Skip to main content
Top
Published in:

07-11-2022

Hybrid Convolutional Neural Network-Multilayer Perceptron Model for Solar Radiation Prediction

Authors: Sujan Ghimire, Thong Nguyen-Huy, Ramendra Prasad, Ravinesh C. Deo, David Casillas-Pérez, Sancho Salcedo-Sanz, Binayak Bhandari

Published in: Cognitive Computation | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Urgent transition from the dependence on fossil fuels towards renewable energies requires more solar photovoltaic power to be connected to the electricity grids, with reliable supply through accurate solar radiation forecasting systems. This study proposes an innovative hybrid method that integrates convolutional neural network (CNN) with multi-layer perceptron (MLP) to generate global solar radiation (GSR) forecasts. The CMLP model first extracts optimal topological and structural features embedded in predictive variables through a CNN-based feature extraction stage followed by an MLP-based predictive model to generate the GSR forecasts. Predictive variables from observed data and global climate models (GCM) are used to predict GSR at six solar farms in Queensland, Australia. A hybrid-wrapper feature selection method using a random forest-recursive feature elimination (RF-RFE) scheme is used to eradicate redundant predictor features to improve the proposed CMLP model efficiency. The CMLP model has been compared and bench-marked against seven artificial intelligence–based and seven temperature-based deterministic models, showing excellent performance at all solar energy study sites tested over daily, monthly, and seasonal scales. The proposed hybrid CMLP model should be explored as a viable modelling tool for solar energy monitoring and forecasting in real-time energy management systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Best R, Burke PJ, Nepal R, Reynolds Z. Effects of rooftop solar on housing prices in Australia.Aust J Agric Resour Econ. 2021. Best R, Burke PJ, Nepal R, Reynolds Z. Effects of rooftop solar on housing prices in Australia.Aust J Agric Resour Econ. 2021.
2.
go back to reference Peng T, Zhang C, Zhou J, Nazir MS. An integrated framework of Bi-directional Long-Short Term Memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting. Energy. 2021;221.CrossRef Peng T, Zhang C, Zhou J, Nazir MS. An integrated framework of Bi-directional Long-Short Term Memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting. Energy. 2021;221.CrossRef
3.
go back to reference Lai CS, Zhong C, Pan K, Ng WW, Lai LL. A deep learning based hybrid method for hourly solar radiation forecasting. Expert Syst Appl. 2021;177.CrossRef Lai CS, Zhong C, Pan K, Ng WW, Lai LL. A deep learning based hybrid method for hourly solar radiation forecasting. Expert Syst Appl. 2021;177.CrossRef
4.
go back to reference Guermoui M, Melgani F, Danilo C. Multi-step ahead forecasting of daily global and direct solar radiation: a review and case study of Ghardaia region. J Clean Prod. 2018;201:716–34.CrossRef Guermoui M, Melgani F, Danilo C. Multi-step ahead forecasting of daily global and direct solar radiation: a review and case study of Ghardaia region. J Clean Prod. 2018;201:716–34.CrossRef
5.
go back to reference Gopi A, Sudhakar K, Keng NW, Krishnan AR. Comparison of normal and weather corrected performance ratio of photovoltaic solar plants in hot and cold climates. Energy Sustain Dev. 2021;65:53–62.CrossRef Gopi A, Sudhakar K, Keng NW, Krishnan AR. Comparison of normal and weather corrected performance ratio of photovoltaic solar plants in hot and cold climates. Energy Sustain Dev. 2021;65:53–62.CrossRef
6.
go back to reference Ahmed AM, Sharma E, Jui SJJ, Deo RC, Nguyen-Huy T, Ali M. Kernel ridge regression hybrid method for wheat yield prediction with satellite-derived predictors. Remote Sens. 2022;14(5):1136.CrossRef Ahmed AM, Sharma E, Jui SJJ, Deo RC, Nguyen-Huy T, Ali M. Kernel ridge regression hybrid method for wheat yield prediction with satellite-derived predictors. Remote Sens. 2022;14(5):1136.CrossRef
7.
go back to reference Balalla DT, Nguyen-Huy T, Deo R. MARS model for prediction of short-and long-term global solar radiation. In: Predictive modelling for energy management and power systems engineering. Netherlands: Elsevier. 2021. p. 391-436. Balalla DT, Nguyen-Huy T, Deo R. MARS model for prediction of short-and long-term global solar radiation. In: Predictive modelling for energy management and power systems engineering. Netherlands: Elsevier. 2021. p. 391-436.
8.
go back to reference Alkhayat G, Mehmood R. A review and taxonomy of wind and solar energy forecasting methods based on deep learning. Energy and AI. 2021:100060. Alkhayat G, Mehmood R. A review and taxonomy of wind and solar energy forecasting methods based on deep learning. Energy and AI. 2021:100060.
