Skip to main content
Top

2018 | OriginalPaper | Chapter

3. Hot Spot-Based Design of Small-Molecule Inhibitors for Protein-Protein Interactions

Author : Haitao Ji

Published in: Targeting Protein-Protein Interactions by Small Molecules

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Protein-protein interactions (PPIs) are important targets for the development of chemical probes and therapeutic agents. From the initial discovery of the existence of hot spots at PPI interfaces, it has been proposed that hot spots might provide the key for developing small-molecule PPI inhibitors. However, there has been no review on the ways in which the knowledge of hot spots can be used to achieve inhibitor design, nor critical examination of successful examples. This chapter discusses the characteristics of hot spots and the identification of druggable hot spot pockets. An analysis of four examples of hot spot-based design reveals the importance of this strategy in discovering potent and selective PPI inhibitors. A general procedure for hot spot-based design of PPI inhibitors is outlined.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein–protein recognition sites. J Mol Biol 285(5):2177–2198CrossRefPubMed Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein–protein recognition sites. J Mol Biol 285(5):2177–2198CrossRefPubMed
2.
go back to reference Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 3(4):301–317CrossRefPubMed Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 3(4):301–317CrossRefPubMed
3.
go back to reference Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450(7172):1001–1009CrossRefPubMed Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450(7172):1001–1009CrossRefPubMed
4.
go back to reference Keskin O, Gursoy A, Ma B, Nussinov R (2008) Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108(4):1225–1244CrossRefPubMed Keskin O, Gursoy A, Ma B, Nussinov R (2008) Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108(4):1225–1244CrossRefPubMed
5.
go back to reference Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267(5196):383–386CrossRefPubMed Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267(5196):383–386CrossRefPubMed
6.
go back to reference Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280(1):1–9. doi: Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280(1):1–9. doi:
7.
go back to reference Hu Z, Ma B, Wolfson H, Nussinov R (2000) Conservation of polar residues as hot spots at protein interfaces. Proteins 39(4):331–342CrossRefPubMed Hu Z, Ma B, Wolfson H, Nussinov R (2000) Conservation of polar residues as hot spots at protein interfaces. Proteins 39(4):331–342CrossRefPubMed
8.
go back to reference Ma B, Elkayam T, Wolfson H, Nussinov R (2003) Protein–protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc Natl Acad Sci USA 100(10):5772–5777CrossRefPubMed Ma B, Elkayam T, Wolfson H, Nussinov R (2003) Protein–protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc Natl Acad Sci USA 100(10):5772–5777CrossRefPubMed
9.
go back to reference Carbonell P, Nussinov R, del Sol A (2009) Energetic determinants of protein binding specificity: insights into protein interaction networks. Proteomics 9(7):1744–1753CrossRefPubMed Carbonell P, Nussinov R, del Sol A (2009) Energetic determinants of protein binding specificity: insights into protein interaction networks. Proteomics 9(7):1744–1753CrossRefPubMed
10.
go back to reference Keskin O, Ma B, Nussinov R (2005) Hot regions in protein–protein interactions: the organization and contribution of structurally conserved hot spot residues. J Mol Biol 345(5):1281–1294CrossRefPubMed Keskin O, Ma B, Nussinov R (2005) Hot regions in protein–protein interactions: the organization and contribution of structurally conserved hot spot residues. J Mol Biol 345(5):1281–1294CrossRefPubMed
11.
go back to reference Guo W, Wisniewski JA, Ji H (2014) Hot spot-based design of small-molecule inhibitors for protein–protein interactions. Bioorg Med Chem Lett 24(11):2546–2554CrossRefPubMed Guo W, Wisniewski JA, Ji H (2014) Hot spot-based design of small-molecule inhibitors for protein–protein interactions. Bioorg Med Chem Lett 24(11):2546–2554CrossRefPubMed
12.
go back to reference Reichmann D, Rahat O, Albeck S, Meged R, Dym O, Schreiber G (2005) The modular architecture of protein–protein binding interfaces. Proc Natl Acad Sci USA 102(1):57–62CrossRefPubMed Reichmann D, Rahat O, Albeck S, Meged R, Dym O, Schreiber G (2005) The modular architecture of protein–protein binding interfaces. Proc Natl Acad Sci USA 102(1):57–62CrossRefPubMed
13.
go back to reference Moza B, Buonpane RA, Zhu P, Herfst CA, Rahman AKMN-u, McCormick JK, Kranz, DM, Sundberg EJ (2006) Long-range cooperative binding effects in a T cell receptor variable domain. Proc Natl Acad Sci USA 103(26):9867–9872CrossRef Moza B, Buonpane RA, Zhu P, Herfst CA, Rahman AKMN-u, McCormick JK, Kranz, DM, Sundberg EJ (2006) Long-range cooperative binding effects in a T cell receptor variable domain. Proc Natl Acad Sci USA 103(26):9867–9872CrossRef
14.
go back to reference Golden MS, Cote SM, Sayeg M, Zerbe BS, Villar EA, Beglov D, Sazinsky SL, Georgiadis RM, Vajda S, Kozakov D, Whitty A (2013) Comprehensive experimental and computational analysis of binding energy hot spots at the NF-κB essential modulator/IKKβ protein–protein interface. J Am Chem Soc 135(16):6242–6256CrossRefPubMedPubMedCentral Golden MS, Cote SM, Sayeg M, Zerbe BS, Villar EA, Beglov D, Sazinsky SL, Georgiadis RM, Vajda S, Kozakov D, Whitty A (2013) Comprehensive experimental and computational analysis of binding energy hot spots at the NF-κB essential modulator/IKKβ protein–protein interface. J Am Chem Soc 135(16):6242–6256CrossRefPubMedPubMedCentral
15.
