Skip to main content
Top
Published in:

22-03-2023

Highly efficient Cd-Free ZnMgO/CIGS solar cells via effective band-gap tuning strategy

Authors: A. Maoucha, H. Ferhati, F. Djeffal, F. AbdelMalek

Published in: Journal of Computational Electronics | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work proposes a new modeling framework based on combining graded band-gap (GBG) engineering and metaheuristic optimization to improve the Cd-Free ZnMgO/CIGS solar cell performances. Analytical and numerical calculations are carried out to assess the influence of band-gap profiles of both buffer and active layers on the electronic and optical properties of the studied solar cell. This investigation shows a great improvement of solar cell efficiency by increasing the optoelectronic figures of merit through tuning and optimizing the band-gap profiles and the conduction band offset at the ZnMgO/CIGS interface. Moreover, metaheuristic-based optimization models are developed to optimize the GBG profiles and enhance the optical and electrical performances of the solar cell. In this context, we recorded very satisfactory results, where the optimized design with GBG paradigm offers a high efficiency of 31.88% compared to 23.35% provided by the conventional CdS/CIGS solar cell. Therefore, this study provides a new strategy in enhancing the efficiency of thin-film solar cells by exploiting the graded band-gap engineering combined with metaheuristic optimization approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Green, M.A., Dunlop, E.D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., Hao, X.: Solar cell efficiency tables (version 56). Prog. Photovolt. 28, 3–15 (2020)CrossRef Green, M.A., Dunlop, E.D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., Hao, X.: Solar cell efficiency tables (version 56). Prog. Photovolt. 28, 3–15 (2020)CrossRef
2.
go back to reference Nayak, P.K., Mahesh, S., Snaith, H.J., Cahen, D.: Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019)CrossRef Nayak, P.K., Mahesh, S., Snaith, H.J., Cahen, D.: Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019)CrossRef
3.
go back to reference Branker, K., Pathak, M., Pearce, J.M.: A review of solar photovoltaic levelized cost of electricity. Renew. Sustain. Energy Rev 15, 4470–4482 (2011)CrossRef Branker, K., Pathak, M., Pearce, J.M.: A review of solar photovoltaic levelized cost of electricity. Renew. Sustain. Energy Rev 15, 4470–4482 (2011)CrossRef
4.
go back to reference Green, M.A.: Tracking solar cell conversion efficiency. Nat. Rev. Phys. 2, 172–173 (2020)CrossRef Green, M.A.: Tracking solar cell conversion efficiency. Nat. Rev. Phys. 2, 172–173 (2020)CrossRef
5.
go back to reference Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R.: New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovolt. Res. Appl. 19, 894–897 (2011)CrossRef Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R.: New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovolt. Res. Appl. 19, 894–897 (2011)CrossRef
6.
go back to reference Belarbia, F., Rahal, W., Rached, D., Benghabrit, S., Adnane, M.: A comparative study of different buffer layers for CZTS solar cell using Scaps-1D simulation program. Optik Int. J. Light Electron Opt. 216, 1–7 (2020) Belarbia, F., Rahal, W., Rached, D., Benghabrit, S., Adnane, M.: A comparative study of different buffer layers for CZTS solar cell using Scaps-1D simulation program. Optik Int. J. Light Electron Opt. 216, 1–7 (2020)
7.
go back to reference Ferhati, H., Djeffal, F., Drissi, L.B.: Performance improvement of Perovskite/CZTS tandem solar cell using low-cost ZnS/Ag/ITO multilayer spectrum splitter. Superlattices Microstruct. 148, 1–10 (2020)CrossRef Ferhati, H., Djeffal, F., Drissi, L.B.: Performance improvement of Perovskite/CZTS tandem solar cell using low-cost ZnS/Ag/ITO multilayer spectrum splitter. Superlattices Microstruct. 148, 1–10 (2020)CrossRef
8.
go back to reference Kacha, K., Djeffal, F., Ferhati, H., Arar, D., Meguellati, M.: Numerical investigation of a double-junction a: SiGe thin-film solar cell including the multi-trench region. J. Semicond. 36, 1–5 (2015)CrossRef Kacha, K., Djeffal, F., Ferhati, H., Arar, D., Meguellati, M.: Numerical investigation of a double-junction a: SiGe thin-film solar cell including the multi-trench region. J. Semicond. 36, 1–5 (2015)CrossRef
9.
