Skip to main content
Top
Published in: Energy Efficiency 6/2017

16-07-2017 | Original Article

Hot-cool box calorimetric determination of the solar heat gain coefficient and the U-value of internal shading devices

Authors: Ayelén Villalba, Erica Correa, Andrea Pattini, Daniel Vicare

Published in: Energy Efficiency | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In several developing countries, energy performance rating programs are currently in progress. Complex fenestration systems (CFS) are building components that play a key role in reducing energy consumption. The development and testing of equipment is central for beginning the energy efficiency rating process of complex glazing systems in these countries. This paper validates the use of a low-cost hot-cold box calorimeter for measurement of the solar heat gain coefficient (SGHC) and overall heat transfer coefficient (U-value) of interior shading systems. This work aims to determine the energy performance of three types of often employed shading systems: solar control films, interior horizontal venetian blinds, and indoor drapery curtains. Results show that the energy performance of solar shading devices studied depends on both their morphological and optical properties. The shading systems analyzed present similar U-values, where technological features are represented by the thickness and the thermal conductivity of the material. SHGC is mainly defined by the transmittance and, to a lesser extent, the absorptance of the systems, which differ significantly according to the analyzed shading device. The three types of curtains analyzed demonstrate an SHGC dependent on the fabrics openness factor: jacquard curtains (openness factor 0.05) present a SHGC of 0.7, whereas organza curtains (openness factor 0.45) have a SHGC of 0.82. The SHGC of the venetian blinds analyzed varies on average 36% according to the slat tilt (0°–45°). The solar control films examined modify their solar gain according to their spectral selectivity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
For complex glazing systems, N i must be determined calorimetrically for a given system geometry and set of emittances but will be the same for all such systems regardless of the solar-optical properties of the layers. Therefore, it only needs to be determined once for a “thermally prototypic” system and can be combined with quantities of transmittance and absorptance determined by noncalorimetric optical techniques to produce values of SHGC for a variety of similar systems (Klems et al. 1996). In another study, Klems presents the results of an extensive set of calorimetric measurements of layer-specific inward-flowing fractions for common thermally prototypic systems involving shading (Klems and Kelley 1996). Collins and Harrison (1999) found that for venetian blinds the inward-flowing fraction is dependent on the interior/exterior temperature difference and only slightly dependent on the absorbed irradiance and exterior air film coefficient. They also checked that blind slat angle has an effect on the inward-flowing fraction under certain circumstances.
 
Literature
go back to reference Álvarez, G., Palacios, M. J., & Palacios, J. J. (2000). A test method to evaluate the thermal performance of window glazing. Applied Thermal Engineering, 20, 803–812.CrossRef Álvarez, G., Palacios, M. J., & Palacios, J. J. (2000). A test method to evaluate the thermal performance of window glazing. Applied Thermal Engineering, 20, 803–812.CrossRef
go back to reference ASHRAE. (2009). ASHRAE handbook—fundamentals (SI edition). American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE. (2009). ASHRAE handbook—fundamentals (SI edition). American Society of Heating, Refrigerating and Air-Conditioning Engineers.
