Skip to main content
Top

2021 | OriginalPaper | Chapter

Hybrid SDN Deployment Using Machine Learning

Authors : H. W. Siew, S. C. Tan, C. K. Lee

Published in: Computational Science and Technology

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Software-Defined Networking (SDN) has attracted tremendous attention in recent years as the future communication network architecture. However, SDN deployment in legacy network will be progressively phased over a period, especially for larger network which consists of hundred or more nodes. Every migration (i.e. replacing or upgrading) of SDN-enabled nodes requires considerable optimization efforts in terms of cost of investment, network stability and performance gains. Hitherto literatures have proposed variety of static heuristic algorithms to compute the migration sequence of SDN-enabled nodes for multi-periods SDN deployment in legacy network. The aim of each computed migration sequence is aims to improve network performance gains with respect to address different constraints. However, the dynamicity of an unique network, such as traffic growth or topology change, cannot be comprehensively addressed using a static heuristic algorithm over the deployment duration. Machine learning (ML), on the other hand, has been proven successfully applied for various dynamic and non-linear problems in diverse domains. In this article, we summarize the generic workflow for ML in networking domain at first. Subsequently, we investigated the problem of SDN deployment in legacy network from the perspective of ML. We proposed a SDN deployment problem that formulated as Markov Decision Process and reinforcement learning techniques, such as Qlearning and SARSA, can be used to model for the problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Brill E, Lin J, Banko M, Dumais S, Ng A (2002) Data-intensive question answering. In: Proceedings of the TREC-10 conference, pp 183–189 Brill E, Lin J, Banko M, Dumais S, Ng A (2002) Data-intensive question answering. In: Proceedings of the TREC-10 conference, pp 183–189
3.
go back to reference Luong NC et al (2019) Applications of deep reinforcement learning in communications and networking: a survey. IEEE Commun Surv Tutor 21(4):3133–3174 Luong NC et al (2019) Applications of deep reinforcement learning in communications and networking: a survey. IEEE Commun Surv Tutor 21(4):3133–3174
4.
go back to reference Chemouil P et al (2019) Artificial intelligence and machine learning for networking and communications. IEEE J Sel Areas Commun 37(6):1185–1191CrossRef Chemouil P et al (2019) Artificial intelligence and machine learning for networking and communications. IEEE J Sel Areas Commun 37(6):1185–1191CrossRef
5.
go back to reference Mahmoud QH (2007) Cognitive networks: towards self-aware networks. Wiley, Hoboken Mahmoud QH (2007) Cognitive networks: towards self-aware networks. Wiley, Hoboken
6.
go back to reference JiangJ, Sekar V, Zhang H, Milner H, Shepherd D, Stoica I (2016) CFA: a practical prediction system for video QoE optimization JiangJ, Sekar V, Zhang H, Milner H, Shepherd D, Stoica I (2016) CFA: a practical prediction system for video QoE optimization
7.
go back to reference Ramming JC, Wroclawski JT, Clark DD, Partridge C (2015) A knowledge plane for the internet. In: Proceedings of the 2007 conference on applications, technologies, architectures, and protocols for computer communication, pp 3–10 Ramming JC, Wroclawski JT, Clark DD, Partridge C (2015) A knowledge plane for the internet. In: Proceedings of the 2007 conference on applications, technologies, architectures, and protocols for computer communication, pp 3–10
8.
go back to reference White RS, Hanson EJ, Whalley I, Chess MD, Kephart JO (2004, October) An architectural approach to autonomic computing (‘An architectural blueprint for autonomic computing’). In: International conference on autonomic computing, pp 2–9 White RS, Hanson EJ, Whalley I, Chess MD, Kephart JO (2004, October) An architectural approach to autonomic computing (‘An architectural blueprint for autonomic computing’). In: International conference on autonomic computing, pp 2–9
9.
go back to reference Mestres A et al (2017) Knowledge-defined networking. Comput Commun Rev 47(3):1–10CrossRef Mestres A et al (2017) Knowledge-defined networking. Comput Commun Rev 47(3):1–10CrossRef