9.
go back to reference Deo RC, Yaseen ZM, Al-Ansari N, Nguyen-Huy T, Langlands TAM, Galligan L. Modern artificial intelligence model development for undergraduate student performance prediction: an investigation on engineering mathematics courses. IEEE Access. 2020;8:136697–724.CrossRef Deo RC, Yaseen ZM, Al-Ansari N, Nguyen-Huy T, Langlands TAM, Galligan L. Modern artificial intelligence model development for undergraduate student performance prediction: an investigation on engineering mathematics courses. IEEE Access. 2020;8:136697–724.CrossRef
10.
go back to reference Li B, Zhang J. A review on the integration of probabilistic solar forecasting in power systems. Solar Energy. 2020;210:68–86.CrossRef Li B, Zhang J. A review on the integration of probabilistic solar forecasting in power systems. Solar Energy. 2020;210:68–86.CrossRef
11.
go back to reference Prasad SMM, Nguyen-Huy T, Deo R. Support vector machine model for multistep wind speed forecasting. In: Predictive modelling for energy management and power systems engineering. Netherlands: Elsevier; 2021. p. 335-89. Prasad SMM, Nguyen-Huy T, Deo R. Support vector machine model for multistep wind speed forecasting. In: Predictive modelling for energy management and power systems engineering. Netherlands: Elsevier; 2021. p. 335-89.
12.
go back to reference Ghimire S, Deo RC, Downs NJ, Raj N. Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia. Journal of Cleaner Production. 2019;216:288–310.CrossRef Ghimire S, Deo RC, Downs NJ, Raj N. Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia. Journal of Cleaner Production. 2019;216:288–310.CrossRef
13.
go back to reference Deo RC, Ghimire S, Downs NJ, Raj N. Optimization of windspeed prediction using an artificial neural network compared with a genetic programming model. In: Research anthology on multi-industry uses of genetic programming and algorithms; 2021. p. 116-47. Deo RC, Ghimire S, Downs NJ, Raj N. Optimization of windspeed prediction using an artificial neural network compared with a genetic programming model. In: Research anthology on multi-industry uses of genetic programming and algorithms; 2021. p. 116-47.
14.
go back to reference Sfetsos A, Coonick A. Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Solar Energy. 2000;68(2):169–78.CrossRef Sfetsos A, Coonick A. Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Solar Energy. 2000;68(2):169–78.CrossRef
15.
go back to reference Yacef R, Benghanem M, Mellit A. Prediction of daily global solar irradiation data using Bayesian neural network: a comparative study. Renewable Energy. 2012;48:146–54.CrossRef Yacef R, Benghanem M, Mellit A. Prediction of daily global solar irradiation data using Bayesian neural network: a comparative study. Renewable Energy. 2012;48:146–54.CrossRef
16.
go back to reference Zou L, Wang L, Lin A, Zhu H, Peng Y, Zhao Z. Estimation of global solar radiation using an artificial neural network based on an interpolation technique in southeast China. J Atmos Sol Terr Phys. 2016;146:110–22.CrossRef Zou L, Wang L, Lin A, Zhu H, Peng Y, Zhao Z. Estimation of global solar radiation using an artificial neural network based on an interpolation technique in southeast China. J Atmos Sol Terr Phys. 2016;146:110–22.CrossRef
17.
go back to reference Lu N, Qin J, Yang K, Sun J. A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data. Energy. 2011;36(5):3179–88.CrossRef Lu N, Qin J, Yang K, Sun J. A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data. Energy. 2011;36(5):3179–88.CrossRef
18.
go back to reference LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.CrossRef LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.CrossRef
19.
20.
go back to reference Ghimire S, Deo RC, Raj N, Mi J. Deep learning neural networks trained with MODIS satellite-derived predictors for long-term global solar radiation prediction. Energies. 2019;12(12):2407.CrossRef Ghimire S, Deo RC, Raj N, Mi J. Deep learning neural networks trained with MODIS satellite-derived predictors for long-term global solar radiation prediction. Energies. 2019;12(12):2407.CrossRef
21.
go back to reference Ghimire S, Deo RC, Wang H, Al-Musaylh MS, Casillas-Pérez D, Salcedo-Sanz S. Stacked LSTM sequence-to-sequence autoencoder with feature selection for daily solar radiation prediction: a review and new modeling results. Energies. 2022;15(3):1061.CrossRef Ghimire S, Deo RC, Wang H, Al-Musaylh MS, Casillas-Pérez D, Salcedo-Sanz S. Stacked LSTM sequence-to-sequence autoencoder with feature selection for daily solar radiation prediction: a review and new modeling results. Energies. 2022;15(3):1061.CrossRef
22.
