Skip to main content
Top

2024 | OriginalPaper | Chapter

Human Centered AI for Financial Decisions

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We survey the state of the art of AI applications to financial expectations and the role quantum logic can play in further advancements of AI technologies. We discuss financial applications of such machine learning techniques as reinforcement learning and deep neural networks to the analysis of financial statements, algorithmic trading, portfolio management, and robo-advising. Next, we elaborate on the emergence and advancement of QML (quantum machine learning) and advocate for the wider exploration of the advantages of quantum inspired neural networks, steaming from the use of quantum logic that is able to capture agents’ non- classical expectations and non expected utility decisions, also coined “bounded rationality”. We would like to motivate to use human—like AI techniques that are centered on quantum, rather than classical logic to (i) represent the human brain type information processing; (ii) speed up the work of the AI algorithms; (iii) better operate in complex and uncertain environments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Deep neural networks are in a sense an advancement of the earlier algorithms based on artificial neural networks, where the DNNs have a more complex structure, with multiple hidden layers between the input and output layers, aimed at mimicking the human brain information processing, see [30] for detailed discussion.
 
2
For an introduction to AI algorithms in finance and investments, see, e.g., the primer by [31].
 
3
From: “Banking on the bots: unintended bias in AI”, [38].
 
4
The circumstances in which agents switch to non classical information processing is an intriguing question, yet to be fully explored, see [9] and a discussion in the setting of financial markets in [24].
 
