Skip to main content
Top
Published in: Journal of Materials Science 6/2017

18-11-2016 | Original Paper

Hybrid materials of graphene anchored with CoFe2O4 for the anode in sodium-ion batteries

Authors: Jian-Min Feng, Xia-Hua Zhong, Gui-Zhi Wang, Lei Dong, Xi-Fei Li, De-Jun Li

Published in: Journal of Materials Science | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hybrid materials of CoFe2O4 nanoparticles anchored on graphene prepared by a facile hydrothermal process was developed to be anode material for sodium-ion battery. The hybrid nano-structure of CoFe2O4/graphene not only could be useful to buffer electrode volume accompanying with Na+ insertion–extraction, but also could be beneficial to improve electrode electric conductivity and further keep graphene sheet separated to improve ion diffusion rate. Electrochemical measurements showed that the hybrid material anode displayed an excellent performance with a large reversible capacity of 330 mAh g−1 after 75 cycle times and a satisfactory rate capability of 170 mAh g−1 at 1 A g−1.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pan H, Hu YS, Chen LQ (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360CrossRef Pan H, Hu YS, Chen LQ (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360CrossRef
2.
go back to reference Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang CS (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4403 Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang CS (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4403
3.
go back to reference Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273CrossRef Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273CrossRef
4.
go back to reference He M, Kravchyk K, Walter M, Kovalenko MV (2014) Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. Nano Lett 14:1255–1262CrossRef He M, Kravchyk K, Walter M, Kovalenko MV (2014) Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. Nano Lett 14:1255–1262CrossRef
5.
go back to reference Yu DYW, Prikhodchenko PV, Mason CW, Batabyal SK, Gun J, Sladkevich S, Medvedev AG, Lev O (2013) High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat Commun 4:2922 Yu DYW, Prikhodchenko PV, Mason CW, Batabyal SK, Gun J, Sladkevich S, Medvedev AG, Lev O (2013) High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat Commun 4:2922
6.
go back to reference Baggetto L, Hah H-Y, Johnson CE, Bridges CA, Johnson JA, Veith GM (2014) The reaction mechanism of FeSb2 as anode for sodium-ion batteries. PCCP 16:9538–9545CrossRef Baggetto L, Hah H-Y, Johnson CE, Bridges CA, Johnson JA, Veith GM (2014) The reaction mechanism of FeSb2 as anode for sodium-ion batteries. PCCP 16:9538–9545CrossRef
7.
go back to reference Liu J, Wen Y, van Aken PA, Maier J, Yu Y (2014) Facile Synthesis of highly porous Ni–Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. Nano Lett 14:6387–6392CrossRef Liu J, Wen Y, van Aken PA, Maier J, Yu Y (2014) Facile Synthesis of highly porous Ni–Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. Nano Lett 14:6387–6392CrossRef
8.
go back to reference Xu Y, Memarzadeh Lotfabad E, Wang H, Farbod B, Xu Z, Kohandehghan A, Mitlin D (2013) Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem Commun 49:8973–8975CrossRef Xu Y, Memarzadeh Lotfabad E, Wang H, Farbod B, Xu Z, Kohandehghan A, Mitlin D (2013) Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem Commun 49:8973–8975CrossRef
9.
go back to reference Chen C, Wen Y, Hu X, Ji X, Yan M, Mai L, Hu P, Shan B, Huang Y (2015) Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun 6:6929CrossRef Chen C, Wen Y, Hu X, Ji X, Yan M, Mai L, Hu P, Shan B, Huang Y (2015) Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun 6:6929CrossRef
10.