go back to reference Chaiyapinunt, S., & Khamporn, N. (2014). Heat transmission through a glass window with a curved venetian blind installed. Solar Energy, 110, 71–82.CrossRef Chaiyapinunt, S., & Khamporn, N. (2014). Heat transmission through a glass window with a curved venetian blind installed. Solar Energy, 110, 71–82.CrossRef
go back to reference Chaiyapinunt, S., Phueakpongsuriya, B., Mongkornsaksit, K., & Khomporn, N. (2005). Performance rating of glass windows and glass windows with films in aspect of thermal comfort and heat transmission. Energy and Building, 37, 725–738.CrossRef Chaiyapinunt, S., Phueakpongsuriya, B., Mongkornsaksit, K., & Khomporn, N. (2005). Performance rating of glass windows and glass windows with films in aspect of thermal comfort and heat transmission. Energy and Building, 37, 725–738.CrossRef
go back to reference Chen, F., & Wittkopf, S. K. (2012). Summer condition thermal transmittance measurement of fenestration systems using calorimetric hot box. Energy and Buildings, 53, 47–56.CrossRef Chen, F., & Wittkopf, S. K. (2012). Summer condition thermal transmittance measurement of fenestration systems using calorimetric hot box. Energy and Buildings, 53, 47–56.CrossRef
go back to reference Collins, M. R. (2004a). Convective heat transfer coefficients from an internal window surface and adjacent sunlit venetian blind. Energy and Buildings, 36(3), 309–318.CrossRef Collins, M. R. (2004a). Convective heat transfer coefficients from an internal window surface and adjacent sunlit venetian blind. Energy and Buildings, 36(3), 309–318.CrossRef
go back to reference Collins, M.R. (2004b). The importance of indoorand outdoor air-film coefficient measurement to solar calorimetery. SESCI 2004 Conference, University of Waterloo Waterloo, Ontario, Canada, August 21st–25th. Collins, M.R. (2004b). The importance of indoorand outdoor air-film coefficient measurement to solar calorimetery. SESCI 2004 Conference, University of Waterloo Waterloo, Ontario, Canada, August 21st–25th.
go back to reference Collins, M. R., & Harrison, S. J. (1999). Calorimetric measurement of the inward-flowing fraction of absorbed solar radiation in venetian blinds. ASHRAE Transactions, 1999(105), 1022–1030. Collins, M. R., & Harrison, S. J. (1999). Calorimetric measurement of the inward-flowing fraction of absorbed solar radiation in venetian blinds. ASHRAE Transactions, 1999(105), 1022–1030.
go back to reference Collins, M. R., & Wright, J. L. (2006). Calculating centre-glass performance indices of windows with a diathermanous layer. ASHRAE Transactions, 112, 22–29. Collins, M. R., & Wright, J. L. (2006). Calculating centre-glass performance indices of windows with a diathermanous layer. ASHRAE Transactions, 112, 22–29.
go back to reference Collins, M. R., Harrison, S. J., Oosthuizen, P. H., & Naylor, D. (2002). Heat transfer from an isothermal vertical surface with adjacent heated horizontal louvers: numerical analysis. ASME Journal of Heat Transfer, 124, 1072–1077.CrossRef Collins, M. R., Harrison, S. J., Oosthuizen, P. H., & Naylor, D. (2002). Heat transfer from an isothermal vertical surface with adjacent heated horizontal louvers: numerical analysis. ASME Journal of Heat Transfer, 124, 1072–1077.CrossRef
go back to reference Curcija, D. C. (2016). Fenestration attachments. 2016 Building Technologies Office Peer Review. U.S. Energy Department. Lawrence Berkeley National Laboratory (LBNL). Curcija, D. C. (2016). Fenestration attachments. 2016 Building Technologies Office Peer Review. U.S. Energy Department. Lawrence Berkeley National Laboratory (LBNL).
go back to reference Dubois, M. C. (1997). Solar shading and building energy use, a literature review, Part 1. Report TABK--97/3049. Department of Building Science, Lund Institute of Technology, Lund University. Dubois, M. C. (1997). Solar shading and building energy use, a literature review, Part 1. Report TABK--97/3049. Department of Building Science, Lund Institute of Technology, Lund University.
go back to reference Foroushani, S.S.M., Wright, J.L., Naylor, D. (2016). Sensitivity of the solar heat gain coefficient of complex fenestration systems to the indoor convection coefficient. Hamilton, Ontario, Canada: eSim 2016 Building Performance Simulation Conference, pp. 277–285. Foroushani, S.S.M., Wright, J.L., Naylor, D. (2016). Sensitivity of the solar heat gain coefficient of complex fenestration systems to the indoor convection coefficient. Hamilton, Ontario, Canada: eSim 2016 Building Performance Simulation Conference, pp. 277–285.
