Skip to main content
Top

2019 | OriginalPaper | Chapter

4. Hybrid Precoding/Combining for Massive MIMO with Hybrid ARQ

Authors : Tho Le-Ngoc, Ruikai Mai

Published in: Hybrid Massive MIMO Precoding in Cloud-RAN

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Because of poor channel conditions, correct reception at a certain target data rate can sometimes become impossible. Therefore, packet retransmission protocols are used in modern wireless communications systems to improve the reliability of data transmission. Specifically, when a one-bit feedback link is available from the receiver to the transmitter, the simple scheme of hybrid automatic repeat request (ARQ) with Chase combining (HARQ-CC) can be employed, where the same packet is retransmitted in the event of decoding failure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
In this work, we consider hybrid precoding and combining in the azimuth plane, and therefore restrict our attention to the use of ULAs at the transmitter and receiver. Nonetheless, we note that the proposed design techniques directly carry over to the case of full-dimensional beamforming where both azimuth and elevation beamforming are enabled by arranging the antenna elements in a uniform rectangular configuration or a cylindrical configuration.
 
2
For the channel reciprocity to be useful, it is required that the sample duration allocated for uplink channel training T u and that for downlink data transmission T d should not exceed the channel coherence time T coh. Suppose that the channel remains invariant before the user moves a quarter of the wavelength λ. Accordingly, the channel coherence time is calculated as \(T_{\mathrm {coh}}=\frac {1}{4}\frac {\lambda }{v}\) with v as the mobile speed of the terminal. Furthermore, let T s denote the sample duration of an orthogonal frequency-division multiplexing (OFDM) symbol, which consists of a guard interval T cp and an effective symbol interval T eff. To avoid inter-symbol interference, it can be assumed for simplicity that the guard interval is set equal to the channel delay spread τ, i.e., T cp = τ. Accordingly, the channel coherence time in terms of the number of channel uses is expressed by \(T_{\mathrm {coh}}^{\mathrm {cu}}=\frac {T_{\mathrm {coh}}T_{\mathrm {eff}}}{T_{s}T_{\mathrm {cp}}}\). To estimate the frequency response, the N r transceivers at the user terminal transmit orthogonal pilot sequences on the uplink, each of length no less than N r channel uses. In general, it is required that \(T_{\mathrm {coh}}^{\mathrm {cu}}\geq 2N_{\mathrm {r}}\) such that the ensuing data transmission could take place [5].
 
3
In an ARQ-based system with a single-channel (and a single processing unit), multiple copies of the same signal are received independently at different time instances. However, in a multi-channel system, performing combining across the independently received signals from parallel channels can take place as each channel will have a separate processing unit.
 
Literature
1.
go back to reference O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.CrossRef O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.CrossRef
2.
go back to reference A. Liu and V. K. N. Lau, “Phase only RF precoding for massive MIMO systems with limited RF chains,” IEEE Trans. Signal Process., vol. 62, no. 17, pp. 4505–4515, Sep. 2014.MathSciNetCrossRef A. Liu and V. K. N. Lau, “Phase only RF precoding for massive MIMO systems with limited RF chains,” IEEE Trans. Signal Process., vol. 62, no. 17, pp. 4505–4515, Sep. 2014.MathSciNetCrossRef
3.
go back to reference X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 485–500, Apr. 2016.CrossRef X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 485–500, Apr. 2016.CrossRef
4.
go back to reference H. Xu, V. Kukshya, and T. Rappaport, “Spatial and temporal characteristics of 60-GHz indoor channels,” IEEE J. Sel. Areas Commun., vol. 20, no. 3, pp. 620–630, Apr. 2002.CrossRef H. Xu, V. Kukshya, and T. Rappaport, “Spatial and temporal characteristics of 60-GHz indoor channels,” IEEE J. Sel. Areas Commun., vol. 20, no. 3, pp. 620–630, Apr. 2002.CrossRef
5.
go back to reference T. L. Marzetta, “Massive MIMO: An introduction,” Bell Labs Technical Journal, vol. 20, pp. 11–22, 2015.CrossRef T. L. Marzetta, “Massive MIMO: An introduction,” Bell Labs Technical Journal, vol. 20, pp. 11–22, 2015.CrossRef
6.
go back to reference D. P. Palomar and S. Barbarossa, “Designing MIMO communication systems: Constellation choice and linear transceiver design,” IEEE Trans. Signal Process., vol. 53, no. 10, pp. 3804–3818, Oct. 2005.MathSciNetCrossRef D. P. Palomar and S. Barbarossa, “Designing MIMO communication systems: Constellation choice and linear transceiver design,” IEEE Trans. Signal Process., vol. 53, no. 10, pp. 3804–3818, Oct. 2005.MathSciNetCrossRef
7.
go back to reference H. Sun, H. Samra, Z. Ding, and J. Manton, “Constrained capacity of linear precoded ARQ in MIMO wireless systems,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Process., Philadelphia, PA, USA, Mar. 2005. H. Sun, H. Samra, Z. Ding, and J. Manton, “Constrained capacity of linear precoded ARQ in MIMO wireless systems,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Process., Philadelphia, PA, USA, Mar. 2005.
8.
go back to reference A. Adhikary, J. Nam, J.-Y. Ahn, and G. Caire, “Joint spatial division and multiplexing - The large-scale array regime,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6441–6463, Oct. 2013.MathSciNetCrossRef A. Adhikary, J. Nam, J.-Y. Ahn, and G. Caire, “Joint spatial division and multiplexing - The large-scale array regime,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6441–6463, Oct. 2013.MathSciNetCrossRef
9.
go back to reference H. Sun, J. H. Manton, and Z. Ding, “Progressive linear precoder optimization for MIMO packet retransmissions,” IEEE J. Sel. Areas Commun., vol. 24, no. 5, pp. 448–456, Mar. 2006. H. Sun, J. H. Manton, and Z. Ding, “Progressive linear precoder optimization for MIMO packet retransmissions,” IEEE J. Sel. Areas Commun., vol. 24, no. 5, pp. 448–456, Mar. 2006.
10.
go back to reference D. Tse and P. Viswanath, Fundamentals of Wireless Communications. New York, NY, USA: Cambridge University Press, 2005.CrossRef D. Tse and P. Viswanath, Fundamentals of Wireless Communications. New York, NY, USA: Cambridge University Press, 2005.CrossRef
11.
Metadata
Title
Hybrid Precoding/Combining for Massive MIMO with Hybrid ARQ
Authors
Tho Le-Ngoc
Ruikai Mai
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-02158-0_4