Skip to main content
Top

2024 | OriginalPaper | Chapter

Hilbert Basis Activation Function for Neural Network

Authors : J. E. Souza de Cursi, A. El Mouatasim, T. Berroug, R. Ellaia

Published in: Proceedings of the 6th International Symposium on Uncertainty Quantification and Stochastic Modelling

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the introduction of a novel Hilbert basis activation function for neural networks, drawing on concepts from algebraic geometry. It discusses the formulation and properties of the Hilbert basis activation function, highlighting its ability to capture local geometric structures and adapt to data characteristics. The authors present experimental results comparing the new activation function with popular alternatives like ReLU and sigmoid, demonstrating its competitive performance. The chapter also explores the potential applications and future research directions for this innovative activation function, making it a compelling read for specialists in the field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Literature
1.
go back to reference El Mouatasim, A., de Cursi, J.S., Ellaia, R.: Stochastic perturbation of subgradient algorithm for nonconvex deep neural networks. Comput. Appl. Math. 42, 167 (2023)MathSciNetCrossRefMATH El Mouatasim, A., de Cursi, J.S., Ellaia, R.: Stochastic perturbation of subgradient algorithm for nonconvex deep neural networks. Comput. Appl. Math. 42, 167 (2023)MathSciNetCrossRefMATH
2.
go back to reference El Mouatasim, A.: Fast gradient descent algorithm for image classification with neural networks. J. Sign. Image Video Process. (SIViP) 14, 1565–1572 (2020)CrossRef El Mouatasim, A.: Fast gradient descent algorithm for image classification with neural networks. J. Sign. Image Video Process. (SIViP) 14, 1565–1572 (2020)CrossRef
3.
go back to reference Khalij, L., de Cursi, E.S.: Uncertainty quantification in data fitting neural and Hilbert networks. Uncertainties 2020(036), v2 (2020) Khalij, L., de Cursi, E.S.: Uncertainty quantification in data fitting neural and Hilbert networks. Uncertainties 2020(036), v2 (2020)
4.
go back to reference LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef
5.
go back to reference Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)MATH Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)MATH
6.
go back to reference Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Cham (2006)MATH Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Cham (2006)MATH
7.
go back to reference Ng, A.Y., Jordan, M.I.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849-856 (2004) Ng, A.Y., Jordan, M.I.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849-856 (2004)
8.
go back to reference Glorot, X., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, pp. 315-323 (2011) Glorot, X., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, pp. 315-323 (2011)
9.
go back to reference Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, pp. 807-814 (2010) Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, pp. 807-814 (2010)
10.
go back to reference Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P.: Learning activation functions to improve deep neural networks. In: Proceedings of the 31st International Conference on Machine Learning, pp. 478-486 (2014) Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P.: Learning activation functions to improve deep neural networks. In: Proceedings of the 31st International Conference on Machine Learning, pp. 478-486 (2014)
11.
go back to reference Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint: arXiv:1511.07289 (2015) Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint: arXiv:​1511.​07289 (2015)
12.
go back to reference Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the 30th International Conference on Machine Learning, pp. 3-11 (2013) Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the 30th International Conference on Machine Learning, pp. 3-11 (2013)
13.
go back to reference Park, H.S., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)CrossRef Park, H.S., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)CrossRef
14.
go back to reference Luo, C., Liu, Q., Wang, H., Lin, Z.: Spline-based activation functions for deep neural networks. In: Proceedings of the European Conference on Computer Vision, pp. 99-115 (2018) Luo, C., Liu, Q., Wang, H., Lin, Z.: Spline-based activation functions for deep neural networks. In: Proceedings of the European Conference on Computer Vision, pp. 99-115 (2018)
15.
go back to reference Wang, H., Zhou, Z.H., Zhang, Y.: Dimensionality reduction using Hilbert-schmidt independence criterion. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, pp. 656-663 (2009) Wang, H., Zhou, Z.H., Zhang, Y.: Dimensionality reduction using Hilbert-schmidt independence criterion. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, pp. 656-663 (2009)
Metadata
Title
Hilbert Basis Activation Function for Neural Network
Authors
J. E. Souza de Cursi
A. El Mouatasim
T. Berroug
R. Ellaia
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-47036-3_22

Premium Partners