go back to reference You W, Zhang H, Zhao X. A Siamese CNN for image steganalysis. IEEE Trans Inf Forensics Secur. 2020;16:291–306.CrossRef You W, Zhang H, Zhao X. A Siamese CNN for image steganalysis. IEEE Trans Inf Forensics Secur. 2020;16:291–306.CrossRef
23.
go back to reference Ombabi AH, Ouarda W, Alimi AM. Deep learning CNN-LSTM framework for Arabic sentiment analysis using textual information shared in social networks. Soc Netw Anal Min. 2020;10(1):1–13.CrossRef Ombabi AH, Ouarda W, Alimi AM. Deep learning CNN-LSTM framework for Arabic sentiment analysis using textual information shared in social networks. Soc Netw Anal Min. 2020;10(1):1–13.CrossRef
24.
go back to reference Yao Z, Wang Z, Liu W, Liu Y, Pan J. Speech emotion recognition using fusion of three multi-task learning-based classifiers: HSF-DNN. MS-CNN and LLD-RNN Speech Commun. 2020;120:11–9.CrossRef Yao Z, Wang Z, Liu W, Liu Y, Pan J. Speech emotion recognition using fusion of three multi-task learning-based classifiers: HSF-DNN. MS-CNN and LLD-RNN Speech Commun. 2020;120:11–9.CrossRef
25.
go back to reference Dai H, Hwang HG, Tseng VS. Convolutional neural network based automatic screening tool for cardiovascular diseases using different intervals of ECG signals. Comput Methods Prog Biomed. 2021;203.CrossRef Dai H, Hwang HG, Tseng VS. Convolutional neural network based automatic screening tool for cardiovascular diseases using different intervals of ECG signals. Comput Methods Prog Biomed. 2021;203.CrossRef
26.
go back to reference Shen Z, Fan X, Zhang L, Yu H. Wind speed prediction of unmanned sailboat based on CNN and LSTM hybrid neural network. Ocean Eng. 2022;254.CrossRef Shen Z, Fan X, Zhang L, Yu H. Wind speed prediction of unmanned sailboat based on CNN and LSTM hybrid neural network. Ocean Eng. 2022;254.CrossRef
27.
go back to reference Belmahdi B, Louzazni M, El Bouardi A. One month-ahead forecasting of mean daily global solar radiation using time series models. Optik. 2020;219.CrossRef Belmahdi B, Louzazni M, El Bouardi A. One month-ahead forecasting of mean daily global solar radiation using time series models. Optik. 2020;219.CrossRef
28.
go back to reference Rashid AH, Razzak I, Tanveer M, Robles-Kelly A. Ripnet: A lightweight one-class deep neural network for the identification of rip currents. In: International Conference on Neural Information Processing. Springer; 2020. p. 172-9. Rashid AH, Razzak I, Tanveer M, Robles-Kelly A. Ripnet: A lightweight one-class deep neural network for the identification of rip currents. In: International Conference on Neural Information Processing. Springer; 2020. p. 172-9.
30.
go back to reference Zhu B, Feng Y, Gong D, Jiang S, Zhao L, Cui N. Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Comput Electron Agric. 2020;173.CrossRef Zhu B, Feng Y, Gong D, Jiang S, Zhao L, Cui N. Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Comput Electron Agric. 2020;173.CrossRef
31.
go back to reference Fan J, Wu L, Ma X, Zhou H, Zhang F. Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions. Renew Energy. 2020;145:2034–45.CrossRef Fan J, Wu L, Ma X, Zhou H, Zhang F. Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions. Renew Energy. 2020;145:2034–45.CrossRef
32.
go back to reference Ghimire S, Deo RC, Raj N, Mi J. Wavelet-based 3-phase hybrid SVR model trained with satellite-derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction. Renew Sust Energ Rev. 2019;113.CrossRef Ghimire S, Deo RC, Raj N, Mi J. Wavelet-based 3-phase hybrid SVR model trained with satellite-derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction. Renew Sust Energ Rev. 2019;113.CrossRef
33.
go back to reference Zhang Y, Cui N, Feng Y, Gong D, Hu X. Comparison of BP, PSO-BP and statistical models for predicting daily global solar radiation in arid Northwest China. Comput Electron Agric. 2019;164.CrossRef Zhang Y, Cui N, Feng Y, Gong D, Hu X. Comparison of BP, PSO-BP and statistical models for predicting daily global solar radiation in arid Northwest China. Comput Electron Agric. 2019;164.CrossRef
34.
go back to reference Ghimire S, Bhandari B, Casillas-Pérez D, Deo RC, Salcedo-Sanz S. Hybrid deep CNN-SVR algorithm for solar radiation prediction problems in Queensland. Australia Engineering Applications of Artificial Intelligence. 2022;112.CrossRef Ghimire S, Bhandari B, Casillas-Pérez D, Deo RC, Salcedo-Sanz S. Hybrid deep CNN-SVR algorithm for solar radiation prediction problems in Queensland. Australia Engineering Applications of Artificial Intelligence. 2022;112.CrossRef
35.