go back to reference Rajamani D, Thiel S, Vajda S, Camacho CJ (2004) Anchor residues in protein–protein interactions. Proc Natl Acad Sci USA 101(31):11287–11292CrossRefPubMed Rajamani D, Thiel S, Vajda S, Camacho CJ (2004) Anchor residues in protein–protein interactions. Proc Natl Acad Sci USA 101(31):11287–11292CrossRefPubMed
16.
go back to reference Meireles LMC, Dömling AS, Camacho CJ (2010) ANCHOR: a web server and database for analysis of protein–protein interaction binding pockets for drug discovery. Nucleic Acids Res 38:W407–W411CrossRefPubMedPubMedCentral Meireles LMC, Dömling AS, Camacho CJ (2010) ANCHOR: a web server and database for analysis of protein–protein interaction binding pockets for drug discovery. Nucleic Acids Res 38:W407–W411CrossRefPubMedPubMedCentral
17.
go back to reference Li X, Keskin O, Ma B, Nussinov R, Liang J (2004) Protein–protein interactions: hot spots and structurally conserved residues often locate in complemented pockets that pre-organized in the unbound states: implications for docking. J Mol Biol 344(3):781–795CrossRefPubMed Li X, Keskin O, Ma B, Nussinov R, Liang J (2004) Protein–protein interactions: hot spots and structurally conserved residues often locate in complemented pockets that pre-organized in the unbound states: implications for docking. J Mol Biol 344(3):781–795CrossRefPubMed
19.
go back to reference Kortemme T, Baker D (2002) A simple physical model for binding energy hot spots in protein–protein complexes. Proc Natl Acad Sci USA 99(22):14116–14121CrossRefPubMed Kortemme T, Baker D (2002) A simple physical model for binding energy hot spots in protein–protein complexes. Proc Natl Acad Sci USA 99(22):14116–14121CrossRefPubMed
20.
go back to reference Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320(2):369–387CrossRefPubMed Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320(2):369–387CrossRefPubMed
21.
go back to reference Massova I, Kollman PA (1999) Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 121(36):8133–8143CrossRef Massova I, Kollman PA (1999) Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 121(36):8133–8143CrossRef
22.
go back to reference Moreira IS, Fernandes PA, Ramos MJ (2007) Computational alanine scanning mutagenesis–an improved methodological approach. J Comput Chem 28(3):644–654CrossRefPubMed Moreira IS, Fernandes PA, Ramos MJ (2007) Computational alanine scanning mutagenesis–an improved methodological approach. J Comput Chem 28(3):644–654CrossRefPubMed
23.
24.
go back to reference Tuncbag N, Gursoy A, Keskin O (2009) Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 25(12):1513–1520CrossRefPubMed Tuncbag N, Gursoy A, Keskin O (2009) Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 25(12):1513–1520CrossRefPubMed
25.
26.
go back to reference Xia J-F, Zhao X-M, Song J, Huang D-S (2010) APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. BMC Bioinform 11:174CrossRef Xia J-F, Zhao X-M, Song J, Huang D-S (2010) APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. BMC Bioinform 11:174CrossRef
27.
go back to reference Zhu X, Mitchell JC (2011) KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features. Proteins 79(9):2671–2683CrossRefPubMed Zhu X, Mitchell JC (2011) KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features. Proteins 79(9):2671–2683CrossRefPubMed
28.
go back to reference Masso M, Vaisman II (2008) Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis. Bioinformatics 24(18):2002–2009CrossRefPubMed Masso M, Vaisman II (2008) Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis. Bioinformatics 24(18):2002–2009CrossRefPubMed
29.
go back to reference Lise S, Archambeau C, Pontil M, Jones DT (2009) Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods. BMC Bioinform 10:365CrossRef Lise S, Archambeau C, Pontil M, Jones DT (2009) Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods. BMC Bioinform 10:365CrossRef
30.
go back to reference Li J, Liu Q (2009) ‘Double water exclusion’: a hypothesis refining the O-ring theory for the hot spots at protein interfaces. Bioinformatics 25(6):743–750CrossRefPubMedPubMedCentral Li J, Liu Q (2009) ‘Double water exclusion’: a hypothesis refining the O-ring theory for the hot spots at protein interfaces. Bioinformatics 25(6):743–750CrossRefPubMedPubMedCentral
31.
go back to reference Liu Q, Li J (2010) Protein binding hot spots and the residue-residue pairing preference: a water exclusion perspective. BMC Bioinform 11:244CrossRef Liu Q, Li J (2010) Protein binding hot spots and the residue-residue pairing preference: a water exclusion perspective. BMC Bioinform 11:244CrossRef
32.
go back to reference Moreira IS, Fernandes PA, Ramos MJ (2007) Hot spot occlusion from bulk water: a comprehensive study of the complex between the lysozyme HEL and the antibody FVD1.3. J Phys Chem B 111(10):2697–2706CrossRefPubMed Moreira IS, Fernandes PA, Ramos MJ (2007) Hot spot occlusion from bulk water: a comprehensive study of the complex between the lysozyme HEL and the antibody FVD1.3. J Phys Chem B 111(10):2697–2706CrossRefPubMed
33.
go back to reference Moreira IS, Ramos RM, Martins JM, Fernandes PA, Ramos MJ (2014) Are hot-spots occluded from water? J Biomol Struct Dyn 32(2):186–197CrossRefPubMed Moreira IS, Ramos RM, Martins JM, Fernandes PA, Ramos MJ (2014) Are hot-spots occluded from water? J Biomol Struct Dyn 32(2):186–197CrossRefPubMed
34.
