Skip to main content
Top

2023 | OriginalPaper | Chapter

Hybrid Physics-Based and Data-Driven Mitigation Strategy for Automatic Generation Control Under Cyber Attack

Authors : Chunyu Chen, Junbo Zhao, Kaifeng Zhang, Yilong Liu, Yang Chen

Published in: Power Systems Cybersecurity

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The fusion of information, data, control and electric power facilitates the electric cyber-physical system (ECPS). In the ECPS, though the high-level cyber-physical interaction and integration increase the flexibility and efficiency of power system operation, the accompanied cyber perils gradually endanger the system security. In fact, several energy sector-targeted attacks, including the infamous Ukraine power grid hack, have shown the power system vulnerability in cybersecurity incidents. Known as the critical power-balancing operation in real-time control systems, automatic generation control (AGC) is a typical ECPS application. Measurements from remote sensors may be manipulated by attackers when telemetered to the AGC center, thereby disrupting the balance of power and frequency stability. In this situation, cyber-attack- tolerant AGC plays an important role in the face of cybersecurity threats. To achieve the cyber-attack-tolerant AGC, some strategies including the physics-based and data-driven attack mitigation schemes have been employed. In this chapter, inspired by the fault detection, diagnosis and reconfiguration in fault-tolerant control theories, a hybrid physics-based and data-driven mitigation model is developed for AGC under false data injection attacks (FDIAs). A mathematical model is derived to reveal the causal relation between the FDIA signal and compromised AGC measurement data. Then, data-driven approaches are employed to establish the mapping between the compromised measurement data and power compensation. Finally, the compensation-based mitigation model is developed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Top, E. Banks, P.D. Barnes, et al., Simulation of a rtu cyber attack on a transformer bank, in IEEE Power & Energy Society General Meeting (IEEE, 2017), pp. 1–5 P. Top, E. Banks, P.D. Barnes, et al., Simulation of a rtu cyber attack on a transformer bank, in IEEE Power & Energy Society General Meeting (IEEE, 2017), pp. 1–5
2.
go back to reference A. Parizad, C. Hatziadoniu, A laboratory set-up for cyber attacks simulation using protocol analyzer and RTU hardware applying semi-supervised detection algorithm, in 2021 IEEE Texas Power and Energy Conference (TPEC) (IEEE, 2021), pp. 1–6 A. Parizad, C. Hatziadoniu, A laboratory set-up for cyber attacks simulation using protocol analyzer and RTU hardware applying semi-supervised detection algorithm, in 2021 IEEE Texas Power and Energy Conference (TPEC) (IEEE, 2021), pp. 1–6
3.
go back to reference S. Kumar, H. Kumar, G.R. Gunnam, Security integrity of data collection from smart electric meter under a cyber attack, in 2019 2nd International Conference on Data Intelligence and Security (ICDIS) (IEEE, 2019), pp. 9–13 S. Kumar, H. Kumar, G.R. Gunnam, Security integrity of data collection from smart electric meter under a cyber attack, in 2019 2nd International Conference on Data Intelligence and Security (ICDIS) (IEEE, 2019), pp. 9–13
4.
go back to reference J.C. Foreman, D. Gurugubelli, Identifying the cyber attack surface of the advanced metering infrastructure. Electr. J. 28(1), 94–103 (2015)CrossRef J.C. Foreman, D. Gurugubelli, Identifying the cyber attack surface of the advanced metering infrastructure. Electr. J. 28(1), 94–103 (2015)CrossRef
5.
go back to reference A. Hahn, M. Govindarasu, Cyber attack exposure evaluation framework for the smart grid. IEEE Trans. Smart Grid 2(4), 835–843 (2011)CrossRef A. Hahn, M. Govindarasu, Cyber attack exposure evaluation framework for the smart grid. IEEE Trans. Smart Grid 2(4), 835–843 (2011)CrossRef
6.
go back to reference M. Raciti, S. Nadjm-Tehrani, Embedded cyber-physical anomaly detection in smart meters[M]//Critical information infrastructures security. (Springer, Berlin, Heidelberg, 2013) pp. 34–45 M. Raciti, S. Nadjm-Tehrani, Embedded cyber-physical anomaly detection in smart meters[M]//Critical information infrastructures security. (Springer, Berlin, Heidelberg, 2013) pp. 34–45
7.
