Skip to main content
Top
Published in: Wireless Personal Communications 4/2022

04-07-2022

Hybrid Neural Network Control for Uncertain Nonlinear Discrete-Time Systems with Bounded Disturbance

Authors: Rahul Kumar, Uday Pratap Singh, Arun Bali, Kuldip Raj

Published in: Wireless Personal Communications | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper has proposed an adaptive control scheme based on a hybrid neural network (HNN) to address the problem of uncertain nonlinear systems with discrete-time having bounded disturbances. This proposed control scheme is composed of a neural network (NN) and differential evolution (DE) technique which is used to initialize the weights of the NN and the controller is designed in such a manner so that the stability can be ensured and the desired trajectory can be achieved. The designed HNN is employed to approximate unknown functions present in the system. By using the concept of system transformation, the adaptive law and controller are designed and the whole system is proved to be stable in the sense of semi-globally uniformly ultimately boundedness (SGUUB) with the assistance of Lyapunov theory. Finally, the validity and effectiveness of the results are proved through two simulation examples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lian, Y., Zhou, Y., Zhang, J., Ma, S., & Wu, S. (2022). An Intelligent Nonlinear Control Method for the Multistage Electromechanical Servo System. Applied Sciences, 12(10), 5053.CrossRef Lian, Y., Zhou, Y., Zhang, J., Ma, S., & Wu, S. (2022). An Intelligent Nonlinear Control Method for the Multistage Electromechanical Servo System. Applied Sciences, 12(10), 5053.CrossRef
2.
go back to reference Cruz-Zavala, E., Nuño, E., & Moreno, J. A. (2021). Robust trajectory-tracking in finite-time for robot manipulators using nonlinear proportional-derivative control plus feed-forward compensation. International Journal of Robust and Nonlinear Control, 31(9), 3878–3907.MathSciNetCrossRef Cruz-Zavala, E., Nuño, E., & Moreno, J. A. (2021). Robust trajectory-tracking in finite-time for robot manipulators using nonlinear proportional-derivative control plus feed-forward compensation. International Journal of Robust and Nonlinear Control, 31(9), 3878–3907.MathSciNetCrossRef
3.
go back to reference Gong, P., Yan, Z., Zhang, W., & Tang, J. (2021). Lyapunov-based model predictive control trajectory tracking for an autonomous underwater vehicle with external disturbances. Ocean Engineering, 232, 109010.CrossRef Gong, P., Yan, Z., Zhang, W., & Tang, J. (2021). Lyapunov-based model predictive control trajectory tracking for an autonomous underwater vehicle with external disturbances. Ocean Engineering, 232, 109010.CrossRef
4.
go back to reference Bacciotti, A., & Rosier, L. (2005). Liapunov functions and stability in control theory. Heidelberg: Springer Science & Business Media.MATHCrossRef Bacciotti, A., & Rosier, L. (2005). Liapunov functions and stability in control theory. Heidelberg: Springer Science & Business Media.MATHCrossRef
5.
go back to reference Esfandiari, F., & Khalil, H. K. (1992). Output feedback stabilization of fully linearizable systems. International Journal of control, 56(5), 1007–1037.MathSciNetMATHCrossRef Esfandiari, F., & Khalil, H. K. (1992). Output feedback stabilization of fully linearizable systems. International Journal of control, 56(5), 1007–1037.MathSciNetMATHCrossRef
6.
go back to reference Jiang, B., Karimi, H. R., Kao, Y., & Gao, C. (2019). Reduced-order adaptive sliding mode control for nonlinear switching semi-Markovian jump delayed systems. Information Sciences, 477, 334–348.MathSciNetMATHCrossRef Jiang, B., Karimi, H. R., Kao, Y., & Gao, C. (2019). Reduced-order adaptive sliding mode control for nonlinear switching semi-Markovian jump delayed systems. Information Sciences, 477, 334–348.MathSciNetMATHCrossRef
7.
go back to reference Lei, H., & Lin, W. (2005). Universal output feedback control of nonlinear systems with unknown growth rate. IFAC Proceedings Volumes, 38(1), 1073–1078.CrossRef Lei, H., & Lin, W. (2005). Universal output feedback control of nonlinear systems with unknown growth rate. IFAC Proceedings Volumes, 38(1), 1073–1078.CrossRef
8.
go back to reference Li, F., & Liu, Y. (2017). Global finite-time stabilization via time-varying output-feedback for uncertain nonlinear systems with unknown growth rate. International Journal of Robust and Nonlinear Control, 27(17), 4050–4070.MathSciNetMATH Li, F., & Liu, Y. (2017). Global finite-time stabilization via time-varying output-feedback for uncertain nonlinear systems with unknown growth rate. International Journal of Robust and Nonlinear Control, 27(17), 4050–4070.MathSciNetMATH
9.
