Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

09-07-2019 | Regular Paper | Issue 3/2019

International Journal of Multimedia Information Retrieval 3/2019

Hybrid descriptors and Weighted PCA-EFMNet for Face Verification in the Wild

Journal:
International Journal of Multimedia Information Retrieval > Issue 3/2019
Authors:
Bilel Ameur, Mebarka Belahcene, Sabeur Masmoudi, Ahmed Ben Hamida
Important notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Unconstrained face recognition is a complex task because of the numerous intra-class changes caused by lighting, occlusion, facial expressions and poses changes. Such variations affect considerably the performance of facial recognition systems, particularly those based on 2D information. In this research work, an efficient feature extraction method, called Gabor Local Binarized Statistical Image Features, is introduced. A new deep learning network is also developed to extract features relying on data processing components: (1) Cascaded Weighted Principal Component Analysis (WPCA) with Enhanced Fisher Model (WPCA-EFM); (2) binary hashing; and (3) Block-wise Histograms. The suggested architecture (Weighted PCA-EFM) is employed to learn multistage filter banks. Simple block histogram and binary hashing are applied for indexing and pooling, which facilitate the design and learning of our architecture for Face Verification in the Wild. Classification is finally performed using distance measure Cosine and support vector machine. Our experiments are carried out in real-world dataset: Labeled Faces in the Wild. Experimental findings demonstrate that the developed technique achieved high accuracy of 95%.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2019

International Journal of Multimedia Information Retrieval 3/2019 Go to the issue

Premium Partner

    Image Credits