go back to reference Li Z, Li J (2010) Geometrically centered region: a “wet” model of protein binding hot spots not excluding water molecules. Proteins 78(16):3304–3316CrossRefPubMed Li Z, Li J (2010) Geometrically centered region: a “wet” model of protein binding hot spots not excluding water molecules. Proteins 78(16):3304–3316CrossRefPubMed
35.
go back to reference Fuller JC, Burgoyne NJ, Jackson RM (2009) Predicting druggable binding sites at the protein–protein interface. Drug Discov Today 14(3–4):155–161CrossRefPubMed Fuller JC, Burgoyne NJ, Jackson RM (2009) Predicting druggable binding sites at the protein–protein interface. Drug Discov Today 14(3–4):155–161CrossRefPubMed
36.
go back to reference Mattos C, Ringe D (1996) Locating and characterizing binding sites on proteins. Nat Biotechnol 14(5):595–599CrossRefPubMed Mattos C, Ringe D (1996) Locating and characterizing binding sites on proteins. Nat Biotechnol 14(5):595–599CrossRefPubMed
37.
go back to reference Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534CrossRefPubMed Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534CrossRefPubMed
38.
go back to reference Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment base discovery. Drug Discov Today 8(19):876–877CrossRefPubMed Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment base discovery. Drug Discov Today 8(19):876–877CrossRefPubMed
39.
go back to reference DeLano WL, Ultsch MH, de Vos AM, Wells JA (2000) Convergent solutions to binding at a protein–protein interface. Science 287(5456):1279–1283CrossRefPubMed DeLano WL, Ultsch MH, de Vos AM, Wells JA (2000) Convergent solutions to binding at a protein–protein interface. Science 287(5456):1279–1283CrossRefPubMed
40.
go back to reference Zerbe BS, Hall DR, Vajda S, Whitty A, Kozakov D (2012) Relationship between hot spot residues and ligand binding hot spots in protein–protein interfaces. J Chem Inf Model 52(8):2236–2344CrossRefPubMedPubMedCentral Zerbe BS, Hall DR, Vajda S, Whitty A, Kozakov D (2012) Relationship between hot spot residues and ligand binding hot spots in protein–protein interfaces. J Chem Inf Model 52(8):2236–2344CrossRefPubMedPubMedCentral
41.
go back to reference Brenke R, Kozakov D, Chuang G-Y, Beglov D, Hall D, Landon MR, Mattos C, Vajda S (2009) Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain correlation techniques. Bioinformatics 25(5):621–627CrossRefPubMedPubMedCentral Brenke R, Kozakov D, Chuang G-Y, Beglov D, Hall D, Landon MR, Mattos C, Vajda S (2009) Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain correlation techniques. Bioinformatics 25(5):621–627CrossRefPubMedPubMedCentral
42.
go back to reference Buhrman G, O’Connor C, Zerbe B, Kearney BM, Napoleon R, Kovrigina EA, Vajda S, Kozakov D, Kovrigin EL, Mattos C (2011) Analysis of binding site hot spots on the surface of Ras GTPase. J Mol Biol 413(4):773–789CrossRefPubMedPubMedCentral Buhrman G, O’Connor C, Zerbe B, Kearney BM, Napoleon R, Kovrigina EA, Vajda S, Kozakov D, Kovrigin EL, Mattos C (2011) Analysis of binding site hot spots on the surface of Ras GTPase. J Mol Biol 413(4):773–789CrossRefPubMedPubMedCentral
43.
go back to reference Hall DH, Grove LE, Yueh C, Ngan CH, Kozakov D, Vajda S (2011) Robust identification of binding hot spots using continuum electrostatics: application to hen egg-white lysozyme. J Am Chem Soc 133(51):20668–20671CrossRefPubMedPubMedCentral Hall DH, Grove LE, Yueh C, Ngan CH, Kozakov D, Vajda S (2011) Robust identification of binding hot spots using continuum electrostatics: application to hen egg-white lysozyme. J Am Chem Soc 133(51):20668–20671CrossRefPubMedPubMedCentral
44.
go back to reference Winter A, Higueruelo AP, Marsh M, Sigurdardottir A, Pitt WR, Blundell TL (2012) Biophysical and computational fragment-based approaches to targeting protein–protein interactions: applications in structure-guided drug discovery. Q Rev Biophys 45(4):383–426CrossRefPubMed Winter A, Higueruelo AP, Marsh M, Sigurdardottir A, Pitt WR, Blundell TL (2012) Biophysical and computational fragment-based approaches to targeting protein–protein interactions: applications in structure-guided drug discovery. Q Rev Biophys 45(4):383–426CrossRefPubMed
45.
go back to reference Erlanson DA, Braisted AC, Raphael DR, Randal M, Stroud RM, Gordon EM, Wells JA (2000) Site-directed ligand discovery. Proc Natl Acad Sci USA 97(17):9367–9372CrossRefPubMed Erlanson DA, Braisted AC, Raphael DR, Randal M, Stroud RM, Gordon EM, Wells JA (2000) Site-directed ligand discovery. Proc Natl Acad Sci USA 97(17):9367–9372CrossRefPubMed
46.
