Skip to main content
Top
Published in: Cellulose 9/2021

24-04-2021 | Original Research

Humidity-responsive thermal conduction properties of bacterial cellulose films

Authors: Shogo Izakura, Hirotaka Koga, Kojiro Uetani

Published in: Cellulose | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High hygroscopicity is an unavoidable feature of cellulose materials, and it is important for clarifying the humidity dependence of the target function toward precise utilization. Recently, cellulose nanofiber films have been found to have higher thermal conductivity than plastics and glass, and they are expected to be used as flexible thermal conductive films. However, their humidity dependence has not been elucidated. In this study, we investigated the humidity dependence on the thermal conduction properties of bacterial cellulose films by using a custom-made sealing chamber compatible with the laser spot periodic heating radiation thermometry method for measuring thermal diffusivity. Bacterial cellulose films conditioned for long periods of time in constant relative humidity ranging from 11 to 93% regulated by sorbet-like saturated salt solutions showed decreasing in-plane thermal diffusivity with increasing humidity. The moisture content determined by thermogravimetric analysis showed a linear negative correlation with the thermal diffusivity. The decrease in the thermal diffusivity with increasing moisture content was larger than the decrease predicted by the simple law of mixtures, which could be because of an increase in thermal resistance of the interface due to the adsorption of water not only on the open surface of the nanofibers but also on the interface between the nanofibers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Apostolopoulou-Kalkavoura V, Gordeyeva K, Lavoine N, Bergstrom L (2018) Thermal conductivity of hygroscopic foams based on cellulose nanofibrils and a nonionic polyoxamer. Cellulose 25:1117–1126CrossRef Apostolopoulou-Kalkavoura V, Gordeyeva K, Lavoine N, Bergstrom L (2018) Thermal conductivity of hygroscopic foams based on cellulose nanofibrils and a nonionic polyoxamer. Cellulose 25:1117–1126CrossRef
go back to reference Apostolopoulou-Kalkavoura V, Munier P, Bergström L (2020) Thermally insulating nanocellulose-based materials. Adv Mater 137:2001839CrossRef Apostolopoulou-Kalkavoura V, Munier P, Bergström L (2020) Thermally insulating nanocellulose-based materials. Adv Mater 137:2001839CrossRef
go back to reference Benítez AJ, Torres-Rendon J, Poutanen M, Walther A (2013) Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromol 14:4497–4506CrossRef Benítez AJ, Torres-Rendon J, Poutanen M, Walther A (2013) Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromol 14:4497–4506CrossRef
go back to reference Bouguerra A, Ait-Mokhtar A, Amiri O, Diop MB (2001) Measurement of thermal conductivity, thermal diffusivity and heat capacity of highly porous building materials using transient plane source technique. Int Commun Heat Mass Transf 28(8):1065–1078CrossRef Bouguerra A, Ait-Mokhtar A, Amiri O, Diop MB (2001) Measurement of thermal conductivity, thermal diffusivity and heat capacity of highly porous building materials using transient plane source technique. Int Commun Heat Mass Transf 28(8):1065–1078CrossRef
go back to reference Dante RC (2016) 9—Metals. In: Handbook of friction materials and their applications, pp 123–134 Dante RC (2016) 9—Metals. In: Handbook of friction materials and their applications, pp 123–134
go back to reference French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
go back to reference Ghanbarian B, Daigle H (2016) Thermal conductivity in porous media: percolation-based effective-medium approximation. Water Resour Res 52:295–314CrossRef Ghanbarian B, Daigle H (2016) Thermal conductivity in porous media: percolation-based effective-medium approximation. Water Resour Res 52:295–314CrossRef
go back to reference Guo X, Wu Y, Xie X (2017) Water vapor sorption properties of cellulose nanocrystals and nanofibers using dynamic vapor sorption apparatus. Sci Rep 7:14207CrossRef Guo X, Wu Y, Xie X (2017) Water vapor sorption properties of cellulose nanocrystals and nanofibers using dynamic vapor sorption apparatus. Sci Rep 7:14207CrossRef