go back to reference Li, Y., Li, K., & Tong, S. (2018). Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems. IEEE Transactions on Fuzzy Systems, 27(1), 96–110.CrossRef Li, Y., Li, K., & Tong, S. (2018). Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems. IEEE Transactions on Fuzzy Systems, 27(1), 96–110.CrossRef
10.
go back to reference Miao, P., Shen, Y., Li, Y., & Bao, L. (2016). Finite-time recurrent neural networks for solving nonlinear optimization problems and their application. Neurocomputing, 177, 120–129.CrossRef Miao, P., Shen, Y., Li, Y., & Bao, L. (2016). Finite-time recurrent neural networks for solving nonlinear optimization problems and their application. Neurocomputing, 177, 120–129.CrossRef
11.
go back to reference Singh, U. P., & Jain, S. (2016). Modified chaotic bat algorithm based counter propagation neural network for uncertain nonlinear discrete time system. International Journal of Computational Intelligence and Applications, 15(03), 1650016.CrossRef Singh, U. P., & Jain, S. (2016). Modified chaotic bat algorithm based counter propagation neural network for uncertain nonlinear discrete time system. International Journal of Computational Intelligence and Applications, 15(03), 1650016.CrossRef
12.
go back to reference Chen, B., Liu, X., Liu, K., & Lin, C. (2009). Direct adaptive fuzzy control of nonlinear strict-feedback systems. Automatica, 45(6), 1530–1535.MathSciNetMATHCrossRef Chen, B., Liu, X., Liu, K., & Lin, C. (2009). Direct adaptive fuzzy control of nonlinear strict-feedback systems. Automatica, 45(6), 1530–1535.MathSciNetMATHCrossRef
13.
go back to reference Chen, B., Liu, X., Liu, K., & Lin, C. (2010). Fuzzy-approximation-based adaptive control of strict-feedback nonlinear systems with time delays. IEEE Transactions on Fuzzy Systems, 18(5), 883–892.CrossRef Chen, B., Liu, X., Liu, K., & Lin, C. (2010). Fuzzy-approximation-based adaptive control of strict-feedback nonlinear systems with time delays. IEEE Transactions on Fuzzy Systems, 18(5), 883–892.CrossRef
14.
go back to reference Singh, U. P., Jain, S., Gupta, R. K., & Tiwari, A. (2019). AFMBC for a class of nonlinear discrete-time systems with dead zone. International Journal of Fuzzy Systems, 21(4), 1073–1084.MathSciNetCrossRef Singh, U. P., Jain, S., Gupta, R. K., & Tiwari, A. (2019). AFMBC for a class of nonlinear discrete-time systems with dead zone. International Journal of Fuzzy Systems, 21(4), 1073–1084.MathSciNetCrossRef
15.
go back to reference Tong, S., Min, X., & Li, Y. (2020). Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions. IEEE Transactions on Cybernetics, 50(9), 3903–3913.CrossRef Tong, S., Min, X., & Li, Y. (2020). Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions. IEEE Transactions on Cybernetics, 50(9), 3903–3913.CrossRef
16.
go back to reference Das, M., & Mahanta, C. (2014). Optimal second order sliding mode control for linear uncertain systems. ISA transactions, 53(6), 1807–1815.CrossRef Das, M., & Mahanta, C. (2014). Optimal second order sliding mode control for linear uncertain systems. ISA transactions, 53(6), 1807–1815.CrossRef
17.
go back to reference Shaocheng, T., Changying, L., & Yongming, L. (2009). Fuzzy adaptive observer backstepping control for MIMO nonlinear systems. Fuzzy sets and systems, 160(19), 2755–2775. MathSciNetMATHCrossRef Shaocheng, T., Changying, L., & Yongming, L. (2009). Fuzzy adaptive observer backstepping control for MIMO nonlinear systems. Fuzzy sets and systems, 160(19), 2755–2775. MathSciNetMATHCrossRef
18.
go back to reference Mobayen, S., & Majd, V. J. (2012). Robust tracking control method based on composite nonlinear feedback technique for linear systems with time-varying uncertain parameters and disturbances. Nonlinear Dynamics, 70(1), 171–180.MathSciNetMATHCrossRef Mobayen, S., & Majd, V. J. (2012). Robust tracking control method based on composite nonlinear feedback technique for linear systems with time-varying uncertain parameters and disturbances. Nonlinear Dynamics, 70(1), 171–180.MathSciNetMATHCrossRef
19.