go back to reference Braisted AC, Oslob JD, Delano WL, Hyde J, McDowell RS, Waal N, Yu C, Arkin MR, Raimundo BC (2003) Discovery of a potent small molecule IL-2 inhibitor through fragment assembly. J Am Chem Soc 125(13):3714–3715CrossRefPubMed Braisted AC, Oslob JD, Delano WL, Hyde J, McDowell RS, Waal N, Yu C, Arkin MR, Raimundo BC (2003) Discovery of a potent small molecule IL-2 inhibitor through fragment assembly. J Am Chem Soc 125(13):3714–3715CrossRefPubMed
47.
go back to reference Scott DE, Ehebauer MT, Pukala T, Marsh M, Blundell TL, Venkitaraman AR, Abell C, Hyvönen M (2013) Using a fragment-based approach to target protein–protein interactions. ChemBioChem 14(3):332–342CrossRefPubMedPubMedCentral Scott DE, Ehebauer MT, Pukala T, Marsh M, Blundell TL, Venkitaraman AR, Abell C, Hyvönen M (2013) Using a fragment-based approach to target protein–protein interactions. ChemBioChem 14(3):332–342CrossRefPubMedPubMedCentral
48.
go back to reference Mikuni J, Kato M, Taruya S, Tsuganezawa K, Mori M, Ogawa N, Honma T, Yokoyama S, Kojima H, Okabe T, Nagano T, Tanaka A (2010) A fluorescence correlation spectroscopy-based assay for fragment screening of slowly inhibiting protein-peptide interaction inhibitors. Anal Biochem 402(1):26–31CrossRefPubMed Mikuni J, Kato M, Taruya S, Tsuganezawa K, Mori M, Ogawa N, Honma T, Yokoyama S, Kojima H, Okabe T, Nagano T, Tanaka A (2010) A fluorescence correlation spectroscopy-based assay for fragment screening of slowly inhibiting protein-peptide interaction inhibitors. Anal Biochem 402(1):26–31CrossRefPubMed
49.
go back to reference Davis BJ, Erlanson DA (2013) Learning from our mistakes: the ‘unknown knowns’ in fragment screening. Bioorg Med Chem Lett 23(10):2844–2852CrossRefPubMed Davis BJ, Erlanson DA (2013) Learning from our mistakes: the ‘unknown knowns’ in fragment screening. Bioorg Med Chem Lett 23(10):2844–2852CrossRefPubMed
50.
go back to reference Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681CrossRefPubMed Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681CrossRefPubMed
51.
go back to reference He MM, Smith AS, Oslob JD, Flanagan WM, Braisted AC, Whitty A, Cancilla MT, Wang J, Lugovskoy AA, Yoburn JC, Fung AD, Farrington G, Eldredge JK, Day ES, Cruz LA, Cachero TG, Miller SK, Friedman JE, Choong IC, Cunningham BC (2005) Small-molecule inhibition of TNF-α. Science 310(5750):1022–1025CrossRefPubMed He MM, Smith AS, Oslob JD, Flanagan WM, Braisted AC, Whitty A, Cancilla MT, Wang J, Lugovskoy AA, Yoburn JC, Fung AD, Farrington G, Eldredge JK, Day ES, Cruz LA, Cachero TG, Miller SK, Friedman JE, Choong IC, Cunningham BC (2005) Small-molecule inhibition of TNF-α. Science 310(5750):1022–1025CrossRefPubMed
52.
go back to reference Geppert T, Bauer S, Hiss JA, Conrad E, Reutlinger M, Schneider P, Weisel M, Pfeiffer B, Altmann K-H, Waibler Z, Schneider G (2012) Immunosuppressive small molecule discovered by structure-based virtual screening for inhibitors of protein–protein interactions. Angew Chem Int Ed 51(1):258–261CrossRef Geppert T, Bauer S, Hiss JA, Conrad E, Reutlinger M, Schneider P, Weisel M, Pfeiffer B, Altmann K-H, Waibler Z, Schneider G (2012) Immunosuppressive small molecule discovered by structure-based virtual screening for inhibitors of protein–protein interactions. Angew Chem Int Ed 51(1):258–261CrossRef
53.
go back to reference Petros AM, Dinges J, Augeri DJ, Baumeister SA, Betebenner DA, Bures MG, Elmore SW, Hajduk PJ, Joseph MK, Landis SK, Nettesheim DG, Rosenberg SH, Shen W, Thomas S, Wang X, Zanze I, Zhang H, Fesik SW (2006) Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. J Med Chem 49(2):656–663CrossRefPubMed Petros AM, Dinges J, Augeri DJ, Baumeister SA, Betebenner DA, Bures MG, Elmore SW, Hajduk PJ, Joseph MK, Landis SK, Nettesheim DG, Rosenberg SH, Shen W, Thomas S, Wang X, Zanze I, Zhang H, Fesik SW (2006) Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. J Med Chem 49(2):656–663CrossRefPubMed
54.
go back to reference Wendt MD, Shen W, Kunzer A, McClellan WJ, Bruncko M, Oost TK, Ding H, Joseph MK, Zhang H, Nimmer PM, Ng S-C, Shoemaker AR, Petros AM, Oleksijew A, Marsh K, Bauch J, Oltersdorf T, Belli BA, Martineau D, Fesik SW, Rosenberg SH, Elmore SW (2006) Discovery and structure-activity relationship of antagonists of B-cell lymphoma 2 family proteins with chemopotentiation activity in vitro and in vivo. J Med Chem 49(3):1165–1181CrossRefPubMed Wendt MD, Shen W, Kunzer A, McClellan WJ, Bruncko M, Oost TK, Ding H, Joseph MK, Zhang H, Nimmer PM, Ng S-C, Shoemaker AR, Petros AM, Oleksijew A, Marsh K, Bauch J, Oltersdorf T, Belli BA, Martineau D, Fesik SW, Rosenberg SH, Elmore SW (2006) Discovery and structure-activity relationship of antagonists of B-cell lymphoma 2 family proteins with chemopotentiation activity in vitro and in vivo. J Med Chem 49(3):1165–1181CrossRefPubMed
55.