go back to reference Yang YC, Ji XB, Jing MJ, Hou HS, Zhu YR, Fang LB, Yang XM, Chen QY, Banks CE (2015) Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J Mater Chem A 3:5648–5655CrossRef Yang YC, Ji XB, Jing MJ, Hou HS, Zhu YR, Fang LB, Yang XM, Chen QY, Banks CE (2015) Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J Mater Chem A 3:5648–5655CrossRef
11.
go back to reference Ming J, Ming H, Yang W, Kwak W-J, Park J-B, Zheng J, Sun YK (2015) A sustainable iron-based sodium ion battery of porous carbon-Fe3O4/Na2FeP2O7 with high performance. RSC Adv 5:8793–8800CrossRef Ming J, Ming H, Yang W, Kwak W-J, Park J-B, Zheng J, Sun YK (2015) A sustainable iron-based sodium ion battery of porous carbon-Fe3O4/Na2FeP2O7 with high performance. RSC Adv 5:8793–8800CrossRef
12.
go back to reference Choi SH, Ko YN, Lee J-K, Kang YC (2015) 3D MoS2–graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv Funct Mater 25:1780–1788CrossRef Choi SH, Ko YN, Lee J-K, Kang YC (2015) 3D MoS2–graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv Funct Mater 25:1780–1788CrossRef
13.
go back to reference Wang J, Luo C, Gao T, Langrock A, Mignerey AC, Wang C (2015) An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11:473–481CrossRef Wang J, Luo C, Gao T, Langrock A, Mignerey AC, Wang C (2015) An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11:473–481CrossRef
14.
go back to reference Wu L, Hu X, Qian J, Pei F, Wu F et al (2013) A Sn–SnS–C nanocomposite as anode host materials for Na-ion batteries. J Mater Chem A 1:7181–7184CrossRef Wu L, Hu X, Qian J, Pei F, Wu F et al (2013) A Sn–SnS–C nanocomposite as anode host materials for Na-ion batteries. J Mater Chem A 1:7181–7184CrossRef
15.
go back to reference Qu B, Ma C, Ji G, Xu C, Xu J, Meng YS, Wang T, Lee JY (2014) Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv Mater 26:3854–3859CrossRef Qu B, Ma C, Ji G, Xu C, Xu J, Meng YS, Wang T, Lee JY (2014) Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv Mater 26:3854–3859CrossRef
16.
go back to reference Qian J, Wu X, Cao Y, Ai X, Yang H (2013) High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed 52:4633–4636CrossRef Qian J, Wu X, Cao Y, Ai X, Yang H (2013) High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed 52:4633–4636CrossRef
17.
go back to reference Zhu Y, Wen Y, Fan X, Gao T, Han F, Luo C, Liou SC, Wang C (2015) Red phosphorus–single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 9:3254–3264CrossRef Zhu Y, Wen Y, Fan X, Gao T, Han F, Luo C, Liou SC, Wang C (2015) Red phosphorus–single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 9:3254–3264CrossRef
18.
go back to reference Wessells CD, Peddada SV, Huggins RA, Cui Y (2011) Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett 11:5421–5425CrossRef Wessells CD, Peddada SV, Huggins RA, Cui Y (2011) Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett 11:5421–5425CrossRef
19.
go back to reference Wang Y, Mu L, Liu J, Yang Z, Yu X, Gu L, Hu YS, Li H, Yang XQ, Chen LQ, Huang XJ (2015) High capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv Energy Mater 5:1501005. doi:10.1002/aenm.201501005 CrossRef Wang Y, Mu L, Liu J, Yang Z, Yu X, Gu L, Hu YS, Li H, Yang XQ, Chen LQ, Huang XJ (2015) High capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv Energy Mater 5:1501005. doi:10.​1002/​aenm.​201501005 CrossRef
20.
go back to reference Lee HW, Wang RY, Pasta M, Woo Lee S, Liu N, Cui Y (2014) Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat Commun 5:5280CrossRef Lee HW, Wang RY, Pasta M, Woo Lee S, Liu N, Cui Y (2014) Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat Commun 5:5280CrossRef
21.
