Skip to main content
Top

2020 | OriginalPaper | Chapter

High-Utility Interval-Based Sequences

Authors : S. Mohammad Mirbagheri, Howard J. Hamilton

Published in: Big Data Analytics and Knowledge Discovery

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sequential pattern mining is an interesting research area with broad range of applications. Most prior research on sequential pattern mining has considered point-based data where events occur instantaneously. However, in many application domains, events persist over intervals of time of varying lengths. Furthermore, traditional frameworks for sequential pattern mining assume all events have the same weight or utility. This simplifying assumption neglects the opportunity to find informative patterns in terms of utilities, such as cost. To address these issues, we incorporate the concept of utility into interval-based sequences and define a framework to mine high utility patterns in interval-based sequences i.e., patterns whose utility meets or exceeds a minimum threshold. In the proposed framework, the utility of events is considered while assuming multiple events can occur coincidentally and persist over varying periods of time. An algorithm named High Utility Interval-based Pattern Miner (HUIPMiner) is proposed and applied to real datasets. To achieve an efficient solution, HUIPMiner is augmented with a pruning strategy. Experimental results show that HUIPMiner is an effective solution to the problem of mining high utility interval-based sequences.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Patel, D., Hsu, W., Lee, M.L.: Mining relationships among interval-based events for classification. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, New York, NY, USA, pp. 393–404. ACM (2008) Patel, D., Hsu, W., Lee, M.L.: Mining relationships among interval-based events for classification. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, New York, NY, USA, pp. 393–404. ACM (2008)
2.
go back to reference Sheetrit, E., Nissim, N., Klimov, D., Shahar, Y.: Temporal probabilistic profiles for sepsis prediction in the ICU. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2961–2969. ACM (2019) Sheetrit, E., Nissim, N., Klimov, D., Shahar, Y.: Temporal probabilistic profiles for sepsis prediction in the ICU. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2961–2969. ACM (2019)
3.
go back to reference Mörchen, F., Fradkin, D.: Robust mining of time intervals with semi-interval partial order patterns. In: Proceedings of the 2010 SIAM International Conference on Data Mining, pp. 315–326. SIAM (2010) Mörchen, F., Fradkin, D.: Robust mining of time intervals with semi-interval partial order patterns. In: Proceedings of the 2010 SIAM International Conference on Data Mining, pp. 315–326. SIAM (2010)
4.
go back to reference Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.: Mining frequent arrangements of temporal intervals. Knowl. Inf. Syst. 21(2), 133 (2009)CrossRef Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.: Mining frequent arrangements of temporal intervals. Knowl. Inf. Syst. 21(2), 133 (2009)CrossRef
5.
go back to reference Liu, Y., Nie, L., Liu, L., Rosenblum, D.S.: From action to activity: sensor-based activity recognition. Neurocomputing 181, 108–115 (2016)CrossRef Liu, Y., Nie, L., Liu, L., Rosenblum, D.S.: From action to activity: sensor-based activity recognition. Neurocomputing 181, 108–115 (2016)CrossRef
6.
go back to reference Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRef Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRef
7.
go back to reference Wu, S.Y., Chen, Y.L.: Mining nonambiguous temporal patterns for interval-based events. IEEE Trans. Knowl. Data Eng. 19(6), 742–758 (2007)CrossRef Wu, S.Y., Chen, Y.L.: Mining nonambiguous temporal patterns for interval-based events. IEEE Trans. Knowl. Data Eng. 19(6), 742–758 (2007)CrossRef
8.
go back to reference Han, J., et al.: PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of the 17th International Conference on Data Engineering, pp. 215–224 (2001) Han, J., et al.: PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of the 17th International Conference on Data Engineering, pp. 215–224 (2001)
9.
go back to reference Chen, Y.C., Jiang, J.C., Peng, W.C., Lee, S.Y.: An efficient algorithm for mining time interval-based patterns in large database. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 49–58. ACM (2010) Chen, Y.C., Jiang, J.C., Peng, W.C., Lee, S.Y.: An efficient algorithm for mining time interval-based patterns in large database. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 49–58. ACM (2010)
11.
go back to reference Yao, H., Hamilton, H.J.: Mining itemset utilities from transaction databases. Data Knowl. Eng. 59(3), 603–626 (2006)CrossRef Yao, H., Hamilton, H.J.: Mining itemset utilities from transaction databases. Data Knowl. Eng. 59(3), 603–626 (2006)CrossRef
12.
go back to reference Ahmed, C.F., Tanbeer, S.K., Jeong, B.S.: A novel approach for mining high-utility sequential patterns in sequence databases. ETRI J. 32(5), 676–686 (2010)CrossRef Ahmed, C.F., Tanbeer, S.K., Jeong, B.S.: A novel approach for mining high-utility sequential patterns in sequence databases. ETRI J. 32(5), 676–686 (2010)CrossRef
13.
go back to reference Yin, J., Zheng, Z., Cao, L.: USpan: an efficient algorithm for mining high utility sequential patterns. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 660–668. ACM (2012) Yin, J., Zheng, Z., Cao, L.: USpan: an efficient algorithm for mining high utility sequential patterns. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 660–668. ACM (2012)
14.
go back to reference Wu, C.W., Lin, Y.F., Yu, P.S., Tseng, V.S.: Mining high utility episodes in complex event sequences. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 536–544. ACM (2013) Wu, C.W., Lin, Y.F., Yu, P.S., Tseng, V.S.: Mining high utility episodes in complex event sequences. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 536–544. ACM (2013)
16.
go back to reference Huang, J.W., Jaysawal, B.P., Chen, K.Y., Wu, Y.B.: Mining frequent and top-k high utility time interval-based events with duration patterns. Knowl. Inf. Syst. 61, 1331–1359 (2019)CrossRef Huang, J.W., Jaysawal, B.P., Chen, K.Y., Wu, Y.B.: Mining frequent and top-k high utility time interval-based events with duration patterns. Knowl. Inf. Syst. 61, 1331–1359 (2019)CrossRef
Metadata
Title
High-Utility Interval-Based Sequences
Authors
S. Mohammad Mirbagheri
Howard J. Hamilton
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-59065-9_9

Premium Partner