Skip to main content
Top
Published in: Journal of Materials Science 10/2014

01-05-2014

Highly enhanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles

Authors: Meixia Li, Hongwei Che, Xiaoyan Liu, Shunxing Liang, Hailong Xie

Published in: Journal of Materials Science | Issue 10/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study investigated the preparation and mechanical performance of graphene/metal composites using Ni nanoparticles decorated graphene nanoplatelets (Ni-GPLs) as a reinforcing component in Cu matrix (Ni-GPL/Cu). Ni-GPLs consisting of well-dispersed Ni nanoparticles strongly attached on GPLs were successfully synthesized by chemically reducing Ni ions on the surface of GPLs. The Ni-GPL/Cu composites with only 0.8 vol% Ni-GPLs exhibited a significant improvement in ultimate tensile strength (UTS), being 42 % higher than that of monolithic Cu. The significant strength enhancement is attributed to the unique structure of Ni-GPLs, which was expected to generate a good dispersion and strong GPL–Cu interfacial bonding. The UTS of 0.8 vol% GPL/Cu composites was even lower than that of the monolithic Cu due to the GPL aggregates. The obtained results indicated that Ni-GPLs are novel and effective reinforcing components for greatly improving the mechanical properties of the graphene/metal composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tjong SC, Ma Z (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R 29:49–113CrossRef Tjong SC, Ma Z (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R 29:49–113CrossRef
2.
go back to reference Bakshi S, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites—a review. Int Mater Rev 55:41–64CrossRef Bakshi S, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites—a review. Int Mater Rev 55:41–64CrossRef
3.
go back to reference Chen X, Xia J, Peng J, Li W, Xie S (2000) Carbon-nanotube metal–matrix composites prepared by electroless plating. Compos Sci Technol 60:301–306CrossRef Chen X, Xia J, Peng J, Li W, Xie S (2000) Carbon-nanotube metal–matrix composites prepared by electroless plating. Compos Sci Technol 60:301–306CrossRef
4.
go back to reference Kwon H, Estili M, Takagi K, Miyazaki T, Kawasaki A (2009) Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47:570–577CrossRef Kwon H, Estili M, Takagi K, Miyazaki T, Kawasaki A (2009) Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47:570–577CrossRef
5.
go back to reference Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274CrossRef Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274CrossRef
6.
go back to reference Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3:301–306CrossRef Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3:301–306CrossRef
7.
go back to reference Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRef Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRef
8.
go back to reference Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef
9.
go back to reference Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442:282–286CrossRef Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442:282–286CrossRef
10.
go back to reference Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRef Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRef
11.
go back to reference Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRef Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRef
12.
go back to reference Goyal V, Balandin AA (2012) Thermal properties of the hybrid graphene–metal nano–micro-composites: applications in thermal interface materials. Appl Phys Lett 100:073113CrossRef Goyal V, Balandin AA (2012) Thermal properties of the hybrid graphene–metal nano–micro-composites: applications in thermal interface materials. Appl Phys Lett 100:073113CrossRef
13.
go back to reference Shahil KM, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340CrossRef Shahil KM, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340CrossRef
14.