go back to reference Bruncko M, Oost TK, Belli BA, Ding H, Joseph MK, Kunzer A, Martineau D, McClellan WJ, Mitten M, Ng S-C, Nimmer PM, Oltersdorf T, Park C-M, Petros AM, Shoemaker AR, Song X, Wang X, Wendt MD, Zhang H, Fesik SW, Rosenberg SH, Elmore SW (2007) Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. J Med Chem 50(4):641–662CrossRefPubMed Bruncko M, Oost TK, Belli BA, Ding H, Joseph MK, Kunzer A, Martineau D, McClellan WJ, Mitten M, Ng S-C, Nimmer PM, Oltersdorf T, Park C-M, Petros AM, Shoemaker AR, Song X, Wang X, Wendt MD, Zhang H, Fesik SW, Rosenberg SH, Elmore SW (2007) Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. J Med Chem 50(4):641–662CrossRefPubMed
56.
go back to reference Park C-M, Bruncko M, Adickes J, Bauch J, Ding H, Kunzer A, Marsh KC, Nimmer P, Shoemaker AR, Song X, Tahir SK, Tse C, Wang X, Wendt MD, Yang X, Zhang H, Fesik SW, Rosenberg SH, Elmore SW (2008) Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins. J Med Chem 51(21):6902–6915CrossRefPubMed Park C-M, Bruncko M, Adickes J, Bauch J, Ding H, Kunzer A, Marsh KC, Nimmer P, Shoemaker AR, Song X, Tahir SK, Tse C, Wang X, Wendt MD, Yang X, Zhang H, Fesik SW, Rosenberg SH, Elmore SW (2008) Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins. J Med Chem 51(21):6902–6915CrossRefPubMed
57.
go back to reference Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9(10):430–431CrossRefPubMed Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9(10):430–431CrossRefPubMed
58.
go back to reference Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 48(7):2518–2525CrossRefPubMed Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 48(7):2518–2525CrossRefPubMed
59.
go back to reference Cheng AC, Coleman RG, Smyth KT, Cao Q, Soulard P, Caffrey DR, Salzberg AC, Huang ES (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 25(1):71–75CrossRefPubMed Cheng AC, Coleman RG, Smyth KT, Cao Q, Soulard P, Caffrey DR, Salzberg AC, Huang ES (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 25(1):71–75CrossRefPubMed
60.
go back to reference Schmidtke P, Barril X (2010) Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J Med Chem 53(15):5858–5867CrossRefPubMed Schmidtke P, Barril X (2010) Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J Med Chem 53(15):5858–5867CrossRefPubMed
61.
go back to reference Pettit FK, Bowie JU (1999) Protein surface roughness and small molecular binding sites. J Mol Biol 285(4):1377–1382CrossRefPubMed Pettit FK, Bowie JU (1999) Protein surface roughness and small molecular binding sites. J Mol Biol 285(4):1377–1382CrossRefPubMed
62.
go back to reference Soga S, Shirai H, Kobori M, Hirayama N (2007) Use of amino acid composition to predict ligand-binding sites. J Chem Inf Model 47(2):400–406CrossRefPubMed Soga S, Shirai H, Kobori M, Hirayama N (2007) Use of amino acid composition to predict ligand-binding sites. J Chem Inf Model 47(2):400–406CrossRefPubMed
63.
go back to reference Li Y, Liu Z, Han L, Li C, Wang R (2013) Mining the characteristic interaction patterns on protein–protein binding interfaces. J Chem Inf Model 53(9):2437–2447CrossRefPubMed Li Y, Liu Z, Han L, Li C, Wang R (2013) Mining the characteristic interaction patterns on protein–protein binding interfaces. J Chem Inf Model 53(9):2437–2447CrossRefPubMed
64.
go back to reference Metz A, Pfleger C, Kopitz H, Pfeiffer-Marek S, Baringhaus K-H, Gohlke H (2012) Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein–protein interface. J Chem Inf Model 52(1):120–133CrossRefPubMed Metz A, Pfleger C, Kopitz H, Pfeiffer-Marek S, Baringhaus K-H, Gohlke H (2012) Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein–protein interface. J Chem Inf Model 52(1):120–133CrossRefPubMed
65.
go back to reference Eyrisch S, Helms V (2007) Transient pockets on protein surfaces involved in protein–protein interaction. J Med Chem 50(15):3457–3464CrossRefPubMed Eyrisch S, Helms V (2007) Transient pockets on protein surfaces involved in protein–protein interaction. J Med Chem 50(15):3457–3464CrossRefPubMed
66.
go back to reference Johnson DK, Karanicolas J (2013) Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface. PLoS Comput Biol 9(3):e1002951CrossRefPubMedPubMedCentral Johnson DK, Karanicolas J (2013) Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface. PLoS Comput Biol 9(3):e1002951CrossRefPubMedPubMedCentral
67.
go back to reference Kozakov D, Hall DR, Chuang G-Y, Cencic R, Brenke R, Grove LE, Beglov D, Pelletier J, Whitty A, Vajda S (2011) Structural conservation of druggable hot spots in protein–protein interfaces. Proc Natl Acad Sci USA 108(33):13528–13533CrossRefPubMed Kozakov D, Hall DR, Chuang G-Y, Cencic R, Brenke R, Grove LE, Beglov D, Pelletier J, Whitty A, Vajda S (2011) Structural conservation of druggable hot spots in protein–protein interfaces. Proc Natl Acad Sci USA 108(33):13528–13533CrossRefPubMed
68.