10.
go back to reference Ayoubi S et al (2018) Machine learning for cognitive network management. IEEE Commun Mag 56(January):158–165 Ayoubi S et al (2018) Machine learning for cognitive network management. IEEE Commun Mag 56(January):158–165
11.
go back to reference Boutaba R et al (2018) A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J Internet Serv Appl 9(1) Boutaba R et al (2018) A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J Internet Serv Appl 9(1)
12.
go back to reference Chen J, Zheng X, Rong C (2015) Survey on software-defined networking. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 9106, no 1, pp 115–124 Chen J, Zheng X, Rong C (2015) Survey on software-defined networking. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 9106, no 1, pp 115–124
13.
go back to reference Wang M, Cui Y, Wang X, Xiao S, Jiang J (2018) Machine learning for networking: workflow, advances and opportunities. IEEE Netw 32(2):92–99CrossRef Wang M, Cui Y, Wang X, Xiao S, Jiang J (2018) Machine learning for networking: workflow, advances and opportunities. IEEE Netw 32(2):92–99CrossRef
14.
go back to reference Vissicchio S, Vanbever L, Bonaventure O (2014) Opportunities and research challenges of hybrid software defined networks. ACM SIGCOMM Comput Commun Rev 44(2):70–75CrossRef Vissicchio S, Vanbever L, Bonaventure O (2014) Opportunities and research challenges of hybrid software defined networks. ACM SIGCOMM Comput Commun Rev 44(2):70–75CrossRef
15.
go back to reference Amin R, Reisslein M, Shah N (2018) Hybrid SDN networks: a survey of existing approaches. IEEE Commun Surv Tutorials 20(4):3259–3306CrossRef Amin R, Reisslein M, Shah N (2018) Hybrid SDN networks: a survey of existing approaches. IEEE Commun Surv Tutorials 20(4):3259–3306CrossRef
16.
go back to reference Poularakis K, Iosifidis G, Smaragdakis G, Tassiulas L (2019) Optimizing gradual SDN upgrades in ISP networks. IEEE/ACM Trans Netw 27(1):288–301CrossRef Poularakis K, Iosifidis G, Smaragdakis G, Tassiulas L (2019) Optimizing gradual SDN upgrades in ISP networks. IEEE/ACM Trans Netw 27(1):288–301CrossRef
17.
go back to reference Poularakis K, Iosifidis G, Smaragdakis G, Tassiulas L (2017) One step at a time: optimizing SDN upgrades in ISP networks. In: Proceedings—IEEE INFOCOM, pp 1–9 Poularakis K, Iosifidis G, Smaragdakis G, Tassiulas L (2017) One step at a time: optimizing SDN upgrades in ISP networks. In: Proceedings—IEEE INFOCOM, pp 1–9
18.
go back to reference Guo Y, Wang Z, Yin X, Shi X, Wu J, Zhang H (2016) Incremental deployment for traffic engineering in hybrid SDN network. In: 2015 IEEE 34th International Performance Computing and Communications Conference (IPCCC 2015) Guo Y, Wang Z, Yin X, Shi X, Wu J, Zhang H (2016) Incremental deployment for traffic engineering in hybrid SDN network. In: 2015 IEEE 34th International Performance Computing and Communications Conference (IPCCC 2015)
19.
go back to reference Xu H, Li XY, Huang L, Deng H, Huang H, Wang H (2017) Incremental deployment and throughput maximization routing for a hybrid SDN. IEEE/ACM Trans Netw 25(3):1861–1875CrossRef Xu H, Li XY, Huang L, Deng H, Huang H, Wang H (2017) Incremental deployment and throughput maximization routing for a hybrid SDN. IEEE/ACM Trans Netw 25(3):1861–1875CrossRef
20.
go back to reference Levin D, Canini M, Schmid S, Feldmann A (2013) Incremental SDN deployment in enterprise networks. In: Proceedings of the ACM SIGCOMM 2013 conference SIGCOMM—SIGCOMM’13, p 473 Levin D, Canini M, Schmid S, Feldmann A (2013) Incremental SDN deployment in enterprise networks. In: Proceedings of the ACM SIGCOMM 2013 conference SIGCOMM—SIGCOMM’13, p 473
21.
go back to reference Tanha M, Sajjadi D, Ruby R, Pan J (2018) Traffic engineering enhancement by progressive migration to SDN. IEEE Commun Lett 22(3):438–441CrossRef Tanha M, Sajjadi D, Ruby R, Pan J (2018) Traffic engineering enhancement by progressive migration to SDN. IEEE Commun Lett 22(3):438–441CrossRef
22.
go back to reference Yuan T, Huang X, Ma M, Zhang P (2017) Migration to software-defined networks: the customers view. China Commun 14(10):1–11CrossRef Yuan T, Huang X, Ma M, Zhang P (2017) Migration to software-defined networks: the customers view. China Commun 14(10):1–11CrossRef