go back to reference Guo X, Liu L, Wu J, Fan J, Wu Y (2018) Qualitatively and quantitatively characterizing water adsorption of a cellulose nanofiber film using micro-FTIR spectroscopy. RSC Adv 8:4214–4220CrossRef Guo X, Liu L, Wu J, Fan J, Wu Y (2018) Qualitatively and quantitatively characterizing water adsorption of a cellulose nanofiber film using micro-FTIR spectroscopy. RSC Adv 8:4214–4220CrossRef
go back to reference Isobe N, Kasuga T, Nogi M (2018) Clear transparent cellulose nanopaper prepared from a concentrated dispersion by high-humidity drying. RSC Adv 8(4):1833–1837CrossRef Isobe N, Kasuga T, Nogi M (2018) Clear transparent cellulose nanopaper prepared from a concentrated dispersion by high-humidity drying. RSC Adv 8(4):1833–1837CrossRef
go back to reference Jerman M, Černý R (2012) Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials. Energy Build 53:39–46CrossRef Jerman M, Černý R (2012) Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials. Energy Build 53:39–46CrossRef
go back to reference Jerman M, Keppert M, Výborný J, Černý R (2013) Hygric, thermal and durability properties of autoclaved aerated concrete. Constr Build Mater 41:352–359CrossRef Jerman M, Keppert M, Výborný J, Černý R (2013) Hygric, thermal and durability properties of autoclaved aerated concrete. Constr Build Mater 41:352–359CrossRef
go back to reference Kasuga T, Yagyu H, Uetani K, Koga H, Nogi M (2019) “Return to the soil” nanopaper sensor device for hyperdense sensor networks. ACS Appl Mater Interfaces 11:43488–43493CrossRef Kasuga T, Yagyu H, Uetani K, Koga H, Nogi M (2019) “Return to the soil” nanopaper sensor device for hyperdense sensor networks. ACS Appl Mater Interfaces 11:43488–43493CrossRef
go back to reference Li C, Kasuga T, Uetani K, Koga H, Nogi M (2020) High-speed fabrication of clear transparent cellulose nanopaper by applying humidity-controlled multi-stage drying method. Nanomaterials 10:2194CrossRef Li C, Kasuga T, Uetani K, Koga H, Nogi M (2020) High-speed fabrication of clear transparent cellulose nanopaper by applying humidity-controlled multi-stage drying method. Nanomaterials 10:2194CrossRef
go back to reference Modi SK, Prasad BD, Basavaraj M (2014) Effect of moisture content and temperature on thermal conductivity of Psidium guajava L. by line heat source method (transient analysis). Int J Heat Mass Transf 78:354–359CrossRef Modi SK, Prasad BD, Basavaraj M (2014) Effect of moisture content and temperature on thermal conductivity of Psidium guajava L. by line heat source method (transient analysis). Int J Heat Mass Transf 78:354–359CrossRef
go back to reference Munier P, Apostolopoulou-Kalkavoura V, Persson M, Bergstrom L (2019) Strong silica-nanocellulose anisotropic composite foams combine low thermal conductivity and low moisture uptake. Cellulose 27:10825–10836 Munier P, Apostolopoulou-Kalkavoura V, Persson M, Bergstrom L (2019) Strong silica-nanocellulose anisotropic composite foams combine low thermal conductivity and low moisture uptake. Cellulose 27:10825–10836
go back to reference Nait-Ali B, Danglade C, Smith DS, Haberko K (2013) Effect of humidity on the thermal conductivity of porous zirconia ceramics. J Eur Ceram Soc 33:2565–2571CrossRef Nait-Ali B, Danglade C, Smith DS, Haberko K (2013) Effect of humidity on the thermal conductivity of porous zirconia ceramics. J Eur Ceram Soc 33:2565–2571CrossRef
go back to reference Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20(10):1849–1852CrossRef Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20(10):1849–1852CrossRef
go back to reference Orsolini P, Michen B, Huch A, Tingaut P, Caseri WR, Zimmermann T (2015) Characterization of pores in dense nanopapers and nanofibrillated cellulose membranes: a critical assessment of established methods. ACS Appl Mater Interfaces 7:25884–25897CrossRef Orsolini P, Michen B, Huch A, Tingaut P, Caseri WR, Zimmermann T (2015) Characterization of pores in dense nanopapers and nanofibrillated cellulose membranes: a critical assessment of established methods. ACS Appl Mater Interfaces 7:25884–25897CrossRef