go back to reference Ding K, Lu Y, Nikolovska-Coleska Z, Qiu S, Ding Y, Gao W, Stuckey J, Krajewski K, Roller PP, Tomita Y, Parrish DA, Deschamps JR, Wang S (2005) Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 127(29):10130–10131CrossRefPubMed Ding K, Lu Y, Nikolovska-Coleska Z, Qiu S, Ding Y, Gao W, Stuckey J, Krajewski K, Roller PP, Tomita Y, Parrish DA, Deschamps JR, Wang S (2005) Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 127(29):10130–10131CrossRefPubMed
69.
go back to reference Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K, Roller PP, Wang S (2006) Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2–p53 interaction. J Med Chem 49(12):3432–3435CrossRefPubMed Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K, Roller PP, Wang S (2006) Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2–p53 interaction. J Med Chem 49(12):3432–3435CrossRefPubMed
70.
go back to reference Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J, Bernard D, Zhang J, Lu Y, Gu Q, Shah RB, Pienta KJ, Ling X, Kang S, Guo M, Sun Y, Yang D, Wang S (2008) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA 105(10):3933–3938CrossRefPubMed Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J, Bernard D, Zhang J, Lu Y, Gu Q, Shah RB, Pienta KJ, Ling X, Kang S, Guo M, Sun Y, Yang D, Wang S (2008) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA 105(10):3933–3938CrossRefPubMed
71.
go back to reference Zhao Y, Liu L, Sun W, Lu J, McEachern D, Li X, Yu S, Bernard D, Ochsenbein P, Ferey V, Carry J-C, Deschamps JR, Sun D, Wang S (2013) Diastereomeric spirooxindoles as highly potent and efficacious MDM2 inhibitors. J Am Chem Soc 135(19):7223–7234CrossRefPubMedPubMedCentral Zhao Y, Liu L, Sun W, Lu J, McEachern D, Li X, Yu S, Bernard D, Ochsenbein P, Ferey V, Carry J-C, Deschamps JR, Sun D, Wang S (2013) Diastereomeric spirooxindoles as highly potent and efficacious MDM2 inhibitors. J Am Chem Soc 135(19):7223–7234CrossRefPubMedPubMedCentral
72.
go back to reference Zhao Y, Yu S, Sun W, Liu L, Lu J, McEachern D, Shargary S, Bernard D, Li X, Zhao T, Zou P, Sun D, Wang S (2013) A potent small-molecule inhibitor of the MDM2–p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J Med Chem 56(13):5553–5561CrossRefPubMed Zhao Y, Yu S, Sun W, Liu L, Lu J, McEachern D, Shargary S, Bernard D, Li X, Zhao T, Zou P, Sun D, Wang S (2013) A potent small-molecule inhibitor of the MDM2–p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J Med Chem 56(13):5553–5561CrossRefPubMed
73.
go back to reference Czarna A, Beck B, Srivastava S, Popowicz GM, Wolf S, Huang Y, Bista M, Holak TA, Dömling A (2010) Robust generation of lead compounds for protein–protein interactions by computational and MCR chemistry: p53/Hdm2 antagonists. Angew Chem Int Ed 49(31):5352–5356CrossRef Czarna A, Beck B, Srivastava S, Popowicz GM, Wolf S, Huang Y, Bista M, Holak TA, Dömling A (2010) Robust generation of lead compounds for protein–protein interactions by computational and MCR chemistry: p53/Hdm2 antagonists. Angew Chem Int Ed 49(31):5352–5356CrossRef
74.
go back to reference Popowicz GM, Czarna A, Wolf S, Wang K, Wang W, Dömling A, Holak TA (2010) Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle 9(6):1104–1111CrossRefPubMed Popowicz GM, Czarna A, Wolf S, Wang K, Wang W, Dömling A, Holak TA (2010) Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle 9(6):1104–1111CrossRefPubMed
75.
go back to reference Koes D, Khoury K, Huang Y, Wang W, Bista M, Popowicz GM, Wolf S, Holak TA, Dömling A, Camacho CJ (2012) Enabling large-scale design, synthesis and validation of small molecule protein–protein antagonists. PLoS ONE 7(3):e32839CrossRefPubMedPubMedCentral Koes D, Khoury K, Huang Y, Wang W, Bista M, Popowicz GM, Wolf S, Holak TA, Dömling A, Camacho CJ (2012) Enabling large-scale design, synthesis and validation of small molecule protein–protein antagonists. PLoS ONE 7(3):e32839CrossRefPubMedPubMedCentral
76.
go back to reference Huang Y, Wolf S, Beck B, Köhler L-M, Khoury K, Popowicz GM, Goda SK, Subklewe M, Twarda A, Holak TA, Dömling A (2014) Discovery of highly potent p53-MDM2 antagonists and structural basis for anti-acute myeloid leukemia activities. ACS Chem Biol 9(3):802–811CrossRefPubMedPubMedCentral Huang Y, Wolf S, Beck B, Köhler L-M, Khoury K, Popowicz GM, Goda SK, Subklewe M, Twarda A, Holak TA, Dömling A (2014) Discovery of highly potent p53-MDM2 antagonists and structural basis for anti-acute myeloid leukemia activities. ACS Chem Biol 9(3):802–811CrossRefPubMedPubMedCentral
77.