go back to reference C.C. Sun, D.J.S. Cardenas, A. Hahn et al., Intrusion detection for cybersecurity of smart meters. IEEE Trans. Smart Grid 12(1), 612–622 (2020)CrossRef C.C. Sun, D.J.S. Cardenas, A. Hahn et al., Intrusion detection for cybersecurity of smart meters. IEEE Trans. Smart Grid 12(1), 612–622 (2020)CrossRef
8.
go back to reference M. Ismail, M.F. Shaaban, M. Naidu et al., Deep learning detection of electricity theft cyber-attacks in renewable distributed generation. IEEE Trans. Smart Grid 11(4), 3428–3437 (2020)CrossRef M. Ismail, M.F. Shaaban, M. Naidu et al., Deep learning detection of electricity theft cyber-attacks in renewable distributed generation. IEEE Trans. Smart Grid 11(4), 3428–3437 (2020)CrossRef
9.
go back to reference A. Kavousi-Fard, W. Su, T. Jin, A machine-learning-based cyber attack detection model for wireless sensor networks in microgrids. IEEE Trans. Ind. Inf. 17(1), 650–658 (2020)CrossRef A. Kavousi-Fard, W. Su, T. Jin, A machine-learning-based cyber attack detection model for wireless sensor networks in microgrids. IEEE Trans. Ind. Inf. 17(1), 650–658 (2020)CrossRef
10.
go back to reference Y. Mo, B. Sinopoli, Secure control against replay attacks, in 2009 47th annual Allerton Conference on Communication, Control, and Computing (Allerton) (IEEE, 2009), pp. 911–918 Y. Mo, B. Sinopoli, Secure control against replay attacks, in 2009 47th annual Allerton Conference on Communication, Control, and Computing (Allerton) (IEEE, 2009), pp. 911–918
11.
go back to reference B. Tang, L.D. Alvergue, G. Gu, Secure networked control systems against replay attacks without injecting authentication noise, in 2015 American Control Conference (ACC) (IEEE, 2015), pp. 6028–6033 B. Tang, L.D. Alvergue, G. Gu, Secure networked control systems against replay attacks without injecting authentication noise, in 2015 American Control Conference (ACC) (IEEE, 2015), pp. 6028–6033
12.
go back to reference M. Bogdanoski, T. Suminoski, A. Risteski, Analysis of the SYN flood DoS attack. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 5(8), 1–11 (2013) M. Bogdanoski, T. Suminoski, A. Risteski, Analysis of the SYN flood DoS attack. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 5(8), 1–11 (2013)
13.
go back to reference S.T. Zargar, J. Joshi, D. Tipper, A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutor. 15(4), 2046–2069 (2013)CrossRef S.T. Zargar, J. Joshi, D. Tipper, A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutor. 15(4), 2046–2069 (2013)CrossRef
14.
go back to reference G.S. Kushwah, V. Ranga, Voting extreme learning machine based distributed denial of service attack detection in cloud computing. J. Inf. Secur. Appl. 53, 102532 (2020) G.S. Kushwah, V. Ranga, Voting extreme learning machine based distributed denial of service attack detection in cloud computing. J. Inf. Secur. Appl. 53, 102532 (2020)
15.
go back to reference M. Asad, M. Asim, T. Javed et al., Deepdetect: detection of distributed denial of service attacks using deep learning. Comput. J. 63(7), 983–994 (2020)CrossRef M. Asad, M. Asim, T. Javed et al., Deepdetect: detection of distributed denial of service attacks using deep learning. Comput. J. 63(7), 983–994 (2020)CrossRef
16.
go back to reference N.R. Rodofile, K. Radke, E. Foo, Extending the cyber-attack landscape for SCADA-based critical infrastructure. Int. J. Crit. Infrastruct. Prot. 25, 14–35 (2019)CrossRef N.R. Rodofile, K. Radke, E. Foo, Extending the cyber-attack landscape for SCADA-based critical infrastructure. Int. J. Crit. Infrastruct. Prot. 25, 14–35 (2019)CrossRef
17.
go back to reference A. Hahn, A. Ashok, S. Sridhar et al., Cyber-physical security testbeds: Architecture, application, and evaluation for smart grid. IEEE Trans. Smart Grid 4(2), 847–855 (2013)CrossRef A. Hahn, A. Ashok, S. Sridhar et al., Cyber-physical security testbeds: Architecture, application, and evaluation for smart grid. IEEE Trans. Smart Grid 4(2), 847–855 (2013)CrossRef
18.
