation reversal in Sm(CobalFe0.1CuyZr0.4)7.0 magnets. IEEE Trans. Magn. 37: 2515–2517.CrossRef
100.
go back to reference Walmer, M.S., C.H. Chen and M.H. Walmer. (2000). A new class of Sm-TM magnets for operating temperatures up to 550°C. IEEE Trans. Magn. 36: 3376–3381.CrossRef Walmer, M.S., C.H. Chen and M.H. Walmer. (2000). A new class of Sm-TM magnets for operating temperatures up to 550°C. IEEE Trans. Magn. 36: 3376–3381.CrossRef
101.
go back to reference Wecker, J., M. Katter and L. Schultz. (1991). Mechanically alloyed Sm-Co materials. J. Appl. Phys. 69: 6058–6060.CrossRef Wecker, J., M. Katter and L. Schultz. (1991). Mechanically alloyed Sm-Co materials. J. Appl. Phys. 69: 6058–6060.CrossRef
102.
go back to reference Xiong, X.Y., T. Ohkubo, T. Koyama, K. Ohashi, T. Tawara and K. Hono. (2004). The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe. Acta Mat. 52: 737–748.CrossRef Xiong, X.Y., T. Ohkubo, T. Koyama, K. Ohashi, T. Tawara and K. Hono. (2004). The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe. Acta Mat. 52: 737–748.CrossRef
103.
go back to reference Yan, A., W.-Y. Zhang, H.-W. Zhang and B. Shen. (2000). Melt-spun magnetically anisotropic SmCo5 ribbons with high permanent performance. J. Magn. Magn. Mat. 210: 10–14.CrossRef Yan, A., W.-Y. Zhang, H.-W. Zhang and B. Shen. (2000). Melt-spun magnetically anisotropic SmCo5 ribbons with high permanent performance. J. Magn. Magn. Mat. 210: 10–14.CrossRef
104.
go back to reference Yan, A., A. Bollero, O. Gutfleisch and K.H. Müller. (2002a). Microstructure and magnetization reversal in nanocomposite SmCo5/Sm2Co17 magnets. J. Appl. Phys. 91: 2192–2196.CrossRef Yan, A., A. Bollero, O. Gutfleisch and K.H. Müller. (2002a). Microstructure and magnetization reversal in nanocomposite SmCo5/Sm2Co17 magnets. J. Appl. Phys. 91: 2192–2196.CrossRef
105.
go back to reference Yan, A., A. Bollero, K.-H. Müller and O. Gutfleisch. (2002b). Fast development of high coercivity in melt-spun Sm(Co,Fe,Cu,Zr)z magnets. Appl. Phys. Lett. 80: 1243–1245,CrossRef Yan, A., A. Bollero, K.-H. Müller and O. Gutfleisch. (2002b). Fast development of high coercivity in melt-spun Sm(Co,Fe,Cu,Zr)z magnets. Appl. Phys. Lett. 80: 1243–1245,CrossRef
106.
go back to reference Yan, A., A. Bollero, K.H. Müller and O. Gutfleisch. (2002c). Influence of Fe, Zr and Cu on microstructure and crystallographic texture of melt-spun 2:17 SmCo ribbons. J. Appl. Phys. 91: 8825–8827.CrossRef Yan, A., A. Bollero, K.H. Müller and O. Gutfleisch. (2002c). Influence of Fe, Zr and Cu on microstructure and crystallographic texture of melt-spun 2:17 SmCo ribbons. J. Appl. Phys. 91: 8825–8827.CrossRef
107.
go back to reference Yan, A., K.H. Müller and O. Gutfleisch. (2002d). Highly coercive melt-spun Sm(Co, Fe, Cu, Zr)z magnets prepared by simple processing. IEEE Trans. Magn. 38: 2937–2939.CrossRef Yan, A., K.H. Müller and O. Gutfleisch. (2002d). Highly coercive melt-spun Sm(Co, Fe, Cu, Zr)z magnets prepared by simple processing. IEEE Trans. Magn. 38: 2937–2939.CrossRef
108.