go back to reference Wu X, Sun M, Guo S, Qian J, Liu Y, Cao YL, Ai X, Yang H (2015) Vacancy-free prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. Chem Nano Mater 1:188–193 Wu X, Sun M, Guo S, Qian J, Liu Y, Cao YL, Ai X, Yang H (2015) Vacancy-free prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. Chem Nano Mater 1:188–193
22.
go back to reference Park Y, Shin D-S, Woo SH, Choi NS, Shin KH, Oh SM, Lee KT, Hong SY (2012) Sodium terephthalate as an organic anode material for sodium ion batteries. Adv Mater 24:3562–3567CrossRef Park Y, Shin D-S, Woo SH, Choi NS, Shin KH, Oh SM, Lee KT, Hong SY (2012) Sodium terephthalate as an organic anode material for sodium ion batteries. Adv Mater 24:3562–3567CrossRef
23.
go back to reference Zhu ZQ, Li H, Liang J, Tao ZL, Chen J (2015) The disodium salt of 2,5-dihydroxy-1,4-benzoquinone as anode material for rechargeable sodium ion batteries. Chem Commun 51:1446–1448CrossRef Zhu ZQ, Li H, Liang J, Tao ZL, Chen J (2015) The disodium salt of 2,5-dihydroxy-1,4-benzoquinone as anode material for rechargeable sodium ion batteries. Chem Commun 51:1446–1448CrossRef
24.
go back to reference David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770CrossRef David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770CrossRef
25.
go back to reference Jian Z, Zhao B, Liu P, Li F, Zheng M, Chen M, Shi Y, Zhou H (2014) Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem Commun 50:1215–1217CrossRef Jian Z, Zhao B, Liu P, Li F, Zheng M, Chen M, Shi Y, Zhou H (2014) Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem Commun 50:1215–1217CrossRef
26.
go back to reference Liu X, Chen T, Chu H, Niu L, Sun Z, Pan L, Sun CQ (2015) Fe2O3-reduced graphene oxide composites synthesized via microwave-assisted method for sodium ion batteries. Electrochim Acta 166:12–16CrossRef Liu X, Chen T, Chu H, Niu L, Sun Z, Pan L, Sun CQ (2015) Fe2O3-reduced graphene oxide composites synthesized via microwave-assisted method for sodium ion batteries. Electrochim Acta 166:12–16CrossRef
27.
28.
go back to reference Hariharan S, Saravanan K, Ramar V, Balaya P (2013) A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4. PCCP 15:2945–2953CrossRef Hariharan S, Saravanan K, Ramar V, Balaya P (2013) A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4. PCCP 15:2945–2953CrossRef
29.
go back to reference Yu L, Wang LP, Xi S, Yang P, Du Y, Srinivasan M, Xu ZJ (2015) β-FeOOH: an earth-abundant high-capacity negative electrode material for sodium-ion batteries. Chem Mater 27:5340–5348CrossRef Yu L, Wang LP, Xi S, Yang P, Du Y, Srinivasan M, Xu ZJ (2015) β-FeOOH: an earth-abundant high-capacity negative electrode material for sodium-ion batteries. Chem Mater 27:5340–5348CrossRef
30.
go back to reference Koo B, Chattopadhyay S, Shibata T, Prakapenka VB, Johnson CS, Rajh T, Shevchenko EV (2013) Intercalation of sodium ions into hollow iron oxide nanoparticles. Chem Mater 25:245–252CrossRef Koo B, Chattopadhyay S, Shibata T, Prakapenka VB, Johnson CS, Rajh T, Shevchenko EV (2013) Intercalation of sodium ions into hollow iron oxide nanoparticles. Chem Mater 25:245–252CrossRef
31.
go back to reference Xu X, Dong B, Ding S, Xiao C, Yu D (2014) Hierarchical NiCoO2 nanosheets supported on amorphous carbon nanotubes for high-capacity lithium-ion batteries with a long cycle life. J Mater Chem A 2:13069–13074CrossRef Xu X, Dong B, Ding S, Xiao C, Yu D (2014) Hierarchical NiCoO2 nanosheets supported on amorphous carbon nanotubes for high-capacity lithium-ion batteries with a long cycle life. J Mater Chem A 2:13069–13074CrossRef
32.
go back to reference Chen Y, Zhu J, Qu B, Lu B, Xu Z (2014) Graphene improving lithium-ion battery performance by construction of NiCo2O4/graphene hybrid nanosheet arrays. Nano Energy 3:88–94CrossRef Chen Y, Zhu J, Qu B, Lu B, Xu Z (2014) Graphene improving lithium-ion battery performance by construction of NiCo2O4/graphene hybrid nanosheet arrays. Nano Energy 3:88–94CrossRef