go back to reference Huang Y, Wolf S, Koes D, Popowicz GM, Camacho CJ, Holak TA, Dömling A (2012) Exhaustive fluorine scanning toward potent p53–Mdm2 antagonists. ChemMedChem 7(1):49–52CrossRefPubMed Huang Y, Wolf S, Koes D, Popowicz GM, Camacho CJ, Holak TA, Dömling A (2012) Exhaustive fluorine scanning toward potent p53–Mdm2 antagonists. ChemMedChem 7(1):49–52CrossRefPubMed
78.
go back to reference Bista M, Wolf S, Khoury K, Kowalska K, Huang Y, Wrona E, Arciniega M, Popowicz GM, Holak TA, Dömling A (2013) Transient protein states in designing inhibitors of the MDM2–p53 interaction. Structure 21(12):2143–2151CrossRefPubMedPubMedCentral Bista M, Wolf S, Khoury K, Kowalska K, Huang Y, Wrona E, Arciniega M, Popowicz GM, Holak TA, Dömling A (2013) Transient protein states in designing inhibitors of the MDM2–p53 interaction. Structure 21(12):2143–2151CrossRefPubMedPubMedCentral
79.
go back to reference Buckley DL, Van Molle I, Gareiss PC, Tae HS, Michel J, Noblin DJ, Jorgensen WL, Ciulli A, Crews CM (2012) Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J Am Chem Soc 134(10):4465–4468CrossRefPubMedPubMedCentral Buckley DL, Van Molle I, Gareiss PC, Tae HS, Michel J, Noblin DJ, Jorgensen WL, Ciulli A, Crews CM (2012) Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J Am Chem Soc 134(10):4465–4468CrossRefPubMedPubMedCentral
80.
go back to reference Van Molle I, Thomann A, Buckley DL, So EC, Lang S, Crews CM, Ciulli A (2012) Dissecting fragment-based lead discovery at the von Hippel-Lindau protein:hypoxia inducible factor 1α protein–protein interface. Chem Biol 19(10):1300–1312CrossRefPubMedPubMedCentral Van Molle I, Thomann A, Buckley DL, So EC, Lang S, Crews CM, Ciulli A (2012) Dissecting fragment-based lead discovery at the von Hippel-Lindau protein:hypoxia inducible factor 1α protein–protein interface. Chem Biol 19(10):1300–1312CrossRefPubMedPubMedCentral
82.
go back to reference Buckley DL, Gustafson JL, Van Molle I, Roth AG, Tae HS, Gareiss PC, Jorgensen WL, Ciulli A, Crews CM (2012) Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α. Angew Chem Int Ed 51(46):11463–11467CrossRef Buckley DL, Gustafson JL, Van Molle I, Roth AG, Tae HS, Gareiss PC, Jorgensen WL, Ciulli A, Crews CM (2012) Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α. Angew Chem Int Ed 51(46):11463–11467CrossRef
83.
go back to reference Ji H, Stanton BZ, Igarashi J, Li H, Martásek P, Roman LJ, Poulos TL, Silverman RB (2008) Minimal pharmacophoric elements and fragment hopping, an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide synthase inhibitors. J Am Chem Soc 130(12):3900–3914CrossRefPubMedPubMedCentral Ji H, Stanton BZ, Igarashi J, Li H, Martásek P, Roman LJ, Poulos TL, Silverman RB (2008) Minimal pharmacophoric elements and fragment hopping, an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide synthase inhibitors. J Am Chem Soc 130(12):3900–3914CrossRefPubMedPubMedCentral
84.
go back to reference Ji H, Li H, Martásek P, Roman LJ, Poulos TL, Silverman RB (2009) Discovery of highly potent and selective inhibitors of neuronal nitric oxide synthase by fragment hopping. J Med Chem 52(3):779–797CrossRefPubMedPubMedCentral Ji H, Li H, Martásek P, Roman LJ, Poulos TL, Silverman RB (2009) Discovery of highly potent and selective inhibitors of neuronal nitric oxide synthase by fragment hopping. J Med Chem 52(3):779–797CrossRefPubMedPubMedCentral
86.
go back to reference Yu B, Huang Z, Zhang M, Dillard DR, Ji H (2013) Rational design of small-molecule inhibitors for β-catenin/T-cell factor protein–protein interactions by bioisostere replacement. ACS Chem Biol 8(3):524–529CrossRefPubMed Yu B, Huang Z, Zhang M, Dillard DR, Ji H (2013) Rational design of small-molecule inhibitors for β-catenin/T-cell factor protein–protein interactions by bioisostere replacement. ACS Chem Biol 8(3):524–529CrossRefPubMed
87.
go back to reference Reynès C, Host H, Camproux A-C, Laconde G, Leroux F, Mazars A, Deprez B, Fahraeus R, Villoutreix BO, Sperandio O (2010) Designing focused chemical libraries enriched in protein-protein interaction inhibitors using machine-learning methods. PLoS Comput Biol 6(3):e1000695CrossRefPubMedPubMedCentral Reynès C, Host H, Camproux A-C, Laconde G, Leroux F, Mazars A, Deprez B, Fahraeus R, Villoutreix BO, Sperandio O (2010) Designing focused chemical libraries enriched in protein-protein interaction inhibitors using machine-learning methods. PLoS Comput Biol 6(3):e1000695CrossRefPubMedPubMedCentral
88.
