Skip to main content
Top
Published in: Journal of Computational Electronics 1/2019

21-11-2018

Hopping parameters for tunnel coupling in 2D materials

Authors: V. L. Katkov, D. A. Lobanov

Published in: Journal of Computational Electronics | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Using Bardeen’s approach and orbital wave functions obtained by the algorithm of Herman and Skillman, we calculated interatomic matrix elements for tunnel interaction between the atoms from the set of B, C, N, Si, P, S, Ti, V, Se, Mo, Te and W, which constitute many 2D materials. In a wide range of interatomic distances, these values are approximated by simple functions with a small set of parameters. The results are presented in reference tables. These results will be useful for describing different tunnel phenomena in low-dimensional materials using the tight-binding approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Binnig, G., Rohrer, H.: Scanning tunneling microscopy. IBM J. Res. Dev. 44, 279 (2000)CrossRef Binnig, G., Rohrer, H.: Scanning tunneling microscopy. IBM J. Res. Dev. 44, 279 (2000)CrossRef
2.
go back to reference Binnig, G., Rohrer, H., Gerber, C., Weibel, E.: Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57 (1982)CrossRef Binnig, G., Rohrer, H., Gerber, C., Weibel, E.: Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57 (1982)CrossRef
3.
go back to reference Binnig, G., Rohrer, H., Gerber, C., Weibel, E.: Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178 (1982)CrossRef Binnig, G., Rohrer, H., Gerber, C., Weibel, E.: Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178 (1982)CrossRef
4.
go back to reference Hofer, W.A., Foster, A.S., Shluger, A.L.: Theories of scanning probe microscopes at the atomic scale. Rev. Mod. Phys. 75, 1287 (2003)CrossRef Hofer, W.A., Foster, A.S., Shluger, A.L.: Theories of scanning probe microscopes at the atomic scale. Rev. Mod. Phys. 75, 1287 (2003)CrossRef
5.
go back to reference Alferov, Z.I.: The history and future of semiconductor heterostructures. Semiconductors 32, 1 (1998)CrossRef Alferov, Z.I.: The history and future of semiconductor heterostructures. Semiconductors 32, 1 (1998)CrossRef
6.
go back to reference Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419 (2013)CrossRef Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419 (2013)CrossRef
7.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)CrossRef
8.
go back to reference Pacilé, D., Meyer, J.C., Girit, C.O., Zettl, A.: The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008)CrossRef Pacilé, D., Meyer, J.C., Girit, C.O., Zettl, A.: The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008)CrossRef
9.
go back to reference Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nano 9, 372 (2014)CrossRef Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nano 9, 372 (2014)CrossRef
10.
go back to reference Koenig, S.P., Doganov, R.A., Schmidt, H., Castro Neto, A.H., Ozyilmaz, B.: Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014)CrossRef Koenig, S.P., Doganov, R.A., Schmidt, H., Castro Neto, A.H., Ozyilmaz, B.: Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014)CrossRef
11.
go back to reference Low, T., Engel, M., Steiner, M., Avouris, P.: Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90, 081408 (2014)CrossRef Low, T., Engel, M., Steiner, M., Avouris, P.: Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90, 081408 (2014)CrossRef
12.
go back to reference Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033 (2014)CrossRef Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033 (2014)CrossRef
13.
go back to reference Lu, W., Nan, H., Hong, J., Chen, Y., Zhu, C., Liang, Z., Ma, X., Ni, Z., Jin, C., Zhang, Z.: Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7, 853 (2014)CrossRef Lu, W., Nan, H., Hong, J., Chen, Y., Zhu, C., Liang, Z., Ma, X., Ni, Z., Jin, C., Zhang, Z.: Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7, 853 (2014)CrossRef
14.
go back to reference Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)CrossRef Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)CrossRef
15.
go back to reference Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., Aufray, B.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010)CrossRef Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., Aufray, B.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010)CrossRef
16.