go back to reference Ghimire S, Nguyen-Huy T, Deo RC, Casillas-Perez D, Salcedo-Sanz S. Efficient daily solar radiation prediction with deep learning 4-phase convolutional neural network, dual stage stacked regression and support vector machine CNN-REGST hybrid model. Sustain Mater Technol. 2022;32.CrossRef Ghimire S, Nguyen-Huy T, Deo RC, Casillas-Perez D, Salcedo-Sanz S. Efficient daily solar radiation prediction with deep learning 4-phase convolutional neural network, dual stage stacked regression and support vector machine CNN-REGST hybrid model. Sustain Mater Technol. 2022;32.CrossRef
36.
go back to reference Ghimire S, Deo RC, Casillas-Pérez D, Salcedo-Sanz S. Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms. Appl Energy. 2022;316.CrossRef Ghimire S, Deo RC, Casillas-Pérez D, Salcedo-Sanz S. Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms. Appl Energy. 2022;316.CrossRef
37.
go back to reference Kim TY, Cho SB. Predicting the household power consumption using CNN-LSTM hybrid networks. In: International Conference on Intelligent Data Engineering and Automated Learning. Springer; 2018. p. 481-90. Kim TY, Cho SB. Predicting the household power consumption using CNN-LSTM hybrid networks. In: International Conference on Intelligent Data Engineering and Automated Learning. Springer; 2018. p. 481-90.
38.
go back to reference Jaseena K, Kovoor BC. Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks. Energy Convers Manag. 2021;234.CrossRef Jaseena K, Kovoor BC. Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks. Energy Convers Manag. 2021;234.CrossRef
39.
go back to reference Ghimire S, Deo RC, Casillas-Pérez D, Salcedo-Sanz S, Sharma E, Ali M. Deep learning CNN-LSTM-MLP hybrid fusion model for feature optimizations and daily solar radiation prediction. Measurement. 2022:111759. Ghimire S, Deo RC, Casillas-Pérez D, Salcedo-Sanz S, Sharma E, Ali M. Deep learning CNN-LSTM-MLP hybrid fusion model for feature optimizations and daily solar radiation prediction. Measurement. 2022:111759.
40.
go back to reference Yan X, Mohammadian A. Forecasting daily reference evapotranspiration for Canada using the Penman-Monteith model and statistically downscaled global climate model projections. Alex Eng J. 2020;59(2):883–91.CrossRef Yan X, Mohammadian A. Forecasting daily reference evapotranspiration for Canada using the Penman-Monteith model and statistically downscaled global climate model projections. Alex Eng J. 2020;59(2):883–91.CrossRef
41.
go back to reference Gouda K, Nahak S, Goswami P. Evaluation of a GCM in seasonal forecasting of extreme rainfall events over continental India. Weather and Climate Extremes. 2018;21:10–6.CrossRef Gouda K, Nahak S, Goswami P. Evaluation of a GCM in seasonal forecasting of extreme rainfall events over continental India. Weather and Climate Extremes. 2018;21:10–6.CrossRef
42.
go back to reference Jha MK, Gassman PW. Changes in hydrology and streamflow as predicted by a modelling experiment forced with climate models. Hydrol Proced. 2014;28(5):2772–81.CrossRef Jha MK, Gassman PW. Changes in hydrology and streamflow as predicted by a modelling experiment forced with climate models. Hydrol Proced. 2014;28(5):2772–81.CrossRef
43.
go back to reference Rhee J, Im J. Meteorological drought forecasting for ungauged areas based on machine learning: using long-range climate forecast and remote sensing data. Agric For Meteorol. 2017;237:105–22.CrossRef Rhee J, Im J. Meteorological drought forecasting for ungauged areas based on machine learning: using long-range climate forecast and remote sensing data. Agric For Meteorol. 2017;237:105–22.CrossRef
44.
go back to reference Wang L, Liu X, Brown H. Prediction of the impacts of climate change on energy consumption for a medium-size office building with two climate models. Energy Build. 2017;157:218–26.CrossRef Wang L, Liu X, Brown H. Prediction of the impacts of climate change on energy consumption for a medium-size office building with two climate models. Energy Build. 2017;157:218–26.CrossRef
45.
go back to reference Huang J, Perry M. A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting. Int J Forecast. 2016;32(3):1081–6.CrossRef Huang J, Perry M. A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting. Int J Forecast. 2016;32(3):1081–6.CrossRef
46.
