Skip to main content
Top

2019 | OriginalPaper | Chapter

Human Cognition-Inspired Robotic Grasping

Authors : Marco Monforte, Fanny Ficuciello, Bruno Siciliano

Published in: Cognitive Architectures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The hand is one of the most complex and fascinating organs of the human body. We can powerfully squeeze objects, but we are also capable of manipulating them with great precision and dexterity. On the other hand, the arm, with its redundant joints, is in charge of reaching the object by determining the hand pose during preshaping. The complex motion and task execution of the upper-limb system may lead us to think that the control requires a very significant brain effort. As a matter of fact, neuroscience studies demonstrate that humans simplify planning and control using a combination of primitives, which the brain modulates to produce hand configurations and force patterns for the purpose of grasping and manipulating different objects. This concept can be transferred to robotic systems, allowing control within a space of lower dimension. The lower number of parameters characterizing the system allows for embodying the control in machine learning frameworks, reproducing a sort of human-like cognition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kapandji, I. A. (1970). The physiology of the joints. Upper limb (Vol. 1, 2nd ed., pp. 146–202). London: E. and S. Livingstone. Kapandji, I. A. (1970). The physiology of the joints. Upper limb (Vol. 1, 2nd ed., pp. 146–202). London: E. and S. Livingstone.
2.
go back to reference Tubiana, R. (1981). Architecture and function of the hand. In R. Tubiana (Ed.), The Hand (Vol. 1, pp. 19–93). Philadelphia, PA: Saunders. Tubiana, R. (1981). Architecture and function of the hand. In R. Tubiana (Ed.), The Hand (Vol. 1, pp. 19–93). Philadelphia, PA: Saunders.
3.
go back to reference Soechting, J. F., & Flanders, M. (1997). Flexibility and repeatability of finger movements during typing: Analysis of multiple degrees of freedom. Journal of Computing Neuroscience, 4, 29–46.CrossRef Soechting, J. F., & Flanders, M. (1997). Flexibility and repeatability of finger movements during typing: Analysis of multiple degrees of freedom. Journal of Computing Neuroscience, 4, 29–46.CrossRef
4.
go back to reference Lemon, R. N. (1999). Neural control of dexterity: What has been achieved? Experimental Brain Research, 128, 6–12.CrossRef Lemon, R. N. (1999). Neural control of dexterity: What has been achieved? Experimental Brain Research, 128, 6–12.CrossRef
5.
go back to reference Schieber, M. (1990). How might the motor cortex individuate movements? Trends Neuroscience, 13, 440–445.CrossRef Schieber, M. (1990). How might the motor cortex individuate movements? Trends Neuroscience, 13, 440–445.CrossRef
6.
go back to reference Schieber, M. (1995). Muscular production of individuated finger movements: The roles of extrinsic finger muscles. Journal of Neuroscience, 15, 284–297.CrossRef Schieber, M. (1995). Muscular production of individuated finger movements: The roles of extrinsic finger muscles. Journal of Neuroscience, 15, 284–297.CrossRef
7.
go back to reference Napier, J. R. (1956). The prehensile movements of the human hand. Journal Bone and Joint Surgery, 38B, 902–913. Napier, J. R. (1956). The prehensile movements of the human hand. Journal Bone and Joint Surgery, 38B, 902–913.
8.
go back to reference Johannson, R. S., & Cole, K. J. (1992). Sensory-motor coordination during grasping and manipulative actions. Current Opinion in Neurology, 2, 815–823.CrossRef Johannson, R. S., & Cole, K. J. (1992). Sensory-motor coordination during grasping and manipulative actions. Current Opinion in Neurology, 2, 815–823.CrossRef
9.
go back to reference Kamakura N., Matsuo M., Ishii H., Mitsuboshi F., & Miura Y. Patterns of static prehension in normal hands. The American Journal of Occupational Therapy, 7, 437–445. Kamakura N., Matsuo M., Ishii H., Mitsuboshi F., & Miura Y. Patterns of static prehension in normal hands. The American Journal of Occupational Therapy, 7, 437–445.
10.
go back to reference Elliot, J. M., & Connolly, K. J. A. (1984). Classification of manipulative hand movements. Developmental Medicine & Child Neurology, 26, 283–296. Elliot, J. M., & Connolly, K. J. A. (1984). Classification of manipulative hand movements. Developmental Medicine & Child Neurology, 26, 283–296.
