Skip to main content
Top

2020 | OriginalPaper | Chapter

11. How Safe Is Artificial Intelligence?

Author : Klaus Mainzer

Published in: Artificial intelligence - When do machines take over?

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Machine learning dramatically changes our civilization. We rely more and more on efficient algorithms, because otherwise the complexity of our civilizing infrastructure would not be manageable: Our brains are too slow and hopelessly overwhelmed by the amount of data we have to deal with. But how secure are AI algorithms? In practical applications, learning algorithms refer to models of neural networks, which themselves are extremely complex. They are fed and trained with huge amounts of data. The number of necessary parameters explodes exponentially. Nobody knows exactly what happens in these “black boxes” in detail. A statistical trial-and-error procedure often remains. But how should questions of responsibility be decided in, e.g., autonomous driving or in medicine, if the methodological basics remain dark?
In machine learning with neural networks, we need more explainability and accountability of causes and effects in order to be able to decide ethical and legal questions of responsibility!

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Peters J, Janzing D, Schölkopf B (2017) Elements of causal inference. Foundations and learning algorithms. The MIT Press, Cambridge, p 6 f. Peters J, Janzing D, Schölkopf B (2017) Elements of causal inference. Foundations and learning algorithms. The MIT Press, Cambridge, p 6 f.
2.
go back to reference Vapnik VN (1998) Statistical learning theory. Wiley, New York Vapnik VN (1998) Statistical learning theory. Wiley, New York
3.
go back to reference Peters et al (Note 1), 6, after Figure 1.1 Peters et al (Note 1), 6, after Figure 1.1
4.
go back to reference Mooij JM, Janzing D, Schölkopf B (2013) From ordinary differential equations to structural causal models: the deterministic case. Proceedings of the 29th Annual Conference on Uncertainty in artificiaL Intelligeence (UAI), pp 440–448 Mooij JM, Janzing D, Schölkopf B (2013) From ordinary differential equations to structural causal models: the deterministic case. Proceedings of the 29th Annual Conference on Uncertainty in artificiaL Intelligeence (UAI), pp 440–448
5.
go back to reference Pearl J (2009) Causality: models, reasoning, and inference. Cambridge University Press, Cambridge CrossRef Pearl J (2009) Causality: models, reasoning, and inference. Cambridge University Press, Cambridge CrossRef
6.
go back to reference Peters et al (Note 1), p 84, after Figure 6.1 Peters et al (Note 1), p 84, after Figure 6.1
7.
go back to reference Peters et al (Note 1), p 144, after Figure 7.1 Peters et al (Note 1), p 144, after Figure 7.1
9.
go back to reference Friston K, Harrison I, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273–1302 CrossRef Friston K, Harrison I, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273–1302 CrossRef
10.
go back to reference Lohmann G, Erfurth K, Müller K, Turner R (2012) Critical comments on dynamic causal modelling. Neuroimage 59:2322–2329 CrossRef Lohmann G, Erfurth K, Müller K, Turner R (2012) Critical comments on dynamic causal modelling. Neuroimage 59:2322–2329 CrossRef
11.
go back to reference Knight W (2017) The dark secret at the heart of AI. MIT Technol Rev 11:1–22 Knight W (2017) The dark secret at the heart of AI. MIT Technol Rev 11:1–22
12.
go back to reference Mainzer K (2018) The digital and the real world. Computational foundations of mathematics, science, technology, and philosophy. World Scientific, Singapore (Chapter 7) CrossRef Mainzer K (2018) The digital and the real world. Computational foundations of mathematics, science, technology, and philosophy. World Scientific, Singapore (Chapter 7) CrossRef
13.
go back to reference Schwichtenberg H (2006) Minlog. In: Wiedijk F (ed) The seventeen provers of the world. Lecture notes in artificial intelligence, vol 3600. Springer, Berlin, pp 151–157 CrossRef Schwichtenberg H (2006) Minlog. In: Wiedijk F (ed) The seventeen provers of the world. Lecture notes in artificial intelligence, vol 3600. Springer, Berlin, pp 151–157 CrossRef