go back to reference Prasanna, J.L., Goel, E., Kumar, A., Laref, A., Santhosh, C., Ranjan, P., Kumar, A.: Bandgap graded perovskite solar cell for above 30% efficiency. Optik 269, 1–5 (2022)CrossRef Prasanna, J.L., Goel, E., Kumar, A., Laref, A., Santhosh, C., Ranjan, P., Kumar, A.: Bandgap graded perovskite solar cell for above 30% efficiency. Optik 269, 1–5 (2022)CrossRef
10.
go back to reference Sun, H., Deng, K., Xiong, J., Li, L.: Graded bandgap perovskite with intrinsic n–p homojunction expands photon harvesting range and enables all transport layer-free perovskite solar cells. Adv. Energy Mater. 1, 1–9 (2020) Sun, H., Deng, K., Xiong, J., Li, L.: Graded bandgap perovskite with intrinsic n–p homojunction expands photon harvesting range and enables all transport layer-free perovskite solar cells. Adv. Energy Mater. 1, 1–9 (2020)
11.
go back to reference Simya, O.K., Mahaboobbatcha, A., Balachander, K.: Compositional grading of CZTSSe alloy using exponential and uniform grading laws in SCAPS-ID simulation. Superlattices Microstruct. 92, 285–293 (2016)CrossRef Simya, O.K., Mahaboobbatcha, A., Balachander, K.: Compositional grading of CZTSSe alloy using exponential and uniform grading laws in SCAPS-ID simulation. Superlattices Microstruct. 92, 285–293 (2016)CrossRef
12.
go back to reference Maharana, B., Jha, R., Chatterjee, S.: Metal oxides as buffer layers for CZTS based solar cells: a numerical analysis by SCAPS-1D software. Opt. Mater. 131, 1–9 (2022)CrossRef Maharana, B., Jha, R., Chatterjee, S.: Metal oxides as buffer layers for CZTS based solar cells: a numerical analysis by SCAPS-1D software. Opt. Mater. 131, 1–9 (2022)CrossRef
13.
go back to reference Ferhati, H., Djeffal, F.: Role of intermediate metallic sub-layers in improving the efficiency of kesterite solar cells: concept and optimization. Mater. Res. Express 5, 1–11 (2018)CrossRef Ferhati, H., Djeffal, F.: Role of intermediate metallic sub-layers in improving the efficiency of kesterite solar cells: concept and optimization. Mater. Res. Express 5, 1–11 (2018)CrossRef
14.
go back to reference Niki, S., Contreras, M., Repins, I., Powalla, M., Kushiya, K., Ishizuka, S., Matsubara, K.: Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. Prog. Photovolt. Res. Appl. 18, 453–466 (2010)CrossRef Niki, S., Contreras, M., Repins, I., Powalla, M., Kushiya, K., Ishizuka, S., Matsubara, K.: Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. Prog. Photovolt. Res. Appl. 18, 453–466 (2010)CrossRef
15.
go back to reference Shi, J.H., Li, Z.Q., Zhang, D.W., Liu, Q.Q., Sun, Z., Huang, S.M.: Fabrication of Cu(In,Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target. Prog. Photovolt. Res. Appl. 19, 160–164 (2011)CrossRef Shi, J.H., Li, Z.Q., Zhang, D.W., Liu, Q.Q., Sun, Z., Huang, S.M.: Fabrication of Cu(In,Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target. Prog. Photovolt. Res. Appl. 19, 160–164 (2011)CrossRef
16.
go back to reference Hibberd, C.J., Chassaing, E., Liu, W., Mitzi, D.B., Lincot, D., Tiwari, A.N.: Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers. Prog. Photovolt. Res. Appl. 18, 434–452 (2010)CrossRef Hibberd, C.J., Chassaing, E., Liu, W., Mitzi, D.B., Lincot, D., Tiwari, A.N.: Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers. Prog. Photovolt. Res. Appl. 18, 434–452 (2010)CrossRef
17.