Literature
1.
go back to reference Abbas, A., Sutter, D., Zoufal, C., et al.: The power of quantum neural networks. Nat Comput. Sci. 1, 403–409 (2021)CrossRef Abbas, A., Sutter, D., Zoufal, C., et al.: The power of quantum neural networks. Nat Comput. Sci. 1, 403–409 (2021)CrossRef
3.
go back to reference Back, C., Morana, S., Spann, M.: When do robo-advisors make us better investors? The impact of social design elements on investor behavior. J. Behav. Exp. Econ. 103, 101984 (2023) Back, C., Morana, S., Spann, M.: When do robo-advisors make us better investors? The impact of social design elements on investor behavior. J. Behav. Exp. Econ. 103, 101984 (2023)
4.
go back to reference Barberis, N., Shleifer, A., Vishny, R.: A model of investor sentiment. J. Financ. Econ. 49, 307–343 (1998) Barberis, N., Shleifer, A., Vishny, R.: A model of investor sentiment. J. Financ. Econ. 49, 307–343 (1998)
5.
go back to reference Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)CrossRef Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)CrossRef
6.
go back to reference Biamonte, J., et al.: Quantum machine learning. Nature 549, 195–202 (2017)CrossRef Biamonte, J., et al.: Quantum machine learning. Nature 549, 195–202 (2017)CrossRef
7.
go back to reference Boole, G.: An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities. Macmillan (1958[1854]). Reprinted with corrections, Dover Publications, New York, NY (reissued by Cambridge University Press, 2009) Boole, G.: An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities. Macmillan (1958[1854]). Reprinted with corrections, Dover Publications, New York, NY (reissued by Cambridge University Press, 2009)
8.
go back to reference Bouchard, J.P., Krüger, P., Landier, A., Thesmar, D.: Sticky expectations and the profitability anomaly. J. Financ. 74, 639–674 (2019)CrossRef Bouchard, J.P., Krüger, P., Landier, A., Thesmar, D.: Sticky expectations and the profitability anomaly. J. Financ. 74, 639–674 (2019)CrossRef
9.
go back to reference Busemeyer, J., Bruza, P.: Quantum Models of Cognition and Decision. Cambridge University Press (2012) Busemeyer, J., Bruza, P.: Quantum Models of Cognition and Decision. Cambridge University Press (2012)
10.
go back to reference Busemeyer, J., Wang, Z.: What is quantum cognition, and how is it applied to psychology? Curr. Dir. Psychol. Sci. 24(3), 163–169 Busemeyer, J., Wang, Z.: What is quantum cognition, and how is it applied to psychology? Curr. Dir. Psychol. Sci. 24(3), 163–169
11.
go back to reference Daley, A.J., et al.: Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022)CrossRef Daley, A.J., et al.: Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022)CrossRef
12.
go back to reference Dr. Varsha, P.S.: How can we manage biases in artificial intelligence systems—A systematic literature review. Int. J. Inf. Manag. Data Insights 3(1), 100–165 (2023) Dr. Varsha, P.S.: How can we manage biases in artificial intelligence systems—A systematic literature review. Int. J. Inf. Manag. Data Insights 3(1), 100–165 (2023)
13.
go back to reference Gigerenzer, G., Selten, R.: Bounded Rationality: The Adaptive Toolbox. Dahlem Workshop Reports (2001) Gigerenzer, G., Selten, R.: Bounded Rationality: The Adaptive Toolbox. Dahlem Workshop Reports (2001)
14.
go back to reference Glimcher, P., Fehr, E. (eds.): Neuroeconomics: Decision Making and the Brain. Academic Press, Elsevier (2014) Glimcher, P., Fehr, E. (eds.): Neuroeconomics: Decision Making and the Brain. Academic Press, Elsevier (2014)
15.
go back to reference Hornik, K., Stinchcombe, M.B., White, H.L.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)CrossRef Hornik, K., Stinchcombe, M.B., White, H.L.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)CrossRef
16.
go back to reference Huang, H.L., et al.: Experimental quantum generative adversarial networks for image generation. Phys. Rev. Appl. 17, 1013–1017 (2021) Huang, H.L., et al.: Experimental quantum generative adversarial networks for image generation. Phys. Rev. Appl. 17, 1013–1017 (2021)
17.
go back to reference Jiang, H., Zhengzi, L.S., Wang, H.: Pervasive underreaction: evidence from high-frequency data. J. Financ. Econ. 141(2), 573–599 (2021)CrossRef Jiang, H., Zhengzi, L.S., Wang, H.: Pervasive underreaction: evidence from high-frequency data. J. Financ. Econ. 141(2), 573–599 (2021)CrossRef
18.
go back to reference Kahneman, D.: Thinking. Fast and Slow, Farrar Straus and Giroux (1994) Kahneman, D.: Thinking. Fast and Slow, Farrar Straus and Giroux (1994)
20.
go back to reference Khrennikov, A., Basieva, I., Pothos, E.M., et al.: Quantum probability in decision making from quantum information representation of neuronal states. Sci. Rep. 8, 16225 (2018) Khrennikov, A., Basieva, I., Pothos, E.M., et al.: Quantum probability in decision making from quantum information representation of neuronal states. Sci. Rep. 8, 16225 (2018)
21.
go back to reference Khrennikov, A., Haven, E.: Quantum mechanics and violations of the sure—thing principle: the use of probability interference and other concepts. J. Math. Psychol. 53, 378–388 (2009)CrossRef Khrennikov, A., Haven, E.: Quantum mechanics and violations of the sure—thing principle: the use of probability interference and other concepts. J. Math. Psychol. 53, 378–388 (2009)CrossRef
22.
go back to reference Kreps, M.D.: Notes on the Theory of Choice. Westview Press (1988) Kreps, M.D.: Notes on the Theory of Choice. Westview Press (1988)
23.
go back to reference Khrennikova, P., Patra, S.: Asset Trading under non-classical ambiguity and heterogeneous beliefs. Phys. Stat. Mech. Appl. 521, 562–577 (2019)CrossRef Khrennikova, P., Patra, S.: Asset Trading under non-classical ambiguity and heterogeneous beliefs. Phys. Stat. Mech. Appl. 521, 562–577 (2019)CrossRef
24.
go back to reference Khrennikova, P.: Application of quantum master equation for long term prognosis of asset prices. Phys. Stat. Mech. Appl. 450, 253–263 (2016)CrossRef Khrennikova, P.: Application of quantum master equation for long term prognosis of asset prices. Phys. Stat. Mech. Appl. 450, 253–263 (2016)CrossRef
26.
go back to reference McCulloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)CrossRef McCulloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)CrossRef
27.
go back to reference Melucci, M.: Introduction to Information Retrieval and Quantum Mechanics. Springer, Berlin (2015) Melucci, M.: Introduction to Information Retrieval and Quantum Mechanics. Springer, Berlin (2015)
28.
go back to reference Melucci, M.: Deriving a quantum information retrieval basis. Comput. J. 56(11), 1279–1291 (2013)CrossRef Melucci, M.: Deriving a quantum information retrieval basis. Comput. J. 56(11), 1279–1291 (2013)CrossRef
29.
go back to reference Montanaro, A.: Quantum algorithms: an overview. Quantum Inf. 2, 1–8 (2016) Montanaro, A.: Quantum algorithms: an overview. Quantum Inf. 2, 1–8 (2016)
30.
go back to reference Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2010) Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2010)
32.
go back to reference Plotnitsky, A., Haven, E. (eds.) The Quantum -Like Revolution: A Festschrift for Andrei Khrennikov. Springer, Berlin/Heidelberg, Germany, New York, NY, USA (2023) Plotnitsky, A., Haven, E. (eds.) The Quantum -Like Revolution: A Festschrift for Andrei Khrennikov. Springer, Berlin/Heidelberg, Germany, New York, NY, USA (2023)
33.
go back to reference Shafir, E., Tversky, A.: Thinking through uncertainty: non-consequential reasoning and choice. Cogn. Psychol. 24(4), 449–474 (1992)CrossRef Shafir, E., Tversky, A.: Thinking through uncertainty: non-consequential reasoning and choice. Cogn. Psychol. 24(4), 449–474 (1992)CrossRef
34.
go back to reference Simon, H.A.: Behavioral model of rational choice. Q. J. Econ. 69, 99–118 (1955)CrossRef Simon, H.A.: Behavioral model of rational choice. Q. J. Econ. 69, 99–118 (1955)CrossRef
35.
go back to reference Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour, Princeton. Princeton University Press, NJ (1953) Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour, Princeton. Princeton University Press, NJ (1953)
37.
go back to reference Ying, M.: Quantum computation, quantum theory and AI. Artif. Intell. 174(2), 162–176 (2010)CrossRef Ying, M.: Quantum computation, quantum theory and AI. Artif. Intell. 174(2), 162–176 (2010)CrossRef
Metadata
Title
Human Centered AI for Financial Decisions
Author
Polina Khrennikova
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-67770-0_7