go back to reference de Gastines, M., Correa, E., & Pattini, A. (2015). Evaluación del balance energético de ventanas en mendoza. Impacto de su tecnología y orientación. Avances en Energías Renovables y Medio Ambiente, 19, 05.01–05.12. de Gastines, M., Correa, E., & Pattini, A. (2015). Evaluación del balance energético de ventanas en mendoza. Impacto de su tecnología y orientación. Avances en Energías Renovables y Medio Ambiente, 19, 05.01–05.12.
go back to reference Grasso, M. M., Hunn, B. D., & Briones, R. (1990). Effect of textile characteristics on the thermal transmittance of interior shading fabrics. ASHRAE Transactions, 96(1), 875–883. Grasso, M. M., Hunn, B. D., & Briones, R. (1990). Effect of textile characteristics on the thermal transmittance of interior shading fabrics. ASHRAE Transactions, 96(1), 875–883.
go back to reference Harrison, S. J., & Collins, M. R. (1999). Queen’s University solar calorimeter—design, calibration, and operating procedure. Edmonton, Canada: Solar Energy Society of Canada Conference. Harrison, S. J., & Collins, M. R. (1999). Queen’s University solar calorimeter—design, calibration, and operating procedure. Edmonton, Canada: Solar Energy Society of Canada Conference.
go back to reference Huizenga, C., Arasteh, D., Curcija, C., Klems, J., Kohler, C., Mitchell, R., Yu, T., Zhu, L., Czarnecki, S., Vidanovic, S., & Zelenay, K. (2013). WINDOW 6.3 shade material library. Lawrence: Berkeley National Laboratory. Huizenga, C., Arasteh, D., Curcija, C., Klems, J., Kohler, C., Mitchell, R., Yu, T., Zhu, L., Czarnecki, S., Vidanovic, S., & Zelenay, K. (2013). WINDOW 6.3 shade material library. Lawrence: Berkeley National Laboratory.
go back to reference Hutchins, M. (2015). High performance dynamic shading solutions for energy efficiency and comfort in buildings. Sonnergy report 15/498. Sonnergy Limited. Hutchins, M. (2015). High performance dynamic shading solutions for energy efficiency and comfort in buildings. Sonnergy report 15/498. Sonnergy Limited.
go back to reference Inoue, T., & Momota, M. (2006). Simplified on-site method for evaluating solar shading performance of advanced windows. Geneva, Switzerland: 23rd Conference on Passive and Low Energy Architecture. Inoue, T., & Momota, M. (2006). Simplified on-site method for evaluating solar shading performance of advanced windows. Geneva, Switzerland: 23rd Conference on Passive and Low Energy Architecture.
go back to reference IRAM 11507. Carpintería de obra. Ventanas y puertas exteriores. Requisitos. parte 6- Etiquetado energético de ventanas. IRAM 11507. Carpintería de obra. Ventanas y puertas exteriores. Requisitos. parte 6- Etiquetado energético de ventanas.
go back to reference ISO 15099: 2003. (2003). Thermal performance of windows. Doors and shading devices. Berlin: Detailed calculations: BeuthVerlag. ISO 15099: 2003. (2003). Thermal performance of windows. Doors and shading devices. Berlin: Detailed calculations: BeuthVerlag.
go back to reference Jonsson, J.C., Lee, E.S., Rubin, M. (2008). Light scattering properties of woven shade-screen material used for daylighting and solar heat-gain control. Optics + Photonics, 7065: 70650R-70650R-11. International Society for Optics and Photonics. Jonsson, J.C., Lee, E.S., Rubin, M. (2008). Light scattering properties of woven shade-screen material used for daylighting and solar heat-gain control. Optics + Photonics, 7065: 70650R-70650R-11. International Society for Optics and Photonics.
go back to reference Keyes, M. W. (1967). Analysis and rating of drapery materials used for indoor shading. ASHRAE Transactions, 73(1), 8.4.1. Keyes, M. W. (1967). Analysis and rating of drapery materials used for indoor shading. ASHRAE Transactions, 73(1), 8.4.1.