go back to reference Chakravorti T, Nayak N, Bisoi R, Dash P, Tripathy L. A new robust kernel ridge regression classifier for islanding and power quality disturbances in a multi distributed generation based microgrid. Renew Energy Focus. 2019;28:78–99.CrossRef Chakravorti T, Nayak N, Bisoi R, Dash P, Tripathy L. A new robust kernel ridge regression classifier for islanding and power quality disturbances in a multi distributed generation based microgrid. Renew Energy Focus. 2019;28:78–99.CrossRef
47.
go back to reference Ali M, Prasad R, Xiang Y, Yaseen ZM. Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts. J Hydrol. 2020;584.CrossRef Ali M, Prasad R, Xiang Y, Yaseen ZM. Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts. J Hydrol. 2020;584.CrossRef
48.
go back to reference Kiangala SK, Wang Z. An effective adaptive customization framework for small manufacturing plants using extreme gradient boosting-XGBoost and random forest ensemble learning algorithms in an Industry 4.0 environment. Machine Learning with Applications. 2021;4:100024. Kiangala SK, Wang Z. An effective adaptive customization framework for small manufacturing plants using extreme gradient boosting-XGBoost and random forest ensemble learning algorithms in an Industry 4.0 environment. Machine Learning with Applications. 2021;4:100024.
49.
go back to reference Callens A, Morichon D, Abadie S, Delpey M, Liquet B. Using Random forest and Gradient boosting trees to improve wave forecast at a specific location. Appl Ocean Res. 2020;104.CrossRef Callens A, Morichon D, Abadie S, Delpey M, Liquet B. Using Random forest and Gradient boosting trees to improve wave forecast at a specific location. Appl Ocean Res. 2020;104.CrossRef
50.
go back to reference Ghimire S, Deo RC, Downs NJ, Raj N. Self-adaptive differential evolutionary extreme learning machines for long-term solar radiation prediction with remotely-sensed MODIS satellite and Reanalysis atmospheric products in solar-rich cities. Remote Sens Environ. 2018;212:176–98.CrossRef Ghimire S, Deo RC, Downs NJ, Raj N. Self-adaptive differential evolutionary extreme learning machines for long-term solar radiation prediction with remotely-sensed MODIS satellite and Reanalysis atmospheric products in solar-rich cities. Remote Sens Environ. 2018;212:176–98.CrossRef
51.
go back to reference Sahu RK, Shaw B, Nayak JR, etal. Short/medium term solar power forecasting of Chhattisgarh state of India using modified TLBO optimized ELM. Eng Sci Technol Int J. 2021. Sahu RK, Shaw B, Nayak JR, etal. Short/medium term solar power forecasting of Chhattisgarh state of India using modified TLBO optimized ELM. Eng Sci Technol Int J. 2021.
52.
go back to reference Liu S, Liu X, Lyu Q, Li F. Comprehensive system based on a DNN and LSTM for predicting sinter composition. Appl Soft Comput. 2020;95.CrossRef Liu S, Liu X, Lyu Q, Li F. Comprehensive system based on a DNN and LSTM for predicting sinter composition. Appl Soft Comput. 2020;95.CrossRef
53.
go back to reference Han H, Xu L, Cui X, Fan Y. Novel chiller fault diagnosis using deep neural network (DNN) with simulated annealing (SA). J Int Acad Refrig. 2021;121:269–78.CrossRef Han H, Xu L, Cui X, Fan Y. Novel chiller fault diagnosis using deep neural network (DNN) with simulated annealing (SA). J Int Acad Refrig. 2021;121:269–78.CrossRef
54.
go back to reference Hargreaves GH, Samani ZA. Estimating potential evapotranspiration. J Irrig Drain Div. 1982;108(3):225–30.CrossRef Hargreaves GH, Samani ZA. Estimating potential evapotranspiration. J Irrig Drain Div. 1982;108(3):225–30.CrossRef
55.
go back to reference Bristow KL, Campbell GS. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric For Meteorol. 1984;31(2):159–66.CrossRef Bristow KL, Campbell GS. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric For Meteorol. 1984;31(2):159–66.CrossRef
56.
go back to reference Goodin DG, Hutchinson J, Vanderlip RL, Knapp M. Estimating solar irradiance for crop modeling using daily air temperature data. Agron J. 1999;91(5):845–51.CrossRef Goodin DG, Hutchinson J, Vanderlip RL, Knapp M. Estimating solar irradiance for crop modeling using daily air temperature data. Agron J. 1999;91(5):845–51.CrossRef
57.
go back to reference Salcedo-Sanz S, Cornejo-Bueno L, Prieto L, Paredes D, García-Herrera R. Feature selection in machine learning prediction systems for renewable energy applications. Renew Sust Energ Rev. 2018;90:728–41.CrossRef Salcedo-Sanz S, Cornejo-Bueno L, Prieto L, Paredes D, García-Herrera R. Feature selection in machine learning prediction systems for renewable energy applications. Renew Sust Energ Rev. 2018;90:728–41.CrossRef
58.