go back to reference Zahedifar, M., Ghanbari, E., Moradi, M., Saadat, M.: Optimized annealing regime of CuGaSe2 nanoparticles prepared by solvothermal method. Phys. Status Solidi A 212, 657–661 (2015)CrossRef Zahedifar, M., Ghanbari, E., Moradi, M., Saadat, M.: Optimized annealing regime of CuGaSe2 nanoparticles prepared by solvothermal method. Phys. Status Solidi A 212, 657–661 (2015)CrossRef
18.
go back to reference El-Ihalane, H., Atourki, L., Kirou, H., Ihlal, A., Bouabid, K.: Numerical study of thin films CIGS bilayer solar cells using SCAPS. Mater. Today 3, 2570–2577 (2016) El-Ihalane, H., Atourki, L., Kirou, H., Ihlal, A., Bouabid, K.: Numerical study of thin films CIGS bilayer solar cells using SCAPS. Mater. Today 3, 2570–2577 (2016)
19.
go back to reference Nakamura, M., Yamaguchi, K., et al.: Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J. Photovolt. 9, 1863–1867 (2019)CrossRef Nakamura, M., Yamaguchi, K., et al.: Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J. Photovolt. 9, 1863–1867 (2019)CrossRef
20.
go back to reference Liu, W., Li, H., Qiao, B., Zhao, S., Xu, Z., Song, D.: Highly efficient CIGS solar cells based on a new CIGS bandgap gradient design characterized by numerical simulation. Sol. Energy 233, 337–344 (2022)CrossRef Liu, W., Li, H., Qiao, B., Zhao, S., Xu, Z., Song, D.: Highly efficient CIGS solar cells based on a new CIGS bandgap gradient design characterized by numerical simulation. Sol. Energy 233, 337–344 (2022)CrossRef
21.
go back to reference Ferhati, H., Djeffal, F.: Graded band-gap engineering for increased efficiency in CZTS solar cells. Opt. Mater. 76, 393–399 (2018)CrossRef Ferhati, H., Djeffal, F.: Graded band-gap engineering for increased efficiency in CZTS solar cells. Opt. Mater. 76, 393–399 (2018)CrossRef
22.
go back to reference Kharwar, S., Singh, S., Jaiswal, N.K.: Structural & electronic properties of zigzag silicene nanoribbons with symmetric/asymmetric edge passivations via fluorine and hydrogen. Physica B Condens. Matter 615, 1–13 (2021)CrossRef Kharwar, S., Singh, S., Jaiswal, N.K.: Structural & electronic properties of zigzag silicene nanoribbons with symmetric/asymmetric edge passivations via fluorine and hydrogen. Physica B Condens. Matter 615, 1–13 (2021)CrossRef
23.
go back to reference Kharwar, S., Singh, S., Jaiswal, N.K.: First-principle investigations of cove edged GaN nanoribbon for nanoscale resonant tunneling applications. Solid State Commun. 340, 1–8 (2021)CrossRef Kharwar, S., Singh, S., Jaiswal, N.K.: First-principle investigations of cove edged GaN nanoribbon for nanoscale resonant tunneling applications. Solid State Commun. 340, 1–8 (2021)CrossRef
24.
go back to reference Kharwar, S., Singh, S., Jaiswal, N.K.: Selective edge-hydrogenated zigzag boron nitride nanoribbons for giant magnetoresistance and rectifying behavior. IEEE Trans. Electron Devices 68, 5894–5900 (2021)CrossRef Kharwar, S., Singh, S., Jaiswal, N.K.: Selective edge-hydrogenated zigzag boron nitride nanoribbons for giant magnetoresistance and rectifying behavior. IEEE Trans. Electron Devices 68, 5894–5900 (2021)CrossRef
25.
go back to reference Moradia, M., Teimouria, R., Saadata, M., Zahedifar, M.: Buffer layer replacement: a method for increasing the conversion efficiency of CIGS thin film solar cells. Optik 136, 222–227 (2017)CrossRef Moradia, M., Teimouria, R., Saadata, M., Zahedifar, M.: Buffer layer replacement: a method for increasing the conversion efficiency of CIGS thin film solar cells. Optik 136, 222–227 (2017)CrossRef
26.