go back to reference Klems, J. H., & Kelley, G. O. (1996). Calorimetric measurements of inward-flowing fraction for complex glazing and shading systems. Atlanta, GA: ASHRAE Winter Meeting. Klems, J. H., & Kelley, G. O. (1996). Calorimetric measurements of inward-flowing fraction for complex glazing and shading systems. Atlanta, GA: ASHRAE Winter Meeting.
go back to reference Klems, J., Selkowitz, S., & Horowitz, S. A. (1982). Mobile facility for measuring net energy performance of windows and skylights. Dublin, Ireland: Third International Symposium on Energy Conservation in the Built Environment. Klems, J., Selkowitz, S., & Horowitz, S. A. (1982). Mobile facility for measuring net energy performance of windows and skylights. Dublin, Ireland: Third International Symposium on Energy Conservation in the Built Environment.
go back to reference Klems, J. H., Warner, J. L., & Kelley, G. O. (1996). Calculated and measured SHGC for complex fenestration systems. Atlanta, GA: ASHRAE Winter Meeting. Klems, J. H., Warner, J. L., & Kelley, G. O. (1996). Calculated and measured SHGC for complex fenestration systems. Atlanta, GA: ASHRAE Winter Meeting.
go back to reference Kotey, N. A., Wright, J. L., Barnaby, S. C., & Collins, M. R. (2009). Solar gain through windows with shading devices: simulation versus measurement. ASHRAE Transactions, 115, 18–30. Kotey, N. A., Wright, J. L., Barnaby, S. C., & Collins, M. R. (2009). Solar gain through windows with shading devices: simulation versus measurement. ASHRAE Transactions, 115, 18–30.
go back to reference Kuhn, T. E. (2014). Calorimetric determination of the solar heat gain coefficient g with steady-state laboratory measurements. Energy and Buildings, 84, 388–402.CrossRef Kuhn, T. E. (2014). Calorimetric determination of the solar heat gain coefficient g with steady-state laboratory measurements. Energy and Buildings, 84, 388–402.CrossRef
go back to reference Laouadi, A. (2009). Thermal modeling of shading devices of windows. ASHRAE Transactions, 115(2), 1–20. Laouadi, A. (2009). Thermal modeling of shading devices of windows. ASHRAE Transactions, 115(2), 1–20.
go back to reference Laouadi, A. (2011). Construction technology updates no. 77: performance of solar shading devices. National Research Council of Canada. Laouadi, A. (2011). Construction technology updates no. 77: performance of solar shading devices. National Research Council of Canada.
go back to reference Lau, A. K. K., Salleh, E., Lim, C., & Sulaiman, M. (2016). Potential of shading devices and glazing configurations on cooling energy savings for high-rise office buildings in hot-humid climates: the case of Malaysia. International Journal of Sustainable Built Environment, 5, 387–399.CrossRef Lau, A. K. K., Salleh, E., Lim, C., & Sulaiman, M. (2016). Potential of shading devices and glazing configurations on cooling energy savings for high-rise office buildings in hot-humid climates: the case of Malaysia. International Journal of Sustainable Built Environment, 5, 387–399.CrossRef
go back to reference Lawrence Berkeley National Laboratory (LBNL). (2011).THERM 6.3 / WINDOW 6.3 NFRC simulation manual. Lawrence Berkeley National Laboratory (LBNL). (2011).THERM 6.3 / WINDOW 6.3 NFRC simulation manual.
go back to reference Lawrence Berkeley National Laboratory (LBNL). (2009). Calculating fenestration product performance in WINDOW6 and THERM6 according to EN 673 and ISO 10077. Lawrence Berkeley National Laboratory (LBNL). (2009). Calculating fenestration product performance in WINDOW6 and THERM6 according to EN 673 and ISO 10077.