11.
go back to reference Klatzky, R. L., Pellegrino, J., McCloskey, B., Doherty, S., & Smith, T. (1987). Knowledge about hand shaping and knowledge about objects. Journal of Motor Behavior, 19, 187–213.CrossRef Klatzky, R. L., Pellegrino, J., McCloskey, B., Doherty, S., & Smith, T. (1987). Knowledge about hand shaping and knowledge about objects. Journal of Motor Behavior, 19, 187–213.CrossRef
12.
go back to reference Cutkosky, M. R., & Howe, R. D. (1990). Human grasp choice and robotic grasp analysis. In S. T. Venkataraman & T. Iberall (Eds.), Dextrous robot hands (pp. 5–31). New York: Springer. Cutkosky, M. R., & Howe, R. D. (1990). Human grasp choice and robotic grasp analysis. In S. T. Venkataraman & T. Iberall (Eds.), Dextrous robot hands (pp. 5–31). New York: Springer.
13.
go back to reference Santello, M., Flanders, M., & Soechting, J. F. (1998). Postural hand synergies for tool use. The Journal of Neuroscience, 18, 10105–10115.CrossRef Santello, M., Flanders, M., & Soechting, J. F. (1998). Postural hand synergies for tool use. The Journal of Neuroscience, 18, 10105–10115.CrossRef
14.
go back to reference Mason, C. R., Gomez, J. E., & Ebner, T. J. (2001). Hand synergies during reach-to-grasp. Journal of Neurophysiology, 86, 2896–2910.CrossRef Mason, C. R., Gomez, J. E., & Ebner, T. J. (2001). Hand synergies during reach-to-grasp. Journal of Neurophysiology, 86, 2896–2910.CrossRef
15.
go back to reference Ficuciello F., Palli G., Melchiorri C., & Siciliano B. (2013). A model-based strategy for mapping human grasps to robotic hands using synergies. In Proceedings 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Ficuciello F., Palli G., Melchiorri C., & Siciliano B. (2013). A model-based strategy for mapping human grasps to robotic hands using synergies. In Proceedings 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
16.
go back to reference Palli, G., Melchiorri, C., Vassura, G., Berselli, G., Pirozzi, S., Natale, C., De Maria, G., & May, C. (2012). Innovative technologies for the next generation of robotic hands. In B. Siciliano (Ed.), Advanced Bimanual Manipulation. Springer Tracts in Advanced Robotics (Vol. 80, pp. 173–218). Springer. Palli, G., Melchiorri, C., Vassura, G., Berselli, G., Pirozzi, S., Natale, C., De Maria, G., & May, C. (2012). Innovative technologies for the next generation of robotic hands. In B. Siciliano (Ed.), Advanced Bimanual Manipulation. Springer Tracts in Advanced Robotics (Vol. 80, pp. 173–218). Springer.
17.
go back to reference Grebenstein, M., Chalon, M., Hirzinger, G., & Siegwart, R. (2010). A method for hand kinematics designers 7 billion perfect hands. In Proceedings 1st International Conference on Applied Bionics and Biomechanics (pp. 357–362). Venice, Italy. Grebenstein, M., Chalon, M., Hirzinger, G., & Siegwart, R. (2010). A method for hand kinematics designers 7 billion perfect hands. In Proceedings 1st International Conference on Applied Bionics and Biomechanics (pp. 357–362). Venice, Italy.
18.
go back to reference Siciliano, B., & Khatib, O. (Eds.). (2008). Springer Handbook of Robotics (2nd ed.). Springer. Siciliano, B., & Khatib, O. (Eds.). (2008). Springer Handbook of Robotics (2nd ed.). Springer.
19.
go back to reference Ficuciello, F., Federico, A., Lippiello, V., & Siciliano, B. (2017). Synergies evaluation of the SCHUNK S5FH for grasping control. Springer Proceedings in Advanced Robotics, 4, 225–233.CrossRef Ficuciello, F., Federico, A., Lippiello, V., & Siciliano, B. (2017). Synergies evaluation of the SCHUNK S5FH for grasping control. Springer Proceedings in Advanced Robotics, 4, 225–233.CrossRef
21.
go back to reference Ficuciello, F., Palli, G., Melchiorri, C., Siciliano, B. (2011). Experimental evaluation of postural synergies during reach to grasp with the UB Hand IV. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1775–1780). San Francisco. Ficuciello, F., Palli, G., Melchiorri, C., Siciliano, B. (2011). Experimental evaluation of postural synergies during reach to grasp with the UB Hand IV. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1775–1780). San Francisco.