go back to reference Prasad, R., Pal, R., Singh, U.P.: Performance optimization of single graded CIGS absorber and buffer layers for high efficiency: a numerical approach. Superlattices Microstruct. 161, 107094 (2022)CrossRef Prasad, R., Pal, R., Singh, U.P.: Performance optimization of single graded CIGS absorber and buffer layers for high efficiency: a numerical approach. Superlattices Microstruct. 161, 107094 (2022)CrossRef
27.
go back to reference Ghamsari-Yazdel, F., Fattah, A.: Performance enhancement of CIGS solar cells using ITO as buffer layer. Micro Nanostruct. 168, 207289 (2022)CrossRef Ghamsari-Yazdel, F., Fattah, A.: Performance enhancement of CIGS solar cells using ITO as buffer layer. Micro Nanostruct. 168, 207289 (2022)CrossRef
28.
go back to reference Prasad, R., Das, A.K., Singh, U.P.: Impact of buffer layers on the performance of graded CIGS solar cells: a numerical approach. Appl. Phys. A 127, 1–12 (2021) Prasad, R., Das, A.K., Singh, U.P.: Impact of buffer layers on the performance of graded CIGS solar cells: a numerical approach. Appl. Phys. A 127, 1–12 (2021)
29.
go back to reference Kacha, K., Djeffal, F., Ferhati, H., Foughali, L., Bendjerad, A., Benhaya, A.: Efficiency improvement of CIGS solar cells using RF sputtered TCO/Ag/ TCO thin-film as prospective buffer layer. Ceram. Int. 48, 20194 (2022)CrossRef Kacha, K., Djeffal, F., Ferhati, H., Foughali, L., Bendjerad, A., Benhaya, A.: Efficiency improvement of CIGS solar cells using RF sputtered TCO/Ag/ TCO thin-film as prospective buffer layer. Ceram. Int. 48, 20194 (2022)CrossRef
30.
go back to reference Khoshsirat, N., Md Yunus, N.A., Hamidon, M.N., Shafie, S., Amin, N.: Analysis of absorber and buffer layer band gap grading on CIGS thin film solar cell performance using SCAPS. Pertanika J. Sci. Technol. 23, 241–250 (2015) Khoshsirat, N., Md Yunus, N.A., Hamidon, M.N., Shafie, S., Amin, N.: Analysis of absorber and buffer layer band gap grading on CIGS thin film solar cell performance using SCAPS. Pertanika J. Sci. Technol. 23, 241–250 (2015)
31.
go back to reference Salhi, B.: The photovoltaic cell based on CIGS: principles and technologies. Materials 15, 1–27 (2022)CrossRef Salhi, B.: The photovoltaic cell based on CIGS: principles and technologies. Materials 15, 1–27 (2022)CrossRef
32.
go back to reference Ferhati, H., Djeffal, F., Drissi, L.B.: Metaheuristic-based decision maker framework for the development of multispectral IGZO thin-film phototransistors. J. Sci. Adv. Mater. Devices 7, 1–11 (2022) Ferhati, H., Djeffal, F., Drissi, L.B.: Metaheuristic-based decision maker framework for the development of multispectral IGZO thin-film phototransistors. J. Sci. Adv. Mater. Devices 7, 1–11 (2022)
33.
go back to reference Djeffal, F., Ferhati, H.: A new high-performance phototransistor design based on both surface texturization and graded gate doping engineering. J. Comput. Electron 15, 301–310 (2016)CrossRef Djeffal, F., Ferhati, H.: A new high-performance phototransistor design based on both surface texturization and graded gate doping engineering. J. Comput. Electron 15, 301–310 (2016)CrossRef
34.
go back to reference Ferhati, H., Djeffal, F.: Exceeding 30 % efficiency for an environment-friendly tandem solar cell based on earth-abundant Se/CZTS materials. Phys. E Low Dimens. Syst. 109, 52–58 (2019)CrossRef Ferhati, H., Djeffal, F.: Exceeding 30 % efficiency for an environment-friendly tandem solar cell based on earth-abundant Se/CZTS materials. Phys. E Low Dimens. Syst. 109, 52–58 (2019)CrossRef
35.