go back to reference Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nano 7, 699 (2012)CrossRef Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nano 7, 699 (2012)CrossRef
17.
go back to reference Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498 (1954)CrossRefMATH Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498 (1954)CrossRefMATH
18.
go back to reference Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., Seifert, G.: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58, 7260 (1998)CrossRef Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., Seifert, G.: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58, 7260 (1998)CrossRef
19.
go back to reference Khalili, K., Penazzi, G., Frauenheim, T.: The spectral adjustment in nanoscale transport combined with the density functional based tight binding method. Comput. Mater. Sci. 133, 14 (2017)CrossRef Khalili, K., Penazzi, G., Frauenheim, T.: The spectral adjustment in nanoscale transport combined with the density functional based tight binding method. Comput. Mater. Sci. 133, 14 (2017)CrossRef
20.
go back to reference Berthod, C., Giamarchi, T.: Tunneling conductance and local density of states in tight-binding junctions. Phys. Rev. B 84, 155414 (2011)CrossRef Berthod, C., Giamarchi, T.: Tunneling conductance and local density of states in tight-binding junctions. Phys. Rev. B 84, 155414 (2011)CrossRef
21.
go back to reference Trushkov, I., Iorsh, I.: Two-dimensional hyperbolic medium for electrons and photons based on the array of tunnel-coupled graphene nanoribbons. Phys. Rev. B 92, 045305 (2015)CrossRef Trushkov, I., Iorsh, I.: Two-dimensional hyperbolic medium for electrons and photons based on the array of tunnel-coupled graphene nanoribbons. Phys. Rev. B 92, 045305 (2015)CrossRef
22.
go back to reference Hawke, L.G.D., Kalosakas, G., Simserides, C.: Electronic parameters for charge transfer along DNA. Eur. Phys. J. E 32, 291 (2010)CrossRef Hawke, L.G.D., Kalosakas, G., Simserides, C.: Electronic parameters for charge transfer along DNA. Eur. Phys. J. E 32, 291 (2010)CrossRef
23.
go back to reference Isaeva, O.G., Katkov, V.L., Osipov, V.A.: DNA sequencing through graphene nanogap: a model of sequential electron transport. Eur. Phys. J. B 87, 272 (2014)CrossRef Isaeva, O.G., Katkov, V.L., Osipov, V.A.: DNA sequencing through graphene nanogap: a model of sequential electron transport. Eur. Phys. J. B 87, 272 (2014)CrossRef
24.
go back to reference Katkov, V.L., Osipov, V.A.: Graphene-based tunnel junction. JETP Lett. 98, 689 (2014)CrossRef Katkov, V.L., Osipov, V.A.: Graphene-based tunnel junction. JETP Lett. 98, 689 (2014)CrossRef
25.
go back to reference Katkov, V.L., Osipov, V.A.: Planar graphene tunnel field-effect transistor. Appl. Phys. Lett. 104, 053102 (2014)CrossRef Katkov, V.L., Osipov, V.A.: Planar graphene tunnel field-effect transistor. Appl. Phys. Lett. 104, 053102 (2014)CrossRef
26.
go back to reference Glebov, A.A., Katkov, V.L., Osipov, V.A.: Effect of edge vacancies on performance of planar graphene tunnel field-effect transistor. EPL (Europhys. Lett.) 118, 27003 (2017)CrossRef Glebov, A.A., Katkov, V.L., Osipov, V.A.: Effect of edge vacancies on performance of planar graphene tunnel field-effect transistor. EPL (Europhys. Lett.) 118, 27003 (2017)CrossRef
27.
go back to reference Katkov, V.L., Osipov, V.A.: Review Article: Tunneling-based graphene electronics: methods and examples. J. Vac. Sci. Technol. B 35, 050801 (2017)CrossRef Katkov, V.L., Osipov, V.A.: Review Article: Tunneling-based graphene electronics: methods and examples. J. Vac. Sci. Technol. B 35, 050801 (2017)CrossRef
28.
go back to reference Meunier, V., Lambin, P.: Tight-binding computation of the STM image of carbon nanotubes. Phys. Rev. Lett. 81, 5588 (1998)CrossRef Meunier, V., Lambin, P.: Tight-binding computation of the STM image of carbon nanotubes. Phys. Rev. Lett. 81, 5588 (1998)CrossRef
29.
go back to reference Settnes, M., Power, S.R., Petersen, D.H., Jauho, A.-P.: Phys. Rev. Lett. 112, 096801 (2014)CrossRef Settnes, M., Power, S.R., Petersen, D.H., Jauho, A.-P.: Phys. Rev. Lett. 112, 096801 (2014)CrossRef
30.
go back to reference Mathon, J.: Tight-binding theory of tunneling giant magnetoresistance. Phys. Rev. B 56, 11810 (1997)CrossRef Mathon, J.: Tight-binding theory of tunneling giant magnetoresistance. Phys. Rev. B 56, 11810 (1997)CrossRef
31.