go back to reference Lawrence Berkeley National Laboratory (LBNL). (2008). WINDOW 6.2 / THERM 6.2. Research Version User Manual. Windows & Daylighting Group, Building Technologies Program, Environmental Energy Technologies Department. Lawrence Berkeley National Laboratory (LBNL). (2008). WINDOW 6.2 / THERM 6.2. Research Version User Manual. Windows & Daylighting Group, Building Technologies Program, Environmental Energy Technologies Department.
go back to reference Lomanowski, B.A. (2008). Implementation of window shading models into dynamic whole-building simulation. Thesis. Master of Applied Science in Mechanical Engineering University of Waterloo. Lomanowski, B.A. (2008). Implementation of window shading models into dynamic whole-building simulation. Thesis. Master of Applied Science in Mechanical Engineering University of Waterloo.
go back to reference Lunde, H. A., & Lindley, J. A. (1988). Effects of window treatments in cold climates. Home Economics Research Journal, 16(3), 223–235.CrossRef Lunde, H. A., & Lindley, J. A. (1988). Effects of window treatments in cold climates. Home Economics Research Journal, 16(3), 223–235.CrossRef
go back to reference Marinoski, D. L., Güths, S., & Lamberts, R. (2012). Development of a calorimeter for determination of the solar factor of architectural glass and fenestrations. Building and Environment, 47, 232–242.CrossRef Marinoski, D. L., Güths, S., & Lamberts, R. (2012). Development of a calorimeter for determination of the solar factor of architectural glass and fenestrations. Building and Environment, 47, 232–242.CrossRef
go back to reference Milbratz, J. H. (2007). Análise de propriedades térmicas e ópticas de janelas através de simulação computacional. Thesis. Departamento de Engenharia Civil, Centro Tecnológico, Universidade Federal de Santa Catarina. Milbratz, J. H. (2007). Análise de propriedades térmicas e ópticas de janelas através de simulação computacional. Thesis. Departamento de Engenharia Civil, Centro Tecnológico, Universidade Federal de Santa Catarina.
go back to reference Monroy, M. M. (1995). Comportamiento térmico de cerramientos soleados. Un modelo de simulación por diferencias finitas. Doctoral Thesis, Departamento de Construcción Arquitectónica, Universidad de Las Palmas de Gran Canaria. Monroy, M. M. (1995). Comportamiento térmico de cerramientos soleados. Un modelo de simulación por diferencias finitas. Doctoral Thesis, Departamento de Construcción Arquitectónica, Universidad de Las Palmas de Gran Canaria.
go back to reference NFRC 200. (2010). Procedure for determining fenestration product solar heat gain coefficient and visible transmittance at normal incidence. USA: National Fenestration Rating Council. NFRC 200. (2010). Procedure for determining fenestration product solar heat gain coefficient and visible transmittance at normal incidence. USA: National Fenestration Rating Council.
go back to reference Ng, P.K. (2014). Semi-transparent building-integrated photovoltaic (BIPV) windows for the tropics. Doctoral thesis, Department of Architecture, National University of Singapore. Ng, P.K. (2014). Semi-transparent building-integrated photovoltaic (BIPV) windows for the tropics. Doctoral thesis, Department of Architecture, National University of Singapore.
go back to reference 3M Rodin. (2014). Data sheet: 1M solar control films. 3M Rodin. (2014). Data sheet: 1M solar control films.
go back to reference Selkowitz, S. (2011). The future of building energy efficiency. Progress via global collaboration. Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory. Selkowitz, S. (2011). The future of building energy efficiency. Progress via global collaboration. Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory.