14.
go back to reference Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL. A proof assistant for higher-order logic. Springer, Heidelberg Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL. A proof assistant for higher-order logic. Springer, Heidelberg
15.
go back to reference Mainzer K (2018) How predictable is our world. Challenges for mathematics, computer science, and philosophy in the age of digitalization. Springer, Wiesbaden Mainzer K (2018) How predictable is our world. Challenges for mathematics, computer science, and philosophy in the age of digitalization. Springer, Wiesbaden
16.
go back to reference Bourque P, Dupuis R (2004) SWEBOK. Guide to the software engineering body of knowledge. IEEE Computer Society, Los Alamitos Bourque P, Dupuis R (2004) SWEBOK. Guide to the software engineering body of knowledge. IEEE Computer Society, Los Alamitos
17.
go back to reference Bertolino A (2007) Software testing research: achievements, challenges, dreams. In: Future of Software Engineering (FOSE’07) 0-7695-2829-5/07 IEEE Bertolino A (2007) Software testing research: achievements, challenges, dreams. In: Future of Software Engineering (FOSE’07) 0-7695-2829-5/07 IEEE
18.
go back to reference Tretmans J (1996) Test generation with inputs, outputs, and repetitive quiescence. Softw Concepts Tools 17(3):103–120 Tretmans J (1996) Test generation with inputs, outputs, and repetitive quiescence. Softw Concepts Tools 17(3):103–120
19.
go back to reference Tretmans J, Brinksma E (2003) TorX: Automated model-based testing. In: Hartman A, Dussa-Zieger K (eds) Proceedings of the First European Conference on Model-Driven Software Engineering 2003 Tretmans J, Brinksma E (2003) TorX: Automated model-based testing. In: Hartman A, Dussa-Zieger K (eds) Proceedings of the First European Conference on Model-Driven Software Engineering 2003
20.
go back to reference Mainzer K (2018) The digital and the real world. Computational foundations of mathematics, science, technology, and philosophy. World Scientific Publisher, Singapore (chapter 12) CrossRef Mainzer K (2018) The digital and the real world. Computational foundations of mathematics, science, technology, and philosophy. World Scientific Publisher, Singapore (chapter 12) CrossRef
21.
go back to reference Simon H (1947) Administrative behavior: a study of decision-making processes in administrative organizations. Macmillan, New York Simon H (1947) Administrative behavior: a study of decision-making processes in administrative organizations. Macmillan, New York
22.
go back to reference Bowling M, Burch N, Johanson M, Tammelin O (2015) Heads-up holdem poker is solved. Science 347(6218):145–149 CrossRef Bowling M, Burch N, Johanson M, Tammelin O (2015) Heads-up holdem poker is solved. Science 347(6218):145–149 CrossRef
23.
go back to reference Brown N, Sandholm T (2017) Reduced space and faster convergence in imperfect information games via pruning. International Conference on Machine Learning (ICML) Brown N, Sandholm T (2017) Reduced space and faster convergence in imperfect information games via pruning. International Conference on Machine Learning (ICML)
24.
go back to reference Economist Staff (2015) Blockchains: The great chain of being sure about things. The Economist October 31st Economist Staff (2015) Blockchains: The great chain of being sure about things. The Economist October 31st
25.
go back to reference Narayanan A, Bonneau J, Felten E, Miller A, Goldfeder S (2016) Bitcoin and cryptocurrency technologies. A comprehensive introduction. Princeton University Press, Princeton Narayanan A, Bonneau J, Felten E, Miller A, Goldfeder S (2016) Bitcoin and cryptocurrency technologies. A comprehensive introduction. Princeton University Press, Princeton
Metadata
Title
How Safe Is Artificial Intelligence?
Author
Klaus Mainzer
Copyright Year
2020
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-59717-0_11

Premium Partners