go back to reference M. Kalech, Cyber-attack detection in SCADA systems using temporal pattern recognition techniques. Comput. Secur. 84, 225–238 (2019)CrossRef M. Kalech, Cyber-attack detection in SCADA systems using temporal pattern recognition techniques. Comput. Secur. 84, 225–238 (2019)CrossRef
19.
go back to reference Y. Liu, P. Ning, M.K. Reiter, False data injection attacks against state estimation in electric power grids. ACM Trans. Inf. Syst. Secur. 14(1), 1–33 (2011)CrossRef Y. Liu, P. Ning, M.K. Reiter, False data injection attacks against state estimation in electric power grids. ACM Trans. Inf. Syst. Secur. 14(1), 1–33 (2011)CrossRef
20.
go back to reference B. Li, G. Xiao, R. Lu et al., On feasibility and limitations of detecting false data injection attacks on power grid state estimation using D-FACTS devices. IEEE Trans. Ind. Inf. 16(2), 854–864 (2019)CrossRef B. Li, G. Xiao, R. Lu et al., On feasibility and limitations of detecting false data injection attacks on power grid state estimation using D-FACTS devices. IEEE Trans. Ind. Inf. 16(2), 854–864 (2019)CrossRef
21.
go back to reference M. Jin, J. Lavaei, K.H. Johansson, Power grid AC-based state estimation: Vulnerability analysis against cyber attacks. IEEE Trans. Autom. Control 64(5), 1784–1799 (2018)MathSciNetCrossRefMATH M. Jin, J. Lavaei, K.H. Johansson, Power grid AC-based state estimation: Vulnerability analysis against cyber attacks. IEEE Trans. Autom. Control 64(5), 1784–1799 (2018)MathSciNetCrossRefMATH
22.
go back to reference H. Wang, J. Ruan, G. Wang et al., Deep learning-based interval state estimation of AC smart grids against sparse cyber attacks. IEEE Trans. Ind. Inf. 14(11), 4766–4778 (2018)CrossRef H. Wang, J. Ruan, G. Wang et al., Deep learning-based interval state estimation of AC smart grids against sparse cyber attacks. IEEE Trans. Ind. Inf. 14(11), 4766–4778 (2018)CrossRef
23.
go back to reference J.Q. James, Y. Hou, V.O.K. Li, Online false data injection attack detection with wavelet transform and deep neural networks. IEEE Trans. Ind. Inf. 14(7), 3271–3280 (2018)CrossRef J.Q. James, Y. Hou, V.O.K. Li, Online false data injection attack detection with wavelet transform and deep neural networks. IEEE Trans. Ind. Inf. 14(7), 3271–3280 (2018)CrossRef
24.
go back to reference C. Chen, Y. Wang, M. Cui, et al., Data-driven detection of stealthy false data injection attack against power system state estimation. IEEE Trans. Ind. Inf. (2022) C. Chen, Y. Wang, M. Cui, et al., Data-driven detection of stealthy false data injection attack against power system state estimation. IEEE Trans. Ind. Inf. (2022)
25.
go back to reference L. Xie, Y. Mo, B. Sinopoli, Integrity data attacks in power market operations. IEEE Trans. Smart Grid 2(4), 659–666 (2011)CrossRef L. Xie, Y. Mo, B. Sinopoli, Integrity data attacks in power market operations. IEEE Trans. Smart Grid 2(4), 659–666 (2011)CrossRef
26.
go back to reference H. Xu, Y. Lin, X. Zhang et al., Power system parameter attack for financial profits in electricity markets. IEEE Trans. Smart Grid 11(4), 3438–3446 (2020)CrossRef H. Xu, Y. Lin, X. Zhang et al., Power system parameter attack for financial profits in electricity markets. IEEE Trans. Smart Grid 11(4), 3438–3446 (2020)CrossRef
27.
go back to reference H. Badrsimaei, R.A. Hooshmand, S. Nobakhtian, Stealthy and profitable data injection attack on real time electricity market with network model uncertainties. Electric Power Syst. Res. 205, 107742 (2022)CrossRef H. Badrsimaei, R.A. Hooshmand, S. Nobakhtian, Stealthy and profitable data injection attack on real time electricity market with network model uncertainties. Electric Power Syst. Res. 205, 107742 (2022)CrossRef
28.