go back to reference Sood, M., Gnanasambandan, P., Adeleye, D., Shukla, S., Adjeroud, N., Leturcq, R., Siebentritt, S.: Electrical barriers and their elimination by tuning (Zn,Mg)O buffer composition in Cu(In,Ga)S2 solar cells: systematic approach to achieve over 14% power conversion efficiency. J. Phys. Energy 3, 1–11 (2022) Sood, M., Gnanasambandan, P., Adeleye, D., Shukla, S., Adjeroud, N., Leturcq, R., Siebentritt, S.: Electrical barriers and their elimination by tuning (Zn,Mg)O buffer composition in Cu(In,Ga)S2 solar cells: systematic approach to achieve over 14% power conversion efficiency. J. Phys. Energy 3, 1–11 (2022)
36.
go back to reference Kadri, A., Ferhati, H., Djeffal, F.: Giant responsivity of a new optically controlled graphene UV-phototransistor using graded band-gap ZnMgO gate. Sens. Actuators A 325, 1–9 (2021)CrossRef Kadri, A., Ferhati, H., Djeffal, F.: Giant responsivity of a new optically controlled graphene UV-phototransistor using graded band-gap ZnMgO gate. Sens. Actuators A 325, 1–9 (2021)CrossRef
37.
go back to reference Seok Choi, W., Yoon, J.-G.: Optical characterization of band gap graded ZnMgO films. Solid State Commun. 152, 345–348 (2012)CrossRef Seok Choi, W., Yoon, J.-G.: Optical characterization of band gap graded ZnMgO films. Solid State Commun. 152, 345–348 (2012)CrossRef
38.
go back to reference Tauc, J., Menth, A.: States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972)CrossRef Tauc, J., Menth, A.: States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972)CrossRef
39.
go back to reference Morales-Acevedo, A.: A simple model of graded band-gap CuInGaSe2 solar cells. Energy Procedia 2, 169–176 (2010)CrossRef Morales-Acevedo, A.: A simple model of graded band-gap CuInGaSe2 solar cells. Energy Procedia 2, 169–176 (2010)CrossRef
40.
go back to reference Courel, M., Andrade-Arvizu, J.A., Vigil-Galán, O.: The role of buffer/kesterite interface recombination and minority carrier lifetime on kesterite thin-film solar cells. Mater. Res. Express 3, 1–14 (2016)CrossRef Courel, M., Andrade-Arvizu, J.A., Vigil-Galán, O.: The role of buffer/kesterite interface recombination and minority carrier lifetime on kesterite thin-film solar cells. Mater. Res. Express 3, 1–14 (2016)CrossRef
41.
go back to reference Morales-Acevedo, A.: Effective absorption coefficient for graded band-gap semiconductors and the expected photocurrent density in solar cells. Sol. Energy Mater. Sol. Cell 93, 40–44 (2009)CrossRef Morales-Acevedo, A.: Effective absorption coefficient for graded band-gap semiconductors and the expected photocurrent density in solar cells. Sol. Energy Mater. Sol. Cell 93, 40–44 (2009)CrossRef
42.
go back to reference Sufer, A.L., Abdullah, A.K.: Computer Simulation of the effect of band gap grading of the CIGS absorber layer on the performance of Cds/CIGS thin film solar cell. Al-Rafida Eng. 20, 44–60 (2012) Sufer, A.L., Abdullah, A.K.: Computer Simulation of the effect of band gap grading of the CIGS absorber layer on the performance of Cds/CIGS thin film solar cell. Al-Rafida Eng. 20, 44–60 (2012)
43.
go back to reference Aissat, A., Arbouz, H., Vilcot, J.P.: Optimization and improvement of a front graded bandgap CuInGaSe2 solar cell. Sol. Energy Mater. Sol. Cells 180, 381–385 (2018)CrossRef Aissat, A., Arbouz, H., Vilcot, J.P.: Optimization and improvement of a front graded bandgap CuInGaSe2 solar cell. Sol. Energy Mater. Sol. Cells 180, 381–385 (2018)CrossRef
44.