22.
go back to reference Geng, T., Lee, M., & Hulse, M. (2011). Transferring human grasping synergies to a robot. Mechatronics, 21(1), 272–284.CrossRef Geng, T., Lee, M., & Hulse, M. (2011). Transferring human grasping synergies to a robot. Mechatronics, 21(1), 272–284.CrossRef
23.
go back to reference Sun, S., Rosales, C., & Suarez, R. (2010). Study of coordinated motions of the human hand for robotic applications. In Proceedings IEEE International Conference on Robotics and Automation (pp. 776–781). Anchorage, Alaska. Sun, S., Rosales, C., & Suarez, R. (2010). Study of coordinated motions of the human hand for robotic applications. In Proceedings IEEE International Conference on Robotics and Automation (pp. 776–781). Anchorage, Alaska.
24.
go back to reference Gioioso, G., Salvietti, G., Malvezzi, M., & Prattichizzo, P. (2011). Mapping synergies from human to robotic hands with dissimilar kinematics: An object based approach. In IEEE International Conference on Robotics and Automation, Workshop on Manipulation Under Uncertainty. Shangai. Gioioso, G., Salvietti, G., Malvezzi, M., & Prattichizzo, P. (2011). Mapping synergies from human to robotic hands with dissimilar kinematics: An object based approach. In IEEE International Conference on Robotics and Automation, Workshop on Manipulation Under Uncertainty. Shangai.
25.
go back to reference Ficuciello, F., Zaccara, D., & Siciliano, B. (2016). Learning grasps in a synergy-based framework. In Springer Proceedings in Advanced Robotics (Vol. 1, pp. 125–135). Cham. Ficuciello, F., Zaccara, D., & Siciliano, B. (2016). Learning grasps in a synergy-based framework. In Springer Proceedings in Advanced Robotics (Vol. 1, pp. 125–135). Cham.
28.
go back to reference Giorgino, T. (2009). Computing and visualizing dynamic time warping alignments in R: The dtw package. Journal of statistical Software, 31(7), 1–24.CrossRef Giorgino, T. (2009). Computing and visualizing dynamic time warping alignments in R: The dtw package. Journal of statistical Software, 31(7), 1–24.CrossRef
29.
go back to reference Ramsay, J. O., & Silverman, B. W. (2005). Functional Data Analysis. Springer. Ramsay, J. O., & Silverman, B. W. (2005). Functional Data Analysis. Springer.
30.
go back to reference Jacques, J., & Preda, C. (2004). Model-based clustering for multivariate functional data. Computational Statistics & Data Analysis, 71, 92–106.MathSciNetCrossRef Jacques, J., & Preda, C. (2004). Model-based clustering for multivariate functional data. Computational Statistics & Data Analysis, 71, 92–106.MathSciNetCrossRef
31.
go back to reference Happ, C. (2015). Multivariate functional principal component analysis for data observed on different (dimensional) domains. Journal of the American Statistical Association. Happ, C. (2015). Multivariate functional principal component analysis for data observed on different (dimensional) domains. Journal of the American Statistical Association.
32.
go back to reference Berrendero, J., Justel, A., & Svarc, M. (2011). Principal components for multivariate functional data. Computational Statistics & Data Analysis, 55(9), 2619–2634.MathSciNetCrossRef Berrendero, J., Justel, A., & Svarc, M. (2011). Principal components for multivariate functional data. Computational Statistics & Data Analysis, 55(9), 2619–2634.MathSciNetCrossRef
33.
go back to reference Ficuciello, F., Zaccara, D., & Siciliano, B. (2016). Synergy-based policy improvement with path integrals for anthropomorphic hands. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2016) (pp. 1940–1945). Ficuciello, F., Zaccara, D., & Siciliano, B. (2016). Synergy-based policy improvement with path integrals for anthropomorphic hands. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2016) (pp. 1940–1945).
34.
go back to reference Theodorou, E., Buchli, J., & Schaal, S. (2010). A generalized path integral control approach to reinforcement learning. Journal of Machine Learning Research. Theodorou, E., Buchli, J., & Schaal, S. (2010). A generalized path integral control approach to reinforcement learning. Journal of Machine Learning Research.
35.
go back to reference Stulp, F., & Sigaud, O. (2012). Path integral policy improvement with covariance matrix adaptation. In Proceedings of the 29 International Conference on Machine Learning. Stulp, F., & Sigaud, O. (2012). Path integral policy improvement with covariance matrix adaptation. In Proceedings of the 29 International Conference on Machine Learning.
36.
go back to reference Bicchi, A. (1994). On the closure properties of robotic grasping. International Journal of Robotics Research, 14(4), 319–334.CrossRef Bicchi, A. (1994). On the closure properties of robotic grasping. International Journal of Robotics Research, 14(4), 319–334.CrossRef
Metadata
Title
Human Cognition-Inspired Robotic Grasping
Authors
Marco Monforte
Fanny Ficuciello
Bruno Siciliano
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-97550-4_6