go back to reference LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1(4):541–51.CrossRef LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1(4):541–51.CrossRef
59.
go back to reference Dong N, Chang JF, Wu AG, Gao ZK. A novel convolutional neural network framework based solar irradiance prediction method. Int J Electr Power Energy Syst. 2020;114.CrossRef Dong N, Chang JF, Wu AG, Gao ZK. A novel convolutional neural network framework based solar irradiance prediction method. Int J Electr Power Energy Syst. 2020;114.CrossRef
60.
go back to reference Ordóñez FJ, Roggen D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors. 2016;16(1):115.CrossRef Ordóñez FJ, Roggen D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors. 2016;16(1):115.CrossRef
61.
go back to reference Rodríguez F, Genn M, Fontán L, Galarza A. Very short-term temperature forecaster using MLP and N-nearest stations for calculating key control parameters in solar photovoltaic generation. Sustainable Energy Technol Assess. 2021;45.CrossRef Rodríguez F, Genn M, Fontán L, Galarza A. Very short-term temperature forecaster using MLP and N-nearest stations for calculating key control parameters in solar photovoltaic generation. Sustainable Energy Technol Assess. 2021;45.CrossRef
62.
go back to reference Morshed A, Aryal J, Dutta R. Environmental spatio-temporal ontology for the Linked open data cloud. In: 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications. IEEE; 2013. p. 1907-12. Morshed A, Aryal J, Dutta R. Environmental spatio-temporal ontology for the Linked open data cloud. In: 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications. IEEE; 2013. p. 1907-12.
67.
go back to reference Govindasamy TR, Chetty N. Machine learning models to quantify the influence of PM10 aerosol concentration on global solar radiation prediction in South Africa. Cleaner Engineering and Technology. 2021;2.CrossRef Govindasamy TR, Chetty N. Machine learning models to quantify the influence of PM10 aerosol concentration on global solar radiation prediction in South Africa. Cleaner Engineering and Technology. 2021;2.CrossRef
68.
go back to reference Komer B, Bergstra J, Eliasmith C. Hyperopt-sklearn: automatic hyperparameter configuration for scikit-learn. In: ICML workshop on AutoML. vol.9. Citeseer; 2014. p.50. Komer B, Bergstra J, Eliasmith C. Hyperopt-sklearn: automatic hyperparameter configuration for scikit-learn. In: ICML workshop on AutoML. vol.9. Citeseer; 2014. p.50.
69.
go back to reference Li Y, Jiang J, Gao J, Shao Y, Zhang C, Cui B. Efficient Automatic CASH via Rising Bandits. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol.34; 2020. p. 4763-71. Li Y, Jiang J, Gao J, Shao Y, Zhang C, Cui B. Efficient Automatic CASH via Rising Bandits. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol.34; 2020. p. 4763-71.
70.
go back to reference Yang L, Shami A. On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing. 2020;415:295–316.CrossRef Yang L, Shami A. On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing. 2020;415:295–316.CrossRef
71.
go back to reference Nomura M, Watanabe S, Akimoto Y, Ozaki Y, Onishi M. Warm starting CMA-ES for hyperparameter optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol.35; 2021. p. 9188-96. Nomura M, Watanabe S, Akimoto Y, Ozaki Y, Onishi M. Warm starting CMA-ES for hyperparameter optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol.35; 2021. p. 9188-96.
72.
go back to reference Park H, Kim J, Kim M, Kim JH, Choo J, Ha JW, etal. VisualHyperTuner: visual analytics for user-driven hyperparameter tuning of deep neural networks. In: Demo at SysML Conference; 2019. . Park H, Kim J, Kim M, Kim JH, Choo J, Ha JW, etal. VisualHyperTuner: visual analytics for user-driven hyperparameter tuning of deep neural networks. In: Demo at SysML Conference; 2019. .
73.
go back to reference Shawky OA, Hagag A, El-Dahshan ESA, Ismail MA. Remote sensing image scene classification using CNN-MLP with data augmentation. Optik. 2020;221.CrossRef Shawky OA, Hagag A, El-Dahshan ESA, Ismail MA. Remote sensing image scene classification using CNN-MLP with data augmentation. Optik. 2020;221.CrossRef
74.
go back to reference Ide H, Kurita T. Improvement of learning for CNN with ReLU activation by sparse regularization. In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE; 2017. p. 2684-91. Ide H, Kurita T. Improvement of learning for CNN with ReLU activation by sparse regularization. In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE; 2017. p. 2684-91.