go back to reference Wahiduzzaman, M., Oliveira, A.F., Philipsen, P., Zhechkov, L., van Lenthe, E., Witek, H.A., Heine, T.: DFTB parameters for the periodic table: part 1. Electronic structure. J. Chem. Theory Comput. 9, 4006 (2013)CrossRef Wahiduzzaman, M., Oliveira, A.F., Philipsen, P., Zhechkov, L., van Lenthe, E., Witek, H.A., Heine, T.: DFTB parameters for the periodic table: part 1. Electronic structure. J. Chem. Theory Comput. 9, 4006 (2013)CrossRef
32.
go back to reference Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57 (1961)CrossRef Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57 (1961)CrossRef
33.
go back to reference Paz, O., Brihuega, I., Gómez-Rodríguez, J.M., Soler, J.M.: Tip and surface determination from experiments and simulations of scanning tunneling microscopy and spectroscopy. Phys. Rev. Lett. 94, 056103 (2005)CrossRef Paz, O., Brihuega, I., Gómez-Rodríguez, J.M., Soler, J.M.: Tip and surface determination from experiments and simulations of scanning tunneling microscopy and spectroscopy. Phys. Rev. Lett. 94, 056103 (2005)CrossRef
34.
go back to reference Martìn-Rodero, A., Flores, F., March, N.H.: Tight-binding theory of tunneling current with chemisorbed species. Phys. Rev. B 38, 10047 (1988)CrossRef Martìn-Rodero, A., Flores, F., March, N.H.: Tight-binding theory of tunneling current with chemisorbed species. Phys. Rev. B 38, 10047 (1988)CrossRef
35.
go back to reference Herman, F., Skillman, S.: Atomic Structure Calculations. Prentice-Hall, Upper Saddle River (1963) Herman, F., Skillman, S.: Atomic Structure Calculations. Prentice-Hall, Upper Saddle River (1963)
36.
go back to reference Slater, J.C.: Statistical exchange-correlation in the self-consistent field. Adv. Quantum Chem. 6, 1 (1972)CrossRef Slater, J.C.: Statistical exchange-correlation in the self-consistent field. Adv. Quantum Chem. 6, 1 (1972)CrossRef
37.
go back to reference Zope, R.R., Dunlap, B.I.: Slater’s exchange parametersfor analytic and variationalcalculations. J. Chem. Theory Comput. 1, 1193 (2005)CrossRef Zope, R.R., Dunlap, B.I.: Slater’s exchange parametersfor analytic and variationalcalculations. J. Chem. Theory Comput. 1, 1193 (2005)CrossRef
38.
go back to reference Schwarz, K.: Optimization of the statistical exchange parameter \(\alpha \) for the free atoms H through Nb. Phys. Rev. B 5, 2466 (1972)CrossRef Schwarz, K.: Optimization of the statistical exchange parameter \(\alpha \) for the free atoms H through Nb. Phys. Rev. B 5, 2466 (1972)CrossRef
39.
go back to reference Schwarz, K.: Optimized statistical exchange parameters for atoms with higher Z. Theor. Chim. Acta 34, 225 (1974)CrossRef Schwarz, K.: Optimized statistical exchange parameters for atoms with higher Z. Theor. Chim. Acta 34, 225 (1974)CrossRef
41.
go back to reference Ooi, N., Rairkar, A., Lindsley, L., Adams, J.B.: Electronic structure and bonding in hexagonal boron nitride. J. Phys. Condens. Matter 18, 97 (2006)CrossRef Ooi, N., Rairkar, A., Lindsley, L., Adams, J.B.: Electronic structure and bonding in hexagonal boron nitride. J. Phys. Condens. Matter 18, 97 (2006)CrossRef
42.
go back to reference Li, P., Appelbaum, I.: Electrons and holes in phosphorene. Phys. Rev. B 90, 115439 (2014)CrossRef Li, P., Appelbaum, I.: Electrons and holes in phosphorene. Phys. Rev. B 90, 115439 (2014)CrossRef
43.
go back to reference Cahangirov, S., Topsakal, M., Aktürk, E., Sahin, H., Ciraci, S.: Two-and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)CrossRef Cahangirov, S., Topsakal, M., Aktürk, E., Sahin, H., Ciraci, S.: Two-and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)CrossRef
44.
go back to reference Amara, H., Latil, S., Meunier, V., Lambin, P., Charlier, J.-C.: Scanning tunneling microscopy fingerprints of point defects in graphene: a theoretical prediction. Phys. Rev. B 76, 115423 (2007)CrossRef Amara, H., Latil, S., Meunier, V., Lambin, P., Charlier, J.-C.: Scanning tunneling microscopy fingerprints of point defects in graphene: a theoretical prediction. Phys. Rev. B 76, 115423 (2007)CrossRef
Metadata
Title
Hopping parameters for tunnel coupling in 2D materials
Authors
V. L. Katkov
D. A. Lobanov
Publication date
21-11-2018
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2019
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1281-y

Other articles of this Issue 1/2019

Journal of Computational Electronics 1/2019 Go to the issue