33.
go back to reference Dong B, Zhang X, Xu X, Gao G, Ding S, Li J, Li B (2014) Preparation of scale-like nickel cobaltite nanosheets assembled on nitrogen-doped reduced graphene oxide for high-performance supercapacitors. Carbon 80:222–228CrossRef Dong B, Zhang X, Xu X, Gao G, Ding S, Li J, Li B (2014) Preparation of scale-like nickel cobaltite nanosheets assembled on nitrogen-doped reduced graphene oxide for high-performance supercapacitors. Carbon 80:222–228CrossRef
34.
go back to reference Ying W, Dawei S, Alison U, Jung-ho A, Guoxiu W (2012) Hollow CoFe2O4 nanospheres as a high capacity anode material for lithium ion batteries. Nanotechnology 23:055402CrossRef Ying W, Dawei S, Alison U, Jung-ho A, Guoxiu W (2012) Hollow CoFe2O4 nanospheres as a high capacity anode material for lithium ion batteries. Nanotechnology 23:055402CrossRef
35.
go back to reference Xia H, Zhu D, Fu Y, Wang X (2012) CoFe2O4–graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochim Acta 83:166–174CrossRef Xia H, Zhu D, Fu Y, Wang X (2012) CoFe2O4–graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochim Acta 83:166–174CrossRef
36.
go back to reference Li ZH, Zhao TP, Zhan XY, Gao DS, Xiao QZ, Lei GT (2010) High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries. Electrochim Acta 55:4594–4598CrossRef Li ZH, Zhao TP, Zhan XY, Gao DS, Xiao QZ, Lei GT (2010) High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries. Electrochim Acta 55:4594–4598CrossRef
37.
go back to reference Guo X, Lu X, Fang X, Mao Y, Wang Z, Chen L, Xu X, Yang H, Liu Y (2010) Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochem Commun 12:847–850CrossRef Guo X, Lu X, Fang X, Mao Y, Wang Z, Chen L, Xu X, Yang H, Liu Y (2010) Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochem Commun 12:847–850CrossRef
38.
go back to reference Zeng G, Shi N, Hess M, Chen X, Cheng W, Fan T, Niederberger M (2015) A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries. ACS Nano 9:4227–4235CrossRef Zeng G, Shi N, Hess M, Chen X, Cheng W, Fan T, Niederberger M (2015) A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries. ACS Nano 9:4227–4235CrossRef
39.
go back to reference Mitra S, Veluri PS, Chakraborthy A, Petla RK (2014) Electrochemical properties of spinel cobalt ferrite nanoparticles with sodium alginate as interactive binder. Chem Electro Chem 1:1068–1074 Mitra S, Veluri PS, Chakraborthy A, Petla RK (2014) Electrochemical properties of spinel cobalt ferrite nanoparticles with sodium alginate as interactive binder. Chem Electro Chem 1:1068–1074
40.
go back to reference Wang YX, Chou SL, Liu HK, Dou SX (2013) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208CrossRef Wang YX, Chou SL, Liu HK, Dou SX (2013) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208CrossRef
41.
go back to reference Chen YX, Chen SP, Zhou ZY, Tian N, Jiang YX, Sun SG, Ding Y, Wang ZL (2009) Tuning the shape and catalytic activity of Fe nanocrystals from rhombic dodecahedra and tetragonal bipyramids to cubes by electrochemistry. J Am Chem Soc 131:10860–10862CrossRef Chen YX, Chen SP, Zhou ZY, Tian N, Jiang YX, Sun SG, Ding Y, Wang ZL (2009) Tuning the shape and catalytic activity of Fe nanocrystals from rhombic dodecahedra and tetragonal bipyramids to cubes by electrochemistry. J Am Chem Soc 131:10860–10862CrossRef
Metadata
Title
Hybrid materials of graphene anchored with CoFe2O4 for the anode in sodium-ion batteries
Authors
Jian-Min Feng
Xia-Hua Zhong
Gui-Zhi Wang
Lei Dong
Xi-Fei Li
De-Jun Li
Publication date
18-11-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 6/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0601-5

Other articles of this Issue 6/2017

Journal of Materials Science 6/2017 Go to the issue

Premium Partners