75.
go back to reference Zou F, Shen L, Jie Z, Zhang W, Liu W. A sufficient condition for convergences of Adam and RMSProp. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2019. p. 11127-35. Zou F, Shen L, Jie Z, Zhang W, Liu W. A sufficient condition for convergences of Adam and RMSProp. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2019. p. 11127-35.
76.
go back to reference Zhang Z. Improved Adam optimizer for deep neural networks. In: 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS). IEEE; 2018. p. 1–2. Zhang Z. Improved Adam optimizer for deep neural networks. In: 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS). IEEE; 2018. p. 1–2.
77.
go back to reference Ward R, Wu X, Bottou L. AdaGrad stepsizes: sharp convergence over nonconvex landscapes. In: International Conference on Machine Learning. PMLR; 2019. p. 6677-86. Ward R, Wu X, Bottou L. AdaGrad stepsizes: sharp convergence over nonconvex landscapes. In: International Conference on Machine Learning. PMLR; 2019. p. 6677-86.
78.
go back to reference Tieleman T, Hinton G. Divide the gradient by a running average of its recent magnitude. coursera: neural networks for machine learning. Technical Report. 2017. Tieleman T, Hinton G. Divide the gradient by a running average of its recent magnitude. coursera: neural networks for machine learning. Technical Report. 2017.
79.
go back to reference Ketkar N. Introduction to Keras. In: Deep learning with Python; 2017. p. 97-111. Ketkar N. Introduction to Keras. In: Deep learning with Python; 2017. p. 97-111.
80.
go back to reference Chollet F, etal. Keras: the Python deep learning library. Astrophysics Source Code Library. 2018:ascl-1806. Chollet F, etal. Keras: the Python deep learning library. Astrophysics Source Code Library. 2018:ascl-1806.
81.
go back to reference Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, etal. Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) symposium on operating systems design and implementation (\(\{\)OSDI\(\}\) 16); 2016. p. 265-83. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, etal. Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) symposium on operating systems design and implementation (\(\{\)OSDI\(\}\) 16); 2016. p. 265-83.
82.
go back to reference Bergstra J, Yamins D, Cox DD, etal. Hyperopt: a Python library for optimizing the hyperparameters of machine learning algorithms. In: Proceedings of the 12th Python in science conference. vol.13. Citeseer; 2013. p.20. Bergstra J, Yamins D, Cox DD, etal. Hyperopt: a Python library for optimizing the hyperparameters of machine learning algorithms. In: Proceedings of the 12th Python in science conference. vol.13. Citeseer; 2013. p.20.
83.
go back to reference Chand B, Nguyen-Huy T, Deo RC. Artificial neural networks for prediction of Steadman Heat Index. In: Intelligent data analytics for decision-support systems in hazard mitigation. Singapore: Springer; 2021. p. 293-357. Chand B, Nguyen-Huy T, Deo RC. Artificial neural networks for prediction of Steadman Heat Index. In: Intelligent data analytics for decision-support systems in hazard mitigation. Singapore: Springer; 2021. p. 293-357.
84.
go back to reference Ghimire S, Deo RC, Raj N, Mi J. Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms. Appl Energy. 2019;253.CrossRef Ghimire S, Deo RC, Raj N, Mi J. Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms. Appl Energy. 2019;253.CrossRef
85.
go back to reference Willmott CJ, Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res. 2005;30(1):79–82.CrossRef Willmott CJ, Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res. 2005;30(1):79–82.CrossRef
86.
go back to reference Prasad R, Charan D, Joseph L, Nguyen-Huy T, Deo RC, Singh S. Daily flood forecasts with intelligent data analytic models: multivariate empirical mode decomposition-based modeling methods. In: Intelligent data analytics for decision-support systems in hazard mitigation. Singapore: Springer; 2021. p. 359-81. Prasad R, Charan D, Joseph L, Nguyen-Huy T, Deo RC, Singh S. Daily flood forecasts with intelligent data analytic models: multivariate empirical mode decomposition-based modeling methods. In: Intelligent data analytics for decision-support systems in hazard mitigation. Singapore: Springer; 2021. p. 359-81.
87.
go back to reference Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE. 2007;50(3):885–900.CrossRef Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE. 2007;50(3):885–900.CrossRef
88.
go back to reference Ghimire S, Yaseen ZM, Farooque AA, Deo RC, Zhang J, Tao X. Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks. Sci Rep. 2021;11(1):1–26.CrossRef Ghimire S, Yaseen ZM, Farooque AA, Deo RC, Zhang J, Tao X. Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks. Sci Rep. 2021;11(1):1–26.CrossRef
89.
go back to reference Ghimire S. Predictive modelling of global solar radiation with artificial intelligence approaches using MODIS satellites and atmospheric reanalysis data for Australia. University of Southern Queensland; 2019. Ghimire S. Predictive modelling of global solar radiation with artificial intelligence approaches using MODIS satellites and atmospheric reanalysis data for Australia. University of Southern Queensland; 2019.