23.
go back to reference Wang W, He W, Su J (2017) Boosting the Benefits of Hybrid SDN. In: Proceedings of the international conference on distributed computing systems, pp 2165–2170 Wang W, He W, Su J (2017) Boosting the Benefits of Hybrid SDN. In: Proceedings of the international conference on distributed computing systems, pp 2165–2170
24.
go back to reference Guo Y, Wang Z, Yin X, Shi X, Wu J (2017) Traffic engineering in hybrid SDN networks with multiple traffic matrices. Comput Netw 126:187–199CrossRef Guo Y, Wang Z, Yin X, Shi X, Wu J (2017) Traffic engineering in hybrid SDN networks with multiple traffic matrices. Comput Netw 126:187–199CrossRef
25.
go back to reference Poupart P et al (2016) Online flow size prediction for improved network routing In: Proceedings of the International Conference on Network Protocols ICNP, December 2016, pp 1–6 Poupart P et al (2016) Online flow size prediction for improved network routing In: Proceedings of the International Conference on Network Protocols ICNP, December 2016, pp 1–6
26.
go back to reference Wang R, Liu Y, Yang Y, Zhou X (2006) Solving the app-level classification problem of P2P traffic Via optimized support vector machines. In: Proceedings of the ISDA 2006 sixth international conference on intelligent systems design and applications, vol 2, pp 534–539 Wang R, Liu Y, Yang Y, Zhou X (2006) Solving the app-level classification problem of P2P traffic Via optimized support vector machines. In: Proceedings of the ISDA 2006 sixth international conference on intelligent systems design and applications, vol 2, pp 534–539
27.
go back to reference Hu T, Member S, Fei Y (2010) QELAR: a Machine-learning-based adaptive routing protocol for. IEEE Trans Mob Comput 9(6):796–809CrossRef Hu T, Member S, Fei Y (2010) QELAR: a Machine-learning-based adaptive routing protocol for. IEEE Trans Mob Comput 9(6):796–809CrossRef
28.
go back to reference Jayaraj A, Venkatesh T, Murthy CSR (2008) Loss classification in optical burst switching networks using machine learning techniques: improving the performance of TCP. IEEE J Sel Areas Commun 26(6):45–54CrossRef Jayaraj A, Venkatesh T, Murthy CSR (2008) Loss classification in optical burst switching networks using machine learning techniques: improving the performance of TCP. IEEE J Sel Areas Commun 26(6):45–54CrossRef
29.
go back to reference Demirbilek E, Gregoire JC (2017) Machine learning based reduced reference bitstream audiovisual quality prediction models for realtime communications. In: Proceedings of the IEEE international conference on multimedia and expo, vol 13, no 2, pp 571–576 Demirbilek E, Gregoire JC (2017) Machine learning based reduced reference bitstream audiovisual quality prediction models for realtime communications. In: Proceedings of the IEEE international conference on multimedia and expo, vol 13, no 2, pp 571–576
30.
go back to reference Kumar Y, Farooq H, Imran A (2017) Fault prediction and reliability analysis in a real cellular network. In: 2017 13th International Conference on Wireless and Mobile Communications IWCMC 2017, pp 1090–1095 Kumar Y, Farooq H, Imran A (2017) Fault prediction and reliability analysis in a real cellular network. In: 2017 13th International Conference on Wireless and Mobile Communications IWCMC 2017, pp 1090–1095
31.
go back to reference Cannady JD (1998) Artificial neural networks for misuse detection. In: Proceedings of the 21st national information systems security conference, pp 368–381 Cannady JD (1998) Artificial neural networks for misuse detection. In: Proceedings of the 21st national information systems security conference, pp 368–381
32.
go back to reference Wei SH, Chin TS, Binlun JN, Kwang LC, Kapsin R, Yusoff Z Machine learning as a means to adapt requirement changes for SDN deployment process in SDN migration. In: Advances in computational intelligence, pp 629–639. Wei SH, Chin TS, Binlun JN, Kwang LC, Kapsin R, Yusoff Z Machine learning as a means to adapt requirement changes for SDN deployment process in SDN migration. In: Advances in computational intelligence, pp 629–639.
Metadata
Title
Hybrid SDN Deployment Using Machine Learning
Authors
H. W. Siew
S. C. Tan
C. K. Lee
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-4069-5_19

Premium Partner