go back to reference Benmir, A., Aida, M.S.: Analytical modeling and simulation of CIGS solar cells. Energy Procedia 36, 618–627 (2013)CrossRef Benmir, A., Aida, M.S.: Analytical modeling and simulation of CIGS solar cells. Energy Procedia 36, 618–627 (2013)CrossRef
45.
go back to reference Morales-Acevedo, A.: Analytical model for the photocurrent of solar cells based on graded band-gap CdZnTe thin films. Sol. Energy Mater. Sol. Cell 95, 2837–2841 (2011)CrossRef Morales-Acevedo, A.: Analytical model for the photocurrent of solar cells based on graded band-gap CdZnTe thin films. Sol. Energy Mater. Sol. Cell 95, 2837–2841 (2011)CrossRef
46.
go back to reference Hwang, J., Cho, Y., Shin, D., Jeong, I., Park, J.H., Cho, J.-S., Gwak, J., Yun, J.H., Han, K., Chang, H.S., Kim, K.: Improved carrier transport in CIGS solar cells induced by Ag treatment. J. Alloys Compd. 886, 1–6 (2021)CrossRef Hwang, J., Cho, Y., Shin, D., Jeong, I., Park, J.H., Cho, J.-S., Gwak, J., Yun, J.H., Han, K., Chang, H.S., Kim, K.: Improved carrier transport in CIGS solar cells induced by Ag treatment. J. Alloys Compd. 886, 1–6 (2021)CrossRef
47.
go back to reference Naghavi, N., Abou-Ras, D., Allsop, N., Barreau, N., et al.: Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments. Prog. Photovolt. Res. Appl 18, 411–433 (2010)CrossRef Naghavi, N., Abou-Ras, D., Allsop, N., Barreau, N., et al.: Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments. Prog. Photovolt. Res. Appl 18, 411–433 (2010)CrossRef
48.
go back to reference Minemoto, T., Okamoto, A., Takakura, H.: Sputtered ZnO-based buffer layer for band offset control in Cu(In, Ga)Se2 solar cells. Thin Solid Films 519, 7568–7571 (2011)CrossRef Minemoto, T., Okamoto, A., Takakura, H.: Sputtered ZnO-based buffer layer for band offset control in Cu(In, Ga)Se2 solar cells. Thin Solid Films 519, 7568–7571 (2011)CrossRef
49.
go back to reference Ferhati, H., Djeffal, F., Drissi, L.B.: A new approach to the modeling and simulation of multi-junction solar cells. Optik 200, 1–8 (2020)CrossRef Ferhati, H., Djeffal, F., Drissi, L.B.: A new approach to the modeling and simulation of multi-junction solar cells. Optik 200, 1–8 (2020)CrossRef
50.
go back to reference Liu, J., Zhang, M., Feng, X.: Simulation of graded bandgap on the performance of back-wall superstrate CIGS solar cells. Optik 172, 1172–1178 (2018)CrossRef Liu, J., Zhang, M., Feng, X.: Simulation of graded bandgap on the performance of back-wall superstrate CIGS solar cells. Optik 172, 1172–1178 (2018)CrossRef
51.
go back to reference Djeffal, F., Lakhdar, N., Meguellati, M., Benhaya, A.: Particle swarm optimization versus genetic algorithms to study the electron mobility in wurtzite GaN based devices. Solid State Electron 53, 988–992 (2009)CrossRef Djeffal, F., Lakhdar, N., Meguellati, M., Benhaya, A.: Particle swarm optimization versus genetic algorithms to study the electron mobility in wurtzite GaN based devices. Solid State Electron 53, 988–992 (2009)CrossRef
52.
go back to reference Djeffal, F., Bendib, T., Benzid, R., Benhaya, A.: An approach based on particle swarm computation to study the nanoscale DG MOSFET-based circuits. Turk. J. Electron. Eng. Comput. Sci 18, 1131–1140 (2010) Djeffal, F., Bendib, T., Benzid, R., Benhaya, A.: An approach based on particle swarm computation to study the nanoscale DG MOSFET-based circuits. Turk. J. Electron. Eng. Comput. Sci 18, 1131–1140 (2010)
53.