go back to reference P.K. Jena, S. Ghosh, E. Koley et al., Design of AC state estimation based cyber-physical attack for disrupting electricity market operation under limited sensor information. Electric Power Syst. Res. 205, 107732 (2022)CrossRef P.K. Jena, S. Ghosh, E. Koley et al., Design of AC state estimation based cyber-physical attack for disrupting electricity market operation under limited sensor information. Electric Power Syst. Res. 205, 107732 (2022)CrossRef
29.
go back to reference M. Ghafouri, M. Au, M. Kassouf et al., Detection and mitigation of cyber attacks on voltage stability monitoring of smart grids. IEEE Trans. Smart Grid 11(6), 5227–5238 (2020)CrossRef M. Ghafouri, M. Au, M. Kassouf et al., Detection and mitigation of cyber attacks on voltage stability monitoring of smart grids. IEEE Trans. Smart Grid 11(6), 5227–5238 (2020)CrossRef
30.
go back to reference C. Cameron, C. Patsios, P.C. Taylor et al., Using self-organizing architectures to mitigate the impacts of denial-of-service attacks on voltage control schemes. IEEE Trans. Smart Grid 10(3), 3010–3019 (2018)CrossRef C. Cameron, C. Patsios, P.C. Taylor et al., Using self-organizing architectures to mitigate the impacts of denial-of-service attacks on voltage control schemes. IEEE Trans. Smart Grid 10(3), 3010–3019 (2018)CrossRef
31.
go back to reference C. Chen, K. Zhang, K. Yuan et al., Novel detection scheme design considering cyber attacks on load frequency control. IEEE Trans. Ind. Inf. 14(5), 1932–1941 (2017)CrossRef C. Chen, K. Zhang, K. Yuan et al., Novel detection scheme design considering cyber attacks on load frequency control. IEEE Trans. Ind. Inf. 14(5), 1932–1941 (2017)CrossRef
32.
go back to reference C. Chen, Y. Chen, K. Zhang et al., System redundancy enhancement of secondary frequency control under latency attacks. IEEE Trans. Smart Grid 12(1), 647–658 (2020)CrossRef C. Chen, Y. Chen, K. Zhang et al., System redundancy enhancement of secondary frequency control under latency attacks. IEEE Trans. Smart Grid 12(1), 647–658 (2020)CrossRef
33.
go back to reference C. Chen, M. Cui, X. Fang et al., Load altering attack-tolerant defense strategy for load frequency control system. Appl. Energy 280, 116015 (2020)CrossRef C. Chen, M. Cui, X. Fang et al., Load altering attack-tolerant defense strategy for load frequency control system. Appl. Energy 280, 116015 (2020)CrossRef
34.
go back to reference C. Chen, Y. Chen, J. Zhao et al., Data-driven resilient automatic generation control against false data injection attacks. IEEE Trans. Ind. Inf. 17(12), 8092–8101 (2021)CrossRef C. Chen, Y. Chen, J. Zhao et al., Data-driven resilient automatic generation control against false data injection attacks. IEEE Trans. Ind. Inf. 17(12), 8092–8101 (2021)CrossRef
35.
go back to reference P.M. Anderson, M. Mirheydar, A low-order system frequency response model. IEEE Trans. Power Syst. 5(3), 720–729 (1990)CrossRef P.M. Anderson, M. Mirheydar, A low-order system frequency response model. IEEE Trans. Power Syst. 5(3), 720–729 (1990)CrossRef
36.
go back to reference P. Kundur, N.J. Balu, M.G. Lauby, Power system stability and control (McGraw-hill, New York, 1994) P. Kundur, N.J. Balu, M.G. Lauby, Power system stability and control (McGraw-hill, New York, 1994)
37.
go back to reference C. Edwards, C.P. Tan, Sensor fault tolerant control using sliding mode observers. Control. Eng. Pract. 14(8), 897–908 (2006)CrossRef C. Edwards, C.P. Tan, Sensor fault tolerant control using sliding mode observers. Control. Eng. Pract. 14(8), 897–908 (2006)CrossRef
Metadata
Title
Hybrid Physics-Based and Data-Driven Mitigation Strategy for Automatic Generation Control Under Cyber Attack
Authors
Chunyu Chen
Junbo Zhao
Kaifeng Zhang
Yilong Liu
Yang Chen
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-20360-2_6