go back to reference Goli P, Legedza S, Dhar A, Salgado R, Renteria J, Balandin AA (2013) Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J Power Sources 248:37–43CrossRef Goli P, Legedza S, Dhar A, Salgado R, Renteria J, Balandin AA (2013) Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J Power Sources 248:37–43CrossRef
15.
go back to reference Shahil KM, Balandin AA (2012) Graphene—multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867CrossRef Shahil KM, Balandin AA (2012) Graphene—multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867CrossRef
16.
go back to reference Bartolucci SF, Paras J, Rafiee MA, Rafiee J, Lee S, Kapoor D et al (2011) Graphene–aluminum nanocomposites. Mater Sci Eng A 528:7933–7937CrossRef Bartolucci SF, Paras J, Rafiee MA, Rafiee J, Lee S, Kapoor D et al (2011) Graphene–aluminum nanocomposites. Mater Sci Eng A 528:7933–7937CrossRef
17.
go back to reference Chen LY, Konishi H, Fehrenbacher A, Ma C, Xu JQ, Choi H et al (2012) Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Mater 67:29–32CrossRef Chen LY, Konishi H, Fehrenbacher A, Ma C, Xu JQ, Choi H et al (2012) Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Mater 67:29–32CrossRef
18.
go back to reference Hwang J, Yoon T, Jin SH, Lee J, Kim TS, Hong SH et al (2013) Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater 25:6724–6729CrossRef Hwang J, Yoon T, Jin SH, Lee J, Kim TS, Hong SH et al (2013) Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater 25:6724–6729CrossRef
19.
go back to reference Kim Y, Lee J, Yeom MS, Shin JW, Kim H, Cui Y et al (2013) Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nat Commun 4:1–7 Kim Y, Lee J, Yeom MS, Shin JW, Kim H, Cui Y et al (2013) Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nat Commun 4:1–7
20.
go back to reference Wang J, Li Z, Fan G, Pan H, Chen Z, Zhang D (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater 66:594–597CrossRef Wang J, Li Z, Fan G, Pan H, Chen Z, Zhang D (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater 66:594–597CrossRef
21.
go back to reference Subrahmanyam K, Manna AK, Pati SK, Rao C (2010) A study of graphene decorated with metal nanoparticles. Chem Phys Lett 497:70–75CrossRef Subrahmanyam K, Manna AK, Pati SK, Rao C (2010) A study of graphene decorated with metal nanoparticles. Chem Phys Lett 497:70–75CrossRef
22.
go back to reference Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112:5263–5266CrossRef Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112:5263–5266CrossRef
23.
go back to reference Xu C, Wang X, Zhu J (2008) Graphene–metal particle nanocomposites. J Phys Chem C 112:19841–19845CrossRef Xu C, Wang X, Zhu J (2008) Graphene–metal particle nanocomposites. J Phys Chem C 112:19841–19845CrossRef
24.
go back to reference Pasricha R, Gupta S, Srivastava AK (2009) A facile and novel synthesis of Ag–graphene-based nanocomposites. Small 5:2253–2259CrossRef Pasricha R, Gupta S, Srivastava AK (2009) A facile and novel synthesis of Ag–graphene-based nanocomposites. Small 5:2253–2259CrossRef
25.
go back to reference May P, Khan U, Coleman JN (2013) Reinforcement of metal with liquid-exfoliated inorganic nano-platelets. Appl Phys Lett 103:163106CrossRef May P, Khan U, Coleman JN (2013) Reinforcement of metal with liquid-exfoliated inorganic nano-platelets. Appl Phys Lett 103:163106CrossRef
26.
go back to reference Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef
27.
go back to reference Wang Y, Zhao Y, Bao T, Li X, Su Y, Duan Y (2012) Preparation of Ni-reduced graphene oxide nanocomposites by Pd-activated electroless deposition and their magnetic properties. Appl Surf Sci 258:8603–8608CrossRef Wang Y, Zhao Y, Bao T, Li X, Su Y, Duan Y (2012) Preparation of Ni-reduced graphene oxide nanocomposites by Pd-activated electroless deposition and their magnetic properties. Appl Surf Sci 258:8603–8608CrossRef
28.
go back to reference Ji Z, Shen X, Zhu G, Zhou H, Yuan A (2012) Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. J Mater Chem 22:3471–3477CrossRef Ji Z, Shen X, Zhu G, Zhou H, Yuan A (2012) Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. J Mater Chem 22:3471–3477CrossRef
29.