go back to reference Ho, H. F., Wong, Y. K., & Rad, A. B. (2009). Adaptive fuzzy sliding mode control with chattering elimination for nonlinear SISO systems. Simulation Modelling Practice and Theory, 17(7), 1199–1210.CrossRef Ho, H. F., Wong, Y. K., & Rad, A. B. (2009). Adaptive fuzzy sliding mode control with chattering elimination for nonlinear SISO systems. Simulation Modelling Practice and Theory, 17(7), 1199–1210.CrossRef
20.
go back to reference Lee, H. (2010). Robust adaptive fuzzy control by backstepping for a class of MIMO nonlinear systems. IEEE Transactions on Fuzzy Systems, 19(2), 265–275.CrossRef Lee, H. (2010). Robust adaptive fuzzy control by backstepping for a class of MIMO nonlinear systems. IEEE Transactions on Fuzzy Systems, 19(2), 265–275.CrossRef
21.
go back to reference Chen, B., Liu, X., Liu, K., & Lin, C. (2009). Novel adaptive neural control design for nonlinear MIMO time-delay systems. Automatica, 45(6), 1554–1560.MathSciNetMATHCrossRef Chen, B., Liu, X., Liu, K., & Lin, C. (2009). Novel adaptive neural control design for nonlinear MIMO time-delay systems. Automatica, 45(6), 1554–1560.MathSciNetMATHCrossRef
22.
go back to reference Zhou, Q., Zhao, S., Li, H., Lu, R., & Wu, C. (2018). Adaptive neural network tracking control for robotic manipulators with dead zone. IEEE Transactions on Neural Networks and Learning Systems, 30(12), 3611–3620.MathSciNetCrossRef Zhou, Q., Zhao, S., Li, H., Lu, R., & Wu, C. (2018). Adaptive neural network tracking control for robotic manipulators with dead zone. IEEE Transactions on Neural Networks and Learning Systems, 30(12), 3611–3620.MathSciNetCrossRef
23.
go back to reference Chen, M., & Tao, G. (2015). Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead zone. IEEE Transactions on Cybernetics, 46(8), 1851–1862. CrossRef Chen, M., & Tao, G. (2015). Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead zone. IEEE Transactions on Cybernetics, 46(8), 1851–1862. CrossRef
24.
go back to reference Zhao, X., Shi, P., Zheng, X., & Zhang, L. (2015). Adaptive tracking control for switched stochastic nonlinear systems with unknown actuator dead-zone. Automatica, 60, 193–200.MathSciNetMATHCrossRef Zhao, X., Shi, P., Zheng, X., & Zhang, L. (2015). Adaptive tracking control for switched stochastic nonlinear systems with unknown actuator dead-zone. Automatica, 60, 193–200.MathSciNetMATHCrossRef
25.
go back to reference Cao, L., Zhou, Q., Dong, G., & Li, H. (2019). Observer-based adaptive event-triggered control for nonstrict-feedback nonlinear systems with output constraint and actuator failures. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(3), 1380–1391.CrossRef Cao, L., Zhou, Q., Dong, G., & Li, H. (2019). Observer-based adaptive event-triggered control for nonstrict-feedback nonlinear systems with output constraint and actuator failures. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(3), 1380–1391.CrossRef
26.
go back to reference Xu, B., Sun, F., Pan, Y., & Chen, B. (2016). Disturbance observer based composite learning fuzzy control of nonlinear systems with unknown dead zone. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(8), 1854–1862.CrossRef Xu, B., Sun, F., Pan, Y., & Chen, B. (2016). Disturbance observer based composite learning fuzzy control of nonlinear systems with unknown dead zone. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(8), 1854–1862.CrossRef
27.
go back to reference Chen, B., Liu, X., Liu, K., & Lin, C. (2013). Fuzzy approximation-based adaptive control of nonlinear delayed systems with unknown dead zone. IEEE Transactions on Fuzzy Systems, 22(2), 237–248.CrossRef Chen, B., Liu, X., Liu, K., & Lin, C. (2013). Fuzzy approximation-based adaptive control of nonlinear delayed systems with unknown dead zone. IEEE Transactions on Fuzzy Systems, 22(2), 237–248.CrossRef
28.
go back to reference Liu, Y. J., Tong, S., Li, D. J., & Gao, Y. (2015). Fuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraint. IEEE Transactions on Fuzzy Systems, 24(5), 1147–1158.CrossRef Liu, Y. J., Tong, S., Li, D. J., & Gao, Y. (2015). Fuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraint. IEEE Transactions on Fuzzy Systems, 24(5), 1147–1158.CrossRef
29.
