Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 14/2021

18-08-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Hot Compressive Deformation Behavior and Microstructure of LZ31 Magnesium–Lithium Alloy

Authors: J. W. Liu, M. H. Dai, S. Q. Lu, Y. Li

Published in: Physics of Metals and Metallography | Issue 14/2021

Login to get access
share
SHARE

Abstract

To obtain the best hot deformation parameters of magnesium–lithium alloy and to provide the evidence for formulating hot deformation process, the deformation behavior of LZ31 magnesium–lithium alloy under hot compression was studied firstly. Then, the constitutive equation was established and the related microstructure evolution in deformation process was investigated. The results show that the alloy appears hardening and softening during the hot deformation process. After the flow stress reaches peak value, the softening is greater than hardening, and the deformation comes in the stable flow state. The peak stress decreases with the increase of temperature (the opposite situation for strain rate). The hot deformation activation energy of LZ31 alloy is Q = 149.85 kJ/mol. For the microstructure evolution, when the temperature is lower and the strain rate is higher, the softening mechanism of the alloy is dynamic recovery and dynamic recrystallization. Meanwhile, significant slip steps can be observed at the grain boundaries, which means the main deformation mechanism is dislocation slip. When the temperature gradually increases and the strain rate gradually decreases, the dynamic recovery disappears, and the main softening mechanism is continuous dynamic recrystallization.
Literature
1.
go back to reference W. A. Counts, M. Friák, D. Raabe, and J. Neugebauer, “Using ab initio calculations in designing bcc Mg–Li alloys for ultra-lightweight applications,” Acta. Mater. 57, 69–76 (2009). CrossRef W. A. Counts, M. Friák, D. Raabe, and J. Neugebauer, “Using ab initio calculations in designing bcc Mg–Li alloys for ultra-lightweight applications,” Acta. Mater. 57, 69–76 (2009). CrossRef
2.
go back to reference K. Feng, D. M. Li, C. D. He, and X. K. Chen, “Research progress in ultra light magnesium-lithium alloys for aerospace applications,” Spec. Cast. Nonferrous Alloys 37, 140–144 (2017). K. Feng, D. M. Li, C. D. He, and X. K. Chen, “Research progress in ultra light magnesium-lithium alloys for aerospace applications,” Spec. Cast. Nonferrous Alloys 37, 140–144 (2017).
3.
go back to reference B. L. Mordike, and T. Ebert, “Magnesium Properties-applications-potential,” Mater. Sci. Eng., A 302, 37–45 (2001). CrossRef B. L. Mordike, and T. Ebert, “Magnesium Properties-applications-potential,” Mater. Sci. Eng., A 302, 37–45 (2001). CrossRef
4.
go back to reference Magnesium Alloys and Technologies, Ed. by K. U. Kainer (Wiley, Chichester, 2003), pp. 56–57. Magnesium Alloys and Technologies, Ed. by K. U. Kainer (Wiley, Chichester, 2003), pp. 56–57.
5.
go back to reference T. Liu, W. Zhang, S. D. Wu, C. B. Jiang, S. X. Li, and Y. B. Xu, “Mechanical properties of a two-phase alloy Mg–8% Li–1% Al processed by equal channel angular pressing,” Mater. Sci. Eng., A 360, 345–349 (2003). CrossRef T. Liu, W. Zhang, S. D. Wu, C. B. Jiang, S. X. Li, and Y. B. Xu, “Mechanical properties of a two-phase alloy Mg–8% Li–1% Al processed by equal channel angular pressing,” Mater. Sci. Eng., A 360, 345–349 (2003). CrossRef
6.
go back to reference J. W. Liu, Z. G. Zhao, and S. Q. Lu, “Microstructure evolution and constitutive equation for the hot deformation of LZ91 Mg alloy,” Catal. Today 318, 119–125 (2018). CrossRef J. W. Liu, Z. G. Zhao, and S. Q. Lu, “Microstructure evolution and constitutive equation for the hot deformation of LZ91 Mg alloy,” Catal. Today 318, 119–125 (2018). CrossRef
7.
go back to reference L. Zhao and P. Zhao, “Effect of heat treatment on microstructure and mechanical properties of Mg–7.28Li–8.02Y alloy,” Heat Treat. Metall. 33, 37–40 (2008). L. Zhao and P. Zhao, “Effect of heat treatment on microstructure and mechanical properties of Mg–7.28Li–8.02Y alloy,” Heat Treat. Metall. 33, 37–40 (2008).
8.
go back to reference S. K. Wu, S. H. Chang, W. L. Tsia, and H. Y. Bor, “Low-frequency damping properties of as-extruded Mg–11.2Li–0.95Al–0.43Zn magnesium alloy,” Mater. Sci. Eng., A 528, 6020–6025 (2011). CrossRef S. K. Wu, S. H. Chang, W. L. Tsia, and H. Y. Bor, “Low-frequency damping properties of as-extruded Mg–11.2Li–0.95Al–0.43Zn magnesium alloy,” Mater. Sci. Eng., A 528, 6020–6025 (2011). CrossRef
9.