go back to reference Yan, A., O. Gutfleisch, T. Gemming and K.-H. Müller. (2003a). Microchemistry and reversal mechanism in 2:17-type Sm-Co magnets. Appl. Phys. Lett. 83: 2208–2210.CrossRef Yan, A., O. Gutfleisch, T. Gemming and K.-H. Müller. (2003a). Microchemistry and reversal mechanism in 2:17-type Sm-Co magnets. Appl. Phys. Lett. 83: 2208–2210.CrossRef
109.
go back to reference Yan, A., O. Gutfleisch, A. Handstein, T. Gemming and K.-H. Müller. (2003b). Microstructure, microchemistry, and magnetic properties of melt-spun Sm(Co,Fe,Cu,Zr)y magnets. J. Appl. Phys. 93: 7975–7977.CrossRef Yan, A., O. Gutfleisch, A. Handstein, T. Gemming and K.-H. Müller. (2003b). Microstructure, microchemistry, and magnetic properties of melt-spun Sm(Co,Fe,Cu,Zr)y magnets. J. Appl. Phys. 93: 7975–7977.CrossRef
110.
go back to reference Yan, A., A. Bollero, O. Gutfleisch, K.-H. Müller, L. Schultz, (2004). Melt-spun precipitation hardened Sm(Co,Fe,Cu,Zr) z magnets, Mat. Sci. Eng. A375–377: 1169–1172. Yan, A., A. Bollero, O. Gutfleisch, K.-H. Müller, L. Schultz, (2004). Melt-spun precipitation hardened Sm(Co,Fe,Cu,Zr) z magnets, Mat. Sci. Eng. A375–377: 1169–1172.
111.
go back to reference Yang, W., W. Ping, S. Zhenhua and Z. Shouzeng. (1992). 2:17 type temperature compensated magnets with high coercivity. In: Proc. of the 12th Int. Workshop on RE Magnets and their Appl., Canberra, Australia, pp. 249–257. Yang, W., W. Ping, S. Zhenhua and Z. Shouzeng. (1992). 2:17 type temperature compensated magnets with high coercivity. In: Proc. of the 12th Int. Workshop on RE Magnets and their Appl., Canberra, Australia, pp. 249–257.
112.
go back to reference Zhang, Y., W. Tang. G.C. Hadjipanayis, C. Chen, C. Nelson and K. Krishnan. (2000). Evolution of microstructure, microchemistry and coercivity in 2:17 type Sm–Co magnets with heat treatment. IEEE Trans. Magn. 37: 2525–2527.CrossRef Zhang, Y., W. Tang. G.C. Hadjipanayis, C. Chen, C. Nelson and K. Krishnan. (2000). Evolution of microstructure, microchemistry and coercivity in 2:17 type Sm–Co magnets with heat treatment. IEEE Trans. Magn. 37: 2525–2527.CrossRef
113.
go back to reference Zhou, J., I.A. Al-Omari, J P. Liu and D.J. Sellmyer. (2000). Structure and magnetic properties of SmCo7-xTix with TbCu7-type structure. J. Appl. Phys. 87: 5299–5301.CrossRef Zhou, J., I.A. Al-Omari, J P. Liu and D.J. Sellmyer. (2000). Structure and magnetic properties of SmCo7-xTix with TbCu7-type structure. J. Appl. Phys. 87: 5299–5301.CrossRef
114.
go back to reference Zhou, J., R. Skomski, and D.J. Sellmyer. (2003). Magnetic hysteresis of mechanically alloyed Sm–Co nanocrystalline powders. J. Appl. Phys. 93: 6495–6497.CrossRef Zhou, J., R. Skomski, and D.J. Sellmyer. (2003). Magnetic hysteresis of mechanically alloyed Sm–Co nanocrystalline powders. J. Appl. Phys. 93: 6495–6497.CrossRef
Metadata
Title
High-Temperature Samarium Cobalt Permanent Magnets
Author
Oliver Gutfleisch
Copyright Year
2009
Publisher
Springer US
DOI
https://doi.org/10.1007/978-0-387-85600-1_12

Premium Partners