go back to reference Suleiman BM, Larfeldt J, Leckner B, Gustavsson M (1999) Thermal conductivity and diffusivity of wood. Wood Sci Technol 33:465–473CrossRef Suleiman BM, Larfeldt J, Leckner B, Gustavsson M (1999) Thermal conductivity and diffusivity of wood. Wood Sci Technol 33:465–473CrossRef
go back to reference Tomko JA, Pena-Francesch A, Jung H, Tyagi M, Allen BD, Demirel MC, Hopkins PE (2018) Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials. Nat Nanotechnol 13:959–964CrossRef Tomko JA, Pena-Francesch A, Jung H, Tyagi M, Allen BD, Demirel MC, Hopkins PE (2018) Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials. Nat Nanotechnol 13:959–964CrossRef
go back to reference Uetani K, Hatori K (2017) Thermal conductivity analysis and applications of nanocellulose materials. Sci Technol Adv Mater 18(1):877–892CrossRef Uetani K, Hatori K (2017) Thermal conductivity analysis and applications of nanocellulose materials. Sci Technol Adv Mater 18(1):877–892CrossRef
go back to reference Uetani K, Okada T, Oyama HT (2015) Crystallite size effect on thermal conductive properties of nonwoven nanocellulose sheets. Biomacromol 16(7):2220–2227CrossRef Uetani K, Okada T, Oyama HT (2015) Crystallite size effect on thermal conductive properties of nonwoven nanocellulose sheets. Biomacromol 16(7):2220–2227CrossRef
go back to reference Uetani K, Okada T, Oyama HT (2016) Thermally conductive and optically transparent flexible films with surface-exposed nanocellulose skeletons. J Mater Chem C 4(41):9697–9703CrossRef Uetani K, Okada T, Oyama HT (2016) Thermally conductive and optically transparent flexible films with surface-exposed nanocellulose skeletons. J Mater Chem C 4(41):9697–9703CrossRef
go back to reference Uetani K, Okada T, Oyama HT (2017) In-plane anisotropic thermally conductive nanopapers by drawing bacterial cellulose hydrogels. ACS Macro Lett 6(4):345–349CrossRef Uetani K, Okada T, Oyama HT (2017) In-plane anisotropic thermally conductive nanopapers by drawing bacterial cellulose hydrogels. ACS Macro Lett 6(4):345–349CrossRef
go back to reference Uetani K, Izakura S, Koga H, Nogi M (2020a) Thermal diffusivity modulation driven by the interfacial elastic dynamics between cellulose nanofibers. Nanoscale Adv 2:1024–1030CrossRef Uetani K, Izakura S, Koga H, Nogi M (2020a) Thermal diffusivity modulation driven by the interfacial elastic dynamics between cellulose nanofibers. Nanoscale Adv 2:1024–1030CrossRef
go back to reference Uetani K, Koga H, Nogi M (2020b) Checkered films of multiaxis oriented nanocelluloses by liquid-phase three-dimensional patterning. Nanomaterials 10:958CrossRef Uetani K, Koga H, Nogi M (2020b) Checkered films of multiaxis oriented nanocelluloses by liquid-phase three-dimensional patterning. Nanomaterials 10:958CrossRef
go back to reference Vitta S, Thiruvengadam V (2012) Multifunctional bacterial cellulose and nanoparticle-embedded composites. Curr Sci 102(10):1398–1405 Vitta S, Thiruvengadam V (2012) Multifunctional bacterial cellulose and nanoparticle-embedded composites. Curr Sci 102(10):1398–1405
go back to reference Xie Y, Hill CAS, Jalaludin Z, Sun D (2011) The water vapour sorption behaviour of three celluloses: analysis using parallel exponential kinetics and interpretation using the Kelvin–Voigt viscoelastic model. Cellulose 18:517–530CrossRef Xie Y, Hill CAS, Jalaludin Z, Sun D (2011) The water vapour sorption behaviour of three celluloses: analysis using parallel exponential kinetics and interpretation using the Kelvin–Voigt viscoelastic model. Cellulose 18:517–530CrossRef
Metadata
Title
Humidity-responsive thermal conduction properties of bacterial cellulose films
Authors
Shogo Izakura
Hirotaka Koga
Kojiro Uetani
Publication date
24-04-2021
Publisher
Springer Netherlands
Published in
Cellulose / Issue 9/2021
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-03888-6

Other articles of this Issue 9/2021

Cellulose 9/2021 Go to the issue