Skip to main content
Top
Published in: Designs, Codes and Cryptography 3/2015

01-03-2015

Highly nonlinear functions

Author: Kai-Uwe Schmidt

Published in: Designs, Codes and Cryptography | Issue 3/2015

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let f be a function from \(\mathbb {Z}_q^m\) to \(\mathbb {Z}_q\). Such a function f is bent if all values of its Fourier transform have absolute value 1. Bent functions are known to exist for all pairs \((m,q)\) except when m is odd and \(q\equiv 2\pmod 4\) and there is overwhelming evidence that no bent function exists in the latter case. In this paper the following problem is studied: how closely can the largest absolute value of the Fourier transform of f approach 1? For \(q=2\), this problem is equivalent to the old and difficult open problem of determining the covering radius of the first order Reed–Muller code. The main result is, loosely speaking, that the largest absolute value of the Fourier transform of f can be made arbitrarily close to 1 for q large enough.
Literature
1.
go back to reference Akyildiz E., Güloǧlu I.Ş., İkeda M.: A note of generalized bent functions. J. Pure Appl. Algebra 106(1), 1–9 (1996). Akyildiz E., Güloǧlu I.Ş., İkeda M.: A note of generalized bent functions. J. Pure Appl. Algebra 106(1), 1–9 (1996).
2.
go back to reference Beck J.: Flat polynomials on the unit circle: note on a problem of Littlewood. Bull. Lond. Math. Soc. 23(3), 269–277 (1991). Beck J.: Flat polynomials on the unit circle: note on a problem of Littlewood. Bull. Lond. Math. Soc. 23(3), 269–277 (1991).
3.
go back to reference Berlekamp E.R., Welch L.R.: Weight distributions of the cosets of the (32, 6) Reed–Muller code. IEEE Trans. Inf. Theory IT–18(1), 203–207 (1972). Berlekamp E.R., Welch L.R.: Weight distributions of the cosets of the (32, 6) Reed–Muller code. IEEE Trans. Inf. Theory IT–18(1), 203–207 (1972).
4.
go back to reference Durrett R.: Probability: Theory and Examples, 4th edn. Cambridge University Press, Cambridge (2010). Durrett R.: Probability: Theory and Examples, 4th edn. Cambridge University Press, Cambridge (2010).
5.
go back to reference Feng K., Liu F.: New results on the nonexistence of generalized bent functions. IEEE Trans. Inf. Theory 49(11), 3066–3071 (2003). Feng K., Liu F.: New results on the nonexistence of generalized bent functions. IEEE Trans. Inf. Theory 49(11), 3066–3071 (2003).
6.
go back to reference Hou X.-D.: Covering radius of the Reed–Muller code R(1,7): a simpler proof. J. Comb. Theory Ser. A 74(2), 337–341 (1996). Hou X.-D.: Covering radius of the Reed–Muller code R(1,7): a simpler proof. J. Comb. Theory Ser. A 74(2), 337–341 (1996).
7.
go back to reference İkeda M.: A remark on the non-existence of generalized bent functions. In: Number Theory and Its Applications (Ankara, 1996). Lecture Notes in Pure and Applied Mathematics, vol. 204, pp. 109–119. Dekker, New York (1999). İkeda M.: A remark on the non-existence of generalized bent functions. In: Number Theory and Its Applications (Ankara, 1996). Lecture Notes in Pure and Applied Mathematics, vol. 204, pp. 109–119. Dekker, New York (1999).
8.
go back to reference Kavut S., Yücel M.D.: 9-Variable Boolean functions with nonlinearity 242 in the generalized rotation symmetric class. Inf. Comput. 208(4), 341–350 (2010). Kavut S., Yücel M.D.: 9-Variable Boolean functions with nonlinearity 242 in the generalized rotation symmetric class. Inf. Comput. 208(4), 341–350 (2010).
9.