go back to reference Hamon V, Brunel JM, Combes S, Basse MJ, Roche P, Morelli X (2013) 2P2Ichem: focused chemical libraries dedicated to orthosteric modulation of protein–protein interactions. MedChemComm 4(5):797–809CrossRef Hamon V, Brunel JM, Combes S, Basse MJ, Roche P, Morelli X (2013) 2P2Ichem: focused chemical libraries dedicated to orthosteric modulation of protein–protein interactions. MedChemComm 4(5):797–809CrossRef
89.
go back to reference Smith MC, Gestwicki JE (2012) Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med 14:e16CrossRefPubMedPubMedCentral Smith MC, Gestwicki JE (2012) Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med 14:e16CrossRefPubMedPubMedCentral
90.
go back to reference Cesa LC, Patury S, Komiyama T, Ahmad A, Zuiderweg ERP, Gestwicki JE (2013) Inhibitors of difficult protein-protein interactions identified by high-throughput screening of multiprotein complexes. ACS Chem Biol 8(9):1988–1997CrossRefPubMedPubMedCentral Cesa LC, Patury S, Komiyama T, Ahmad A, Zuiderweg ERP, Gestwicki JE (2013) Inhibitors of difficult protein-protein interactions identified by high-throughput screening of multiprotein complexes. ACS Chem Biol 8(9):1988–1997CrossRefPubMedPubMedCentral
91.
go back to reference (a) Venkatesan K, Rual J-F, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh K-I, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, de Smet A-S, Dann E, Smolyar A, Vinayagam A, Yu H, Szeto D, Borick H, Dricot A, Klitgord N, Murray RR, Lin C, Lalowski M, Timm J, Rau K, Boone C, Braun P, Cusick ME, Roth FP, Hill DE, Tavernier J, Wanker EE, Barabási A-L, Vidal M (2009) An empirical framework for binary interactome mapping. Nat Methods 6(1):83–90; (b) Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, Thu CA, Bisikirska B, Lefebvre C, Accili D, Hunter T, Maniatis T, Califano A, Honig B (2012) Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature 490(7421):556–560 (a) Venkatesan K, Rual J-F, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh K-I, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, de Smet A-S, Dann E, Smolyar A, Vinayagam A, Yu H, Szeto D, Borick H, Dricot A, Klitgord N, Murray RR, Lin C, Lalowski M, Timm J, Rau K, Boone C, Braun P, Cusick ME, Roth FP, Hill DE, Tavernier J, Wanker EE, Barabási A-L, Vidal M (2009) An empirical framework for binary interactome mapping. Nat Methods 6(1):83–90; (b) Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, Thu CA, Bisikirska B, Lefebvre C, Accili D, Hunter T, Maniatis T, Califano A, Honig B (2012) Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature 490(7421):556–560
92.
go back to reference Yildirim MA, Goh K-I, Cusick ME, Barabási A-L, Vidal M (2007) Drug-target network. Nat Biotechnol 25(10):1119–1126CrossRefPubMed Yildirim MA, Goh K-I, Cusick ME, Barabási A-L, Vidal M (2007) Drug-target network. Nat Biotechnol 25(10):1119–1126CrossRefPubMed
93.
go back to reference Huang Z, Zhang M, Burton SD, Katsakhyan LN, Ji H (2014) Targeting the Tcf4 G13ANDE17 binding site to selectively disrupt β-catenin/T-cell factor protein–protein interactions. ACS Chem Biol 9(1):193–201CrossRefPubMed Huang Z, Zhang M, Burton SD, Katsakhyan LN, Ji H (2014) Targeting the Tcf4 G13ANDE17 binding site to selectively disrupt β-catenin/T-cell factor protein–protein interactions. ACS Chem Biol 9(1):193–201CrossRefPubMed
94.
go back to reference Levin KB, Dym O, Albeck S, Magdassi S, Keeble AH, Kleanthous C, Tawfik DS (2009) Following evolutionary paths to protein-protein interactions with high affinity and selectivity. Nat Struct Mol Biol 16(10):1049–1055CrossRefPubMed Levin KB, Dym O, Albeck S, Magdassi S, Keeble AH, Kleanthous C, Tawfik DS (2009) Following evolutionary paths to protein-protein interactions with high affinity and selectivity. Nat Struct Mol Biol 16(10):1049–1055CrossRefPubMed
95.
go back to reference Meenan NA, Sharma A, Fleishman SJ, Macdonald CJ, Morel B, Boetzel R, Moore GR, Baker D, Kleanthous C (2010) The structural and energetic basis for high selectivity in a high-affinity protein-protein interaction. Proc Natl Acad Sci USA 107(22):10080–10085CrossRefPubMed Meenan NA, Sharma A, Fleishman SJ, Macdonald CJ, Morel B, Boetzel R, Moore GR, Baker D, Kleanthous C (2010) The structural and energetic basis for high selectivity in a high-affinity protein-protein interaction. Proc Natl Acad Sci USA 107(22):10080–10085CrossRefPubMed
96.
go back to reference Kosloff M, Travis AM, Bosch DE, Siderovski DP, Arshavsky VY (2011) Integrating energy calculations with functional assays to decipher the specificity of G protein-RGS protein interactions. Nat Struct Mol Biol 18(7):846–853CrossRefPubMedPubMedCentral Kosloff M, Travis AM, Bosch DE, Siderovski DP, Arshavsky VY (2011) Integrating energy calculations with functional assays to decipher the specificity of G protein-RGS protein interactions. Nat Struct Mol Biol 18(7):846–853CrossRefPubMedPubMedCentral
Metadata
Title
Hot Spot-Based Design of Small-Molecule Inhibitors for Protein-Protein Interactions
Author
Haitao Ji
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-0773-7_3