go back to reference Shahid, H., & Naylor, D. (2005). Energy performance assessment of a window with a horizontal venetian blind. Ener. Build., 37, 836–843.CrossRef Shahid, H., & Naylor, D. (2005). Energy performance assessment of a window with a horizontal venetian blind. Ener. Build., 37, 836–843.CrossRef
go back to reference Sharda, A., & Kumar, S. (2014). Heat transfer through glazing systems with inter-pane shading devices: a review. Energy Technology & Policy: An Open Access Journal, 1(1), 23–34.CrossRef Sharda, A., & Kumar, S. (2014). Heat transfer through glazing systems with inter-pane shading devices: a review. Energy Technology & Policy: An Open Access Journal, 1(1), 23–34.CrossRef
go back to reference Sharda, A., & Kumar, S. (2016). Experimental investigation of U value of double-glazed window with inter-pane blinds using Taguchi techniques. Energy Efficiency, 9, 1145.CrossRef Sharda, A., & Kumar, S. (2016). Experimental investigation of U value of double-glazed window with inter-pane blinds using Taguchi techniques. Energy Efficiency, 9, 1145.CrossRef
go back to reference Simmler, H., & Binder, B. (2008). Experimental and numerical determination of the total solar energy transmittance of glazing with venetian blind shading. Building and Environment, 43, 197–204.CrossRef Simmler, H., & Binder, B. (2008). Experimental and numerical determination of the total solar energy transmittance of glazing with venetian blind shading. Building and Environment, 43, 197–204.CrossRef
go back to reference Tzempelikos, A. (2008). A review of optical properties of shading devices. Advances in Building Energy Research, 2(1), 211–239.CrossRef Tzempelikos, A. (2008). A review of optical properties of shading devices. Advances in Building Energy Research, 2(1), 211–239.CrossRef
go back to reference Villalba, A., Pattini, A., Córica, L. (2012). Análisis de las características morfológicas de las envolventes edilicias y del entorno urbano desde la perspectiva de la iluminación natural. Ambiente Construído, 12 (4), 159–175. Villalba, A., Pattini, A., Córica, L. (2012). Análisis de las características morfológicas de las envolventes edilicias y del entorno urbano desde la perspectiva de la iluminación natural. Ambiente Construído, 12 (4), 159–175.
go back to reference Wall, M., & Bülow-Hübe, H. (2003). Report no EBD-R--03/1 Solar protection in buildings. Part 2, 2000–2002. Department of Construction and Architecture. Lund: Lund University. Wall, M., & Bülow-Hübe, H. (2003). Report no EBD-R--03/1 Solar protection in buildings. Part 2, 2000–2002. Department of Construction and Architecture. Lund: Lund University.
go back to reference Wright, J. L. (2008). Calculating centre-glass performance indices of glazing systems with shading devices. ASHRAE Transactions1, 14(2), 199–209. Wright, J. L. (2008). Calculating centre-glass performance indices of glazing systems with shading devices. ASHRAE Transactions1, 14(2), 199–209.
go back to reference Yahoda, D. S., & Wright, J. L. (2004). Heat transfer analysis of a between-panes venetian blind using effective long wave radiation properties. ASHRAE Transactions, 110(1), 455–462. Yahoda, D. S., & Wright, J. L. (2004). Heat transfer analysis of a between-panes venetian blind using effective long wave radiation properties. ASHRAE Transactions, 110(1), 455–462.
go back to reference Ye, P., Harrison, S. J., Oosthuizen, P. H., & Naylor, D. (1999). Convective heat transfer from a window with a venetian blind: detailed modeling. ASHRAE Transactions, 105, 1031–1037. Ye, P., Harrison, S. J., Oosthuizen, P. H., & Naylor, D. (1999). Convective heat transfer from a window with a venetian blind: detailed modeling. ASHRAE Transactions, 105, 1031–1037.
Metadata
Title
Hot-cool box calorimetric determination of the solar heat gain coefficient and the U-value of internal shading devices
Authors
Ayelén Villalba
Erica Correa
Andrea Pattini
Daniel Vicare
Publication date
16-07-2017
Publisher
Springer Netherlands
Published in
Energy Efficiency / Issue 6/2017
Print ISSN: 1570-646X
Electronic ISSN: 1570-6478
DOI
https://doi.org/10.1007/s12053-017-9544-1

Other articles of this Issue 6/2017

Energy Efficiency 6/2017 Go to the issue