go back to reference Kumar P.V., Scholtz R.A., Welch L.R.: Generalized bent functions and their properties. J. Comb. Theory Ser. A 40(1), 90–107 (1985). Kumar P.V., Scholtz R.A., Welch L.R.: Generalized bent functions and their properties. J. Comb. Theory Ser. A 40(1), 90–107 (1985).
10.
go back to reference Liu F.M., Yue Q.: The relationship between the nonexistence of generalized bent functions and Diophantine equations. Acta Math. Sin. (Engl. Ser.) 27(6), 1173–1186 (2011). Liu F.M., Yue Q.: The relationship between the nonexistence of generalized bent functions and Diophantine equations. Acta Math. Sin. (Engl. Ser.) 27(6), 1173–1186 (2011).
11.
go back to reference Mykkeltveit J.J.: The covering radius of the (128, 8) Reed–Muller code is 56. IEEE Trans. Inf. Theory 26(3), 359–362 (1980). Mykkeltveit J.J.: The covering radius of the (128, 8) Reed–Muller code is 56. IEEE Trans. Inf. Theory 26(3), 359–362 (1980).
12.
go back to reference Patterson N.J., Wiedemann D.H.: The covering radius of the \((2^{15},\,16)\) Reed–Muller code is at least 16 276. IEEE Trans. Inf. Theory 29(3), 354–356 (1983). Corrected in: IEEE Trans. Inf. Theory 36(2), 443 (1990). Patterson N.J., Wiedemann D.H.: The covering radius of the \((2^{15},\,16)\) Reed–Muller code is at least 16 276. IEEE Trans. Inf. Theory 29(3), 354–356 (1983). Corrected in: IEEE Trans. Inf. Theory 36(2), 443 (1990).
13.
go back to reference Pei D.Y.: On nonexistence of generalized bent functions. In: Finite Fields, Coding Theory, and Advances in Communications and Computing (Las Vegas, NV, 1991). Lecture Notes in Pure and Applied Mathematics, vol. 141, pp. 165–172. Dekker, New York (1993). Pei D.Y.: On nonexistence of generalized bent functions. In: Finite Fields, Coding Theory, and Advances in Communications and Computing (Las Vegas, NV, 1991). Lecture Notes in Pure and Applied Mathematics, vol. 141, pp. 165–172. Dekker, New York (1993).
14.
go back to reference Rothaus O.S.: On “bent” functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976). Rothaus O.S.: On “bent” functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976).
15.
go back to reference Schmidt K.-U.: Quaternary constant-amplitude codes for multicode CDMA. IEEE Trans. Inf. Theory 55(4), 1824–1832 (2009). Schmidt K.-U.: Quaternary constant-amplitude codes for multicode CDMA. IEEE Trans. Inf. Theory 55(4), 1824–1832 (2009).
16.
go back to reference Sharif M., Hassibi B.: Existence of codes with constant PMEPR and related design. IEEE Trans. Signal Proces. 52(10), 2836–2846 (2004). Sharif M., Hassibi B.: Existence of codes with constant PMEPR and related design. IEEE Trans. Signal Proces. 52(10), 2836–2846 (2004).
17.
go back to reference Sloane N.J.A.: Unsolved problems related to the covering radius of codes. In: Cover T., Gopinath B. (eds.) Open Problems in Communication and Computation, pp. 51–56. Springer, New York (1987). Sloane N.J.A.: Unsolved problems related to the covering radius of codes. In: Cover T., Gopinath B. (eds.) Open Problems in Communication and Computation, pp. 51–56. Springer, New York (1987).
18.
go back to reference Spencer J.: Six standard deviations suffice. Trans. Am. Math. Soc. 289(2), 679–706 (1985). Spencer J.: Six standard deviations suffice. Trans. Am. Math. Soc. 289(2), 679–706 (1985).
Metadata
Title
Highly nonlinear functions
Author
Kai-Uwe Schmidt
Publication date
01-03-2015
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 3/2015
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-013-9880-x

Other articles of this Issue 3/2015

Designs, Codes and Cryptography 3/2015 Go to the issue

Premium Partner