Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Quantum Information Processing 6/2020

01-06-2020

Hybrid Helmholtz machines: a gate-based quantum circuit implementation

Authors: Teresa J. van Dam, Niels M. P. Neumann, Frank Phillipson, Hans van den Berg

Published in: Quantum Information Processing | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantum machine learning has the potential to overcome problems that current classical machine learning algorithms face, such as large data requirements or long learning times. Sampling is one of the aspects of classical machine learning that might benefit from quantum machine learning, as quantum computers intrinsically excel at sampling. Current hybrid quantum-classical implementations provide ways to already use near-term quantum computers for practical applications. By expanding the horizon on hybrid quantum-classical approaches, this work proposes the first implementation of a gated quantum-classical hybrid Helmholtz machine, a gate-based quantum circuit approximation of a neural network for unsupervised tasks. Our approach focuses on parameterized shallow quantum circuits and effectively implements an approximate Bayesian network, overcoming the exponential complexity of exact networks. In addition, a new balanced cost function is introduced, preventing the need of millions of training samples. Using a bars and stripes data set, the model, implemented on the Quantum Inspire platform, is shown to outperform classical Helmholtz machines in terms of the Kullback–Leibler divergence.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Anschuetz, E., Olson, J., Aspuru-Guzik, A., Cao, Y.: Variational quantum factoring. In: Feld, S., Linnhoff-Popien, C. (eds.) Quantum Technology and Optimization Problems, pp. 74–85. Springer, Cham (2019) CrossRef Anschuetz, E., Olson, J., Aspuru-Guzik, A., Cao, Y.: Variational quantum factoring. In: Feld, S., Linnhoff-Popien, C. (eds.) Quantum Technology and Optimization Problems, pp. 74–85. Springer, Cham (2019) CrossRef
5.
go back to reference Berry, M.J., Linoff, G.: Data Mining Techniques: For Marketing, Sales, and Customer Support. Wiley, New York (1997) Berry, M.J., Linoff, G.: Data Mining Techniques: For Marketing, Sales, and Customer Support. Wiley, New York (1997)
6.
go back to reference Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press Inc, New York (1995) MATH Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press Inc, New York (1995) MATH
8.
go back to reference Coles, P.J., Eidenbenz, S., Pakin, S., Adedoyin, A., Ambrosiano, J., Anisimov, P., Casper, W., Chennupati, G., Coffrin, C., Djidjev, H., et al.: Quantum algorithm implementations for beginners. arXiv:​1804.​03719 [quant-ph] (2018) Coles, P.J., Eidenbenz, S., Pakin, S., Adedoyin, A., Ambrosiano, J., Anisimov, P., Casper, W., Chennupati, G., Coffrin, C., Djidjev, H., et al.: Quantum algorithm implementations for beginners. arXiv:​1804.​03719 [quant-ph] (2018)
15.
go back to reference MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms, vol. 6. Cambridge University Press, Cambridge (2003) MATH MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms, vol. 6. Cambridge University Press, Cambridge (2003) MATH
18.
go back to reference Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2008) MATH Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2008) MATH
20.
go back to reference O’Malley, P.J.J., Babbush, R., Kivlichan, I.D., Romero, J., McClean, J.R., Barends, R., Kelly, J., Roushan, P., Tranter, A., Ding, N., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Fowler, A.G., Jeffrey, E., Lucero, E., Megrant, A., Mutus, J.Y., Neeley, M., Neill, C., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Coveney, P.V., Love, P.J., Neven, H., Aspuru-Guzik, A., Martinis, J.M.: Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016). https://​doi.​org/​10.​1103/​PhysRevX.​6.​031007 CrossRef O’Malley, P.J.J., Babbush, R., Kivlichan, I.D., Romero, J., McClean, J.R., Barends, R., Kelly, J., Roushan, P., Tranter, A., Ding, N., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Fowler, A.G., Jeffrey, E., Lucero, E., Megrant, A., Mutus, J.Y., Neeley, M., Neill, C., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Coveney, P.V., Love, P.J., Neven, H., Aspuru-Guzik, A., Martinis, J.M.: Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016). https://​doi.​org/​10.​1103/​PhysRevX.​6.​031007 CrossRef
Metadata
Title
Hybrid Helmholtz machines: a gate-based quantum circuit implementation
Authors
Teresa J. van Dam
Niels M. P. Neumann
Frank Phillipson
Hans van den Berg
Publication date
01-06-2020
Publisher
Springer US
Published in
Quantum Information Processing / Issue 6/2020
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02660-2

Other articles of this Issue 6/2020

Quantum Information Processing 6/2020 Go to the issue