go back to reference Ferhati, H., Djeffal, F., Martin, N.: Highly improved responsivity of self-powered UV–Visible photodetector based on TiO2/Ag/TiO2 multilayer deposited by GLAD technique: effects of oriented columns and nano-sculptured surface. Appl. Surf. Sci. 529, 147069 (2020)CrossRef Ferhati, H., Djeffal, F., Martin, N.: Highly improved responsivity of self-powered UV–Visible photodetector based on TiO2/Ag/TiO2 multilayer deposited by GLAD technique: effects of oriented columns and nano-sculptured surface. Appl. Surf. Sci. 529, 147069 (2020)CrossRef
54.
go back to reference Ferhati, H., Djeffal, F.: Role of optimized grooves surface -textured front glass in improving TiO2 thin film UV photodetector performance. IEEE Sens. J 16, 5618–5624 (2016)CrossRef Ferhati, H., Djeffal, F.: Role of optimized grooves surface -textured front glass in improving TiO2 thin film UV photodetector performance. IEEE Sens. J 16, 5618–5624 (2016)CrossRef
55.
go back to reference Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. J. IEEE Trans. Evol. Comput. 73, 6–58 (2002) Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. J. IEEE Trans. Evol. Comput. 73, 6–58 (2002)
56.
go back to reference Kim, J.H., Shin, D., Ahn, B.T.: Surface morphology control of In2S3 buffer layer by Sn incorporation and its application to cadmium-free Cu(In,Ga)Se2 thin-film solar cells. Curr. Appl. Phys. 16, 1040–1045 (2016)CrossRef Kim, J.H., Shin, D., Ahn, B.T.: Surface morphology control of In2S3 buffer layer by Sn incorporation and its application to cadmium-free Cu(In,Ga)Se2 thin-film solar cells. Curr. Appl. Phys. 16, 1040–1045 (2016)CrossRef
57.
go back to reference Witte, W., Hariskos, D., Powalla, M.: Comparison of charge distributions in CIGS thin-film solar cells with ZnS/(Zn,Mg)O and CdS/i-ZnO buffers. Thin Solid Films 519, 7549–7552 (2011)CrossRef Witte, W., Hariskos, D., Powalla, M.: Comparison of charge distributions in CIGS thin-film solar cells with ZnS/(Zn,Mg)O and CdS/i-ZnO buffers. Thin Solid Films 519, 7549–7552 (2011)CrossRef
58.
go back to reference Mostefaoui, M., Mazari, H., Khelifi, S., Bouraiou, A., Dabou, R.: Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Procedia 74, 736–744 (2015)CrossRef Mostefaoui, M., Mazari, H., Khelifi, S., Bouraiou, A., Dabou, R.: Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Procedia 74, 736–744 (2015)CrossRef
59.
go back to reference Ashraf, M.A., Alam, I.: Numerical simulation of CIGS, CISSe and CZTS-based solar cells with In2S3 as buffer layer and Au as back contact using SCAPS 1D. Eng. Res. Express 2, 1–17 (2022) Ashraf, M.A., Alam, I.: Numerical simulation of CIGS, CISSe and CZTS-based solar cells with In2S3 as buffer layer and Au as back contact using SCAPS 1D. Eng. Res. Express 2, 1–17 (2022)
60.
go back to reference Nakada, T., Mizutani, M.: 18% efficiency Cd-free Cu(In,Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Jpn. J. Appl. Phys. 41, 97–100 (2002)CrossRef Nakada, T., Mizutani, M.: 18% efficiency Cd-free Cu(In,Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Jpn. J. Appl. Phys. 41, 97–100 (2002)CrossRef
61.
go back to reference Youn, S.-M., Park, M.-J., Kim, J.H., Jeong, C.: Performance enhancement of CIGS thin-film solar cells with a functional-window NiO thin layer. J. Alloys Compd. 886, 1–7 (2020) Youn, S.-M., Park, M.-J., Kim, J.H., Jeong, C.: Performance enhancement of CIGS thin-film solar cells with a functional-window NiO thin layer. J. Alloys Compd. 886, 1–7 (2020)
Metadata
Title
Highly efficient Cd-Free ZnMgO/CIGS solar cells via effective band-gap tuning strategy
Authors
A. Maoucha
H. Ferhati
F. Djeffal
F. AbdelMalek
Publication date
22-03-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02028-6