go back to reference Liu, Y. J., Li, S., Tong, S., & Chen, C. P. (2018). Adaptive reinforcement learning control based on neural approximation for nonlinear discrete-time systems with unknown nonaffine dead-zone input. IEEE transactions on neural networks and learning systems, 30(1), 295–305.CrossRef Liu, Y. J., Li, S., Tong, S., & Chen, C. P. (2018). Adaptive reinforcement learning control based on neural approximation for nonlinear discrete-time systems with unknown nonaffine dead-zone input. IEEE transactions on neural networks and learning systems, 30(1), 295–305.CrossRef
30.
go back to reference Liu, Y. J., Gao, Y., Tong, S., & Chen, C. P. (2015). A unified approach to adaptive neural control for nonlinear discrete-time systems with nonlinear dead-zone input. IEEE Transactions on Neural Networks and Learning Systems, 27(1), 139–150. MathSciNetCrossRef Liu, Y. J., Gao, Y., Tong, S., & Chen, C. P. (2015). A unified approach to adaptive neural control for nonlinear discrete-time systems with nonlinear dead-zone input. IEEE Transactions on Neural Networks and Learning Systems, 27(1), 139–150. MathSciNetCrossRef
31.
go back to reference Singh, U. P., & Jain, S. (2018). Optimization of neural network for nonlinear discrete time system using modified quaternion firefly algorithm: case study of Indian currency exchange rate prediction. Soft Computing, 22(8), 2667–2681.CrossRef Singh, U. P., & Jain, S. (2018). Optimization of neural network for nonlinear discrete time system using modified quaternion firefly algorithm: case study of Indian currency exchange rate prediction. Soft Computing, 22(8), 2667–2681.CrossRef
32.
go back to reference Wei, Q., & Liu, D. (2015). Neural-network-based adaptive optimal tracking control scheme for discrete-time nonlinear systems with approximation errors. Neurocomputing, 149, 106–115.CrossRef Wei, Q., & Liu, D. (2015). Neural-network-based adaptive optimal tracking control scheme for discrete-time nonlinear systems with approximation errors. Neurocomputing, 149, 106–115.CrossRef
33.
go back to reference Na, J., Lv, Y., Wu, X., Guo, Y., & Chen, Q. (2014). Approximate optimal tracking control for continuous-time unknown nonlinear systems. In Proceedings of the 33rd chinese control conference (pp. 8990–8995). IEEE Na, J., Lv, Y., Wu, X., Guo, Y., & Chen, Q. (2014). Approximate optimal tracking control for continuous-time unknown nonlinear systems. In Proceedings of the 33rd chinese control conference (pp. 8990–8995). IEEE
34.
go back to reference Zhou, Q., Shi, P., Lu, J., & Xu, S. (2011). Adaptive output-feedback fuzzy tracking control for a class of nonlinear systems. IEEE Transactions on Fuzzy Systems, 19(5), 972–982.CrossRef Zhou, Q., Shi, P., Lu, J., & Xu, S. (2011). Adaptive output-feedback fuzzy tracking control for a class of nonlinear systems. IEEE Transactions on Fuzzy Systems, 19(5), 972–982.CrossRef
35.
go back to reference Mehraeen, S., Jagannathan, S., & Crow, M. L. (2011). Decentralized dynamic surface control of large-scale interconnected systems in strict-feedback form using neural networks with asymptotic stabilization. IEEE Transactions on Neural Networks, 22(11), 1709–1722.CrossRef Mehraeen, S., Jagannathan, S., & Crow, M. L. (2011). Decentralized dynamic surface control of large-scale interconnected systems in strict-feedback form using neural networks with asymptotic stabilization. IEEE Transactions on Neural Networks, 22(11), 1709–1722.CrossRef
36.
go back to reference Chen, W., & Li, J. (2008). Decentralized output-feedback neural control for systems with unknown interconnections. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(1), 258–266.CrossRef Chen, W., & Li, J. (2008). Decentralized output-feedback neural control for systems with unknown interconnections. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(1), 258–266.CrossRef
37.
go back to reference Lee, T. H., & Narendra, K. (1986). Stable discrete adaptive control with unknown high-frequency gain. IEEE Transactions on Automatic Control, 31(5), 477–479.MATHCrossRef Lee, T. H., & Narendra, K. (1986). Stable discrete adaptive control with unknown high-frequency gain. IEEE Transactions on Automatic Control, 31(5), 477–479.MATHCrossRef
Metadata
Title
Hybrid Neural Network Control for Uncertain Nonlinear Discrete-Time Systems with Bounded Disturbance
Authors
Rahul Kumar
Uday Pratap Singh
Arun Bali
Kuldip Raj
Publication date
04-07-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09875-9

Other articles of this Issue 4/2022

Wireless Personal Communications 4/2022 Go to the issue