90.
91.
go back to reference Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature. Geosci Model Dev. 2014;7(3):1247–50.CrossRef Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature. Geosci Model Dev. 2014;7(3):1247–50.CrossRef
92.
go back to reference Gupta HV, Kling H, Yilmaz KK, Martinez GF. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J Hydrol. 2009;377(1–2):80–91.CrossRef Gupta HV, Kling H, Yilmaz KK, Martinez GF. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J Hydrol. 2009;377(1–2):80–91.CrossRef
95.
go back to reference Costantini M, Pappalardo C. Combination of forecast methods using encompassing tests: an algorithm-based procedure. Reihe Ökonomie/Economics Series; 2008. Costantini M, Pappalardo C. Combination of forecast methods using encompassing tests: an algorithm-based procedure. Reihe Ökonomie/Economics Series; 2008.
96.
go back to reference Roy DK, Lal A, Sarker KK, Saha KK, Datta B. Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system. Agric Water Manag. 2021;255.CrossRef Roy DK, Lal A, Sarker KK, Saha KK, Datta B. Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system. Agric Water Manag. 2021;255.CrossRef
97.
go back to reference Ertekin C, Yaldiz O. Comparison of some existing models for estimating global solar radiation for Antalya (Turkey). Energy Convers Manag. 2000;41(4):311–30.CrossRef Ertekin C, Yaldiz O. Comparison of some existing models for estimating global solar radiation for Antalya (Turkey). Energy Convers Manag. 2000;41(4):311–30.CrossRef
98.
go back to reference Faisal AF, Rahman A, Habib MTM, Siddique AH, Hasan M, Khan MM. Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of Bangladesh. Results in Engineering. 2022;13.CrossRef Faisal AF, Rahman A, Habib MTM, Siddique AH, Hasan M, Khan MM. Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of Bangladesh. Results in Engineering. 2022;13.CrossRef
99.
go back to reference Akkaya B, Çolakoğlu N. Comparison of multi-class classification algorithms on early diagnosis of heart diseases. 2019. Akkaya B, Çolakoğlu N. Comparison of multi-class classification algorithms on early diagnosis of heart diseases. 2019.
100.
go back to reference Sharkawy AN. Principle of neural network and its main types. J Adv Appl Computat Math. 2020;7:8–19.CrossRef Sharkawy AN. Principle of neural network and its main types. J Adv Appl Computat Math. 2020;7:8–19.CrossRef
101.
go back to reference Deo RC, Grant RH, Webb A, Ghimire S, Igoe DP, Downs NJ, et al. Forecasting solar photosynthetic photon flux density under cloud cover effects: novel predictive model using convolutional neural network integrated with long short-term memory network. Stoch Env Res Risk A. 2022:1–38. Deo RC, Grant RH, Webb A, Ghimire S, Igoe DP, Downs NJ, et al. Forecasting solar photosynthetic photon flux density under cloud cover effects: novel predictive model using convolutional neural network integrated with long short-term memory network. Stoch Env Res Risk A. 2022:1–38.
102.
go back to reference Prasad SS, Deo RC, Downs N, Igoe D, Parisi AV, Soar J. Cloud affected solar UV prediction with three-phase wavelet hybrid convolutional long short-term memory network multi-step forecast system. IEEE Access. 2022;10:24704–20.CrossRef Prasad SS, Deo RC, Downs N, Igoe D, Parisi AV, Soar J. Cloud affected solar UV prediction with three-phase wavelet hybrid convolutional long short-term memory network multi-step forecast system. IEEE Access. 2022;10:24704–20.CrossRef
103.
go back to reference Chaturvedi D, Isha I. Solar power forecasting: a review. Int J Comput Appl. 2016;145(6):28–50. Chaturvedi D, Isha I. Solar power forecasting: a review. Int J Comput Appl. 2016;145(6):28–50.
104.
go back to reference Deo RC, Şahin M, Adamowski JF, Mi J. Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: a new approach. Renew Sust Energ Rev. 2019;104:235–61.CrossRef Deo RC, Şahin M, Adamowski JF, Mi J. Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: a new approach. Renew Sust Energ Rev. 2019;104:235–61.CrossRef
Metadata
Title
Hybrid Convolutional Neural Network-Multilayer Perceptron Model for Solar Radiation Prediction
Authors
Sujan Ghimire
Thong Nguyen-Huy
Ramendra Prasad
Ravinesh C. Deo
David Casillas-Pérez
Sancho Salcedo-Sanz
Binayak Bhandari
Publication date
07-11-2022
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10070-y

Other articles of this Issue 2/2023

Cognitive Computation 2/2023 Go to the issue

Premium Partner