go back to reference Y. Zhang, Z. S. Ren, and G. Y. Yang, “Microstructure and melting process of magnesium-lithium alloy,” Nonferrous Met. Process. 36, 14–16 (2007). Y. Zhang, Z. S. Ren, and G. Y. Yang, “Microstructure and melting process of magnesium-lithium alloy,” Nonferrous Met. Process. 36, 14–16 (2007).
10.
go back to reference H. J. Mcqueen, “Metal forming: Industrial, mechanical computational and microstructural,” J. Mater Process. Technol. 37, 3–36 (1993). CrossRef H. J. Mcqueen, “Metal forming: Industrial, mechanical computational and microstructural,” J. Mater Process. Technol. 37, 3–36 (1993). CrossRef
11.
go back to reference X. M. Chen, Y. C. Lin, D. X. Wen, J. L. Zhang, and M. He, “Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation,” Mater. Des. 57, 568–577 (2014). CrossRef X. M. Chen, Y. C. Lin, D. X. Wen, J. L. Zhang, and M. He, “Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation,” Mater. Des. 57, 568–577 (2014). CrossRef
12.
go back to reference Y. C. Lin, D. G. He, J. Chen, D. D. Chen, J. Huang, Y. Tang, and M. S. Chen, “Microstructural evolution and support vector regression model for an aged Ni-based superalloy during two-stage hot forming with stepped strain rates,” Mater. Des. 154, 51–62 (2018). CrossRef Y. C. Lin, D. G. He, J. Chen, D. D. Chen, J. Huang, Y. Tang, and M. S. Chen, “Microstructural evolution and support vector regression model for an aged Ni-based superalloy during two-stage hot forming with stepped strain rates,” Mater. Des. 154, 51–62 (2018). CrossRef
13.
go back to reference Y. C. Lin, X. Y. Wu, X. M. Chen, J. Chen, D. X. Wen, J. L. Zhang, and L. T. Li, “EBSD study of a hot deformed nickel-based superalloy,” J. Alloys Compd. 640, 101–113 (2015). CrossRef Y. C. Lin, X. Y. Wu, X. M. Chen, J. Chen, D. X. Wen, J. L. Zhang, and L. T. Li, “EBSD study of a hot deformed nickel-based superalloy,” J. Alloys Compd. 640, 101–113 (2015). CrossRef
14.
go back to reference S. E. Ion, F. J. Humphreys, and S. H. White, “Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium,” Acta Metall. 30, 1909–1919 (1982). CrossRef S. E. Ion, F. J. Humphreys, and S. H. White, “Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium,” Acta Metall. 30, 1909–1919 (1982). CrossRef
15.
go back to reference C. M. Liu, Z. J. Liu, X. R. Zhu, and Z. T. Zhou, “Progress in dynamic recrystallization of magnesium and magnesium alloys,” Chin. J. Nonferrous Met. 16, 1–12 (2006). CrossRef C. M. Liu, Z. J. Liu, X. R. Zhu, and Z. T. Zhou, “Progress in dynamic recrystallization of magnesium and magnesium alloys,” Chin. J. Nonferrous Met. 16, 1–12 (2006). CrossRef
16.
go back to reference C. Zener and J. H. Hollomon, “Effect of strain rate upon plastic flow of steel,” J. Appl. Phys. 15, 22–32 (1944). CrossRef C. Zener and J. H. Hollomon, “Effect of strain rate upon plastic flow of steel,” J. Appl. Phys. 15, 22–32 (1944). CrossRef
17.
go back to reference Y. Zhang, H. L. Sun, A. A. Volinsky, B. J. Wang, B. H. Tian, Z. Chai, Y. Liu, and K. X. Song, “Small Y addition effects on hot deformation behavior of copper-matrix alloys,” Adv. Eng. Mater. 19, 1700197 (2017). CrossRef Y. Zhang, H. L. Sun, A. A. Volinsky, B. J. Wang, B. H. Tian, Z. Chai, Y. Liu, and K. X. Song, “Small Y addition effects on hot deformation behavior of copper-matrix alloys,” Adv. Eng. Mater. 19, 1700197 (2017). CrossRef
18.
go back to reference J. H. Kim, D. Kim, Y. S. Lee, M. G. Lee, K. Chung, H. Y. Kim, and R. H. Wagoner, “A temperature-dependent elasto-plastic constitutive model for magnesium alloy AZ31 sheets,” Int. J. Plast. 50, 66–93 (2013). CrossRef J. H. Kim, D. Kim, Y. S. Lee, M. G. Lee, K. Chung, H. Y. Kim, and R. H. Wagoner, “A temperature-dependent elasto-plastic constitutive model for magnesium alloy AZ31 sheets,” Int. J. Plast. 50, 66–93 (2013). CrossRef
19.
go back to reference G. B. Wei, X. D. Peng, F. P. Hu, A. Hadadzadeh, Y. Yang, W. D. Xie, and M. A. Wells, “Deformation behavior and constitutive model for dual-phase Mg–Li alloy at elevated temperatures,” Trans. Nonferrous Met. Soc. China. 26, 508–518 (2016). CrossRef G. B. Wei, X. D. Peng, F. P. Hu, A. Hadadzadeh, Y. Yang, W. D. Xie, and M. A. Wells, “Deformation behavior and constitutive model for dual-phase Mg–Li alloy at elevated temperatures,” Trans. Nonferrous Met. Soc. China. 26, 508–518 (2016). CrossRef
Metadata
Title
Hot Compressive Deformation Behavior and Microstructure of LZ31 Magnesium–Lithium Alloy
Authors
J. W. Liu
M. H. Dai
S. Q. Lu
Y. Li
Publication date
18-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 14/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21140155