go back to reference Munir Z, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41:763–777. doi:10.1007/s10853-006-6555-2 CrossRef Munir Z, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41:763–777. doi:10.​1007/​s10853-006-6555-2 CrossRef
30.
go back to reference Zeng Q, Cheng J, Tang L, Liu X, Liu Y, Li J et al (2010) Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing. Adv Funct Mater 20:3366–3372CrossRef Zeng Q, Cheng J, Tang L, Liu X, Liu Y, Li J et al (2010) Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing. Adv Funct Mater 20:3366–3372CrossRef
31.
go back to reference Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659CrossRef Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659CrossRef
32.
go back to reference Wang G, Yang J, Park J, Gou X, Wang B, Liu H et al (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195CrossRef Wang G, Yang J, Park J, Gou X, Wang B, Liu H et al (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195CrossRef
33.
go back to reference Park J, Kang E, Son SU, Park HM, Lee MK, Kim J et al (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv Mater 17:429–434CrossRef Park J, Kang E, Son SU, Park HM, Lee MK, Kim J et al (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv Mater 17:429–434CrossRef
34.
go back to reference Wang C, Zhang Q, Wu QH, Ng TW, Wong T, Ren J et al (2012) Facile synthesis of laminate-structured graphene sheet–Fe3O4 nanocomposites with superior high reversible specific capacity and cyclic stability for lithium-ion batteries. RSC Adv 2:10680–10688CrossRef Wang C, Zhang Q, Wu QH, Ng TW, Wong T, Ren J et al (2012) Facile synthesis of laminate-structured graphene sheet–Fe3O4 nanocomposites with superior high reversible specific capacity and cyclic stability for lithium-ion batteries. RSC Adv 2:10680–10688CrossRef
35.
go back to reference Murugan AV, Muraliganth T, Manthiram A (2009) Rapid, facile microwave–solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem Mater 21:5004–5006CrossRef Murugan AV, Muraliganth T, Manthiram A (2009) Rapid, facile microwave–solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem Mater 21:5004–5006CrossRef
36.
go back to reference Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2:581–587CrossRef Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2:581–587CrossRef
37.
38.
go back to reference Ang L, Hor TA, Xu G, Tung C, Zhao S, Wang J (2000) Decoration of activated carbon nanotubes with copper and nickel. Carbon 38:363–372CrossRef Ang L, Hor TA, Xu G, Tung C, Zhao S, Wang J (2000) Decoration of activated carbon nanotubes with copper and nickel. Carbon 38:363–372CrossRef
39.
go back to reference Cha SI, Kim KT, Arshad SN, Mo CB, Hong SH (2005) Extraordinary strengthening effect of carbon nanotubes in metal–matrix nanocomposites processed by molecular-level mixing. Adv Mater 17:1377–1381CrossRef Cha SI, Kim KT, Arshad SN, Mo CB, Hong SH (2005) Extraordinary strengthening effect of carbon nanotubes in metal–matrix nanocomposites processed by molecular-level mixing. Adv Mater 17:1377–1381CrossRef
40.
go back to reference Kim JK, Mai YW (1991) High strength, high fracture toughness fibre composites with interface control—a review. Compos Sci Technol 41:333–378CrossRef Kim JK, Mai YW (1991) High strength, high fracture toughness fibre composites with interface control—a review. Compos Sci Technol 41:333–378CrossRef
41.
go back to reference Jiang L, Li Z, Fan G, Cao L, Zhang D (2012) Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scripta Mater 66:331–334CrossRef Jiang L, Li Z, Fan G, Cao L, Zhang D (2012) Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scripta Mater 66:331–334CrossRef
42.
go back to reference Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
Metadata
Title
Highly enhanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles
Authors
Meixia Li
Hongwei Che
Xiaoyan Liu
Shunxing Liang
Hailong Xie
Publication date
01-05-2014
Publisher
Springer US
Published in
Journal of Materials Science / Issue 10/2014
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8082-x

Other articles of this Issue 10/2014

Journal of Materials Science 10/2014 Go to the issue

Premium Partners