Skip to main content
Top
Published in:

01-01-2024 | Original Paper

Hybrid soft computing models for predicting unconfined compressive strength of lime stabilized soil using strength property of virgin cohesive soil

Authors: Ismehen Taleb Bahmed, Jitendra Khatti, Kamaldeep Singh Grover

Published in: Bulletin of Engineering Geology and the Environment | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work introduces an optimal performance model for predicting the unconfined compressive strength (UCS) of lime-stabilized soil using the machine (ensemble tree (ET), Gaussian process regression (GPR), and decision tree (DT), support vector machine (SVM)), and hybrid (relevance vector machine (RVM)) learning computational techniques. The conventional (non-optimized) and hybrid (genetic (GA) and particle swarm algorithm optimized (PSO)) RVM models have been developed and compared with machine learning models. For the first time, UCS of virgin cohesive soil has been used as input variable to predict the UCS of lime-stabilized soil. A database of 371 results of lime-stabilized soil has been compiled from the literature and used to create training, testing, and validation databases. Furthermore, the multicollinearity levels for each input variable, i.e., lime content, UCS of cohesive soil, and curing period, have been determined as weak for the overall database. The performance of built-in models has been measured by three new index performance metrics: the a20-index, the index of scatter (IOS), and the index of agreement (IOA). This research concludes that the weak multicollinearity of input variables affects the performance of the non-optimized RVM models. Also, the ensemble tree has performed better than SVM, DT, and GPR because it consists of the number of trees. The overall performance comparison concludes that the PSO-optimized Laplacian kernel–based RVM model UCS16 outperformed all models with higher a20-index (testing = 67.30, validation = 55.95), IOA (testing = 0.8634, validation = 0.7795), and IOS (testing = 0.2799, validation = 0.3506) and has been recognized as the optimal performance model. ANOVA, Z, and Anderson-darling tests reject the null hypothesis for the present research. The lime content influences the prediction of UCS of lime-stabilized soil. The computational cost and external validation results show the robustness of model UCS16.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Ansary MA, Hasan KA (2011) Lime stabilization on soil of a selected reclaimed site of Dhaka City. J Geotech Eng 1(1):1–6 Ansary MA, Hasan KA (2011) Lime stabilization on soil of a selected reclaimed site of Dhaka City. J Geotech Eng 1(1):1–6
go back to reference Aytekin M (1998) Soil Stabilization VVith Lime and Cement t. Teknik Dergi 9(1):1573–15ss Aytekin M (1998) Soil Stabilization VVith Lime and Cement t. Teknik Dergi 9(1):1573–15ss
go back to reference Bell F (1989) Lime stabilisation of clay soils. Bull Eng Geol Environ 39(1):67–74 Bell F (1989) Lime stabilisation of clay soils. Bull Eng Geol Environ 39(1):67–74
go back to reference Bell F (1994) An assessment of cement-PFA and lime-PFA used to stabilize clay-size materials. Bull Eng Geol Environ 49(1):25–32 Bell F (1994) An assessment of cement-PFA and lime-PFA used to stabilize clay-size materials. Bull Eng Geol Environ 49(1):25–32
go back to reference Haeri SM, Hosseini AM, Shahrabi MM, Soleymani S (2015) Comparison of strength characteristics of Gorgan loessial soil improved by nano-silica, lime and Portland cement. In: From Fundamentals to Applications in Geotechnics. IOS Press, pp 1820–1827 Haeri SM, Hosseini AM, Shahrabi MM, Soleymani S (2015) Comparison of strength characteristics of Gorgan loessial soil improved by nano-silica, lime and Portland cement. In: From Fundamentals to Applications in Geotechnics. IOS Press, pp 1820–1827
go back to reference Harichéne K, Ghrici M, Belbbaci A, Meknaci A (2009) Effet de la chaux et de la pouzzolane naturelle sur le comportement de la plasticité des sols argileu. In: Séminaire international, Département de Génie Civil. Sfax, Tunisie, Institut supérieur des études technologiques de Harichéne K, Ghrici M, Belbbaci A, Meknaci A (2009) Effet de la chaux et de la pouzzolane naturelle sur le comportement de la plasticité des sols argileu. In: Séminaire international, Département de Génie Civil. Sfax, Tunisie, Institut supérieur des études technologiques de
go back to reference Iqbal M, Onyelowe KC, Jalal FE (2021) Smart computing models of California bearing ratio, unconfined compressive strength, and resistance value of activated ash-modified soft clay soil with adaptive neuro-fuzzy inference system and ensemble random forest regression techniques. Multiscale Multidiscip Model Exp Des 4(3):207–225. https://doi.org/10.1007/s41939-021-00092-8CrossRef Iqbal M, Onyelowe KC, Jalal FE (2021) Smart computing models of California bearing ratio, unconfined compressive strength, and resistance value of activated ash-modified soft clay soil with adaptive neuro-fuzzy inference system and ensemble random forest regression techniques. Multiscale Multidiscip Model Exp Des 4(3):207–225. https://​doi.​org/​10.​1007/​s41939-021-00092-8CrossRef
go back to reference Jha JN, Gill KS (2006) Effect of rice husk ash on lime stabilization of soil. J Inst Eng (India), Part CV, Civil Eng Div 87:33–39 Jha JN, Gill KS (2006) Effect of rice husk ash on lime stabilization of soil. J Inst Eng (India), Part CV, Civil Eng Div 87:33–39
go back to reference Khatti J, Grover K (2022) A study of relationship among correlation coefficient, performance, and overfitting using regression analysis. Int J Sci Eng Res 13:1074–1085 Khatti J, Grover K (2022) A study of relationship among correlation coefficient, performance, and overfitting using regression analysis. Int J Sci Eng Res 13:1074–1085
go back to reference Khatti J, Grover KS (2023a) Prediction of UCS of fine-grained soil based on machine learning part 1: multivariable regression analysis, gaussian process regression, and gene expression programming. Multiscale Multidiscip Model Exp Des:1–24. https://doi.org/10.1007/s41939-022-00137-6 Khatti J, Grover KS (2023a) Prediction of UCS of fine-grained soil based on machine learning part 1: multivariable regression analysis, gaussian process regression, and gene expression programming. Multiscale Multidiscip Model Exp Des:1–24. https://​doi.​org/​10.​1007/​s41939-022-00137-6
go back to reference Kitazume M, Grisolia M, Leder E, Marzano IP, Correia AAS, Oliveira PJV, Åhnberg H, Andersson M, (2015) Applicability of molding procedures in laboratory mix tests for quality control and assurance of the deep mixing method. Soils and Foundations, 55(4), pp.761–777 Kitazume M, Grisolia  M, Leder E, Marzano IP, Correia AAS, Oliveira PJV, Åhnberg H, Andersson M, (2015) Applicability of molding procedures in laboratory mix tests for quality control and assurance of the deep mixing method. Soils and Foundations, 55(4), pp.761–777
go back to reference Manasseh J, Olufemi AI (2008) Effect of lime on some geotechnical properties of Igumale shale. Electron J Geotech Eng 13(6):1–12 Manasseh J, Olufemi AI (2008) Effect of lime on some geotechnical properties of Igumale shale. Electron J Geotech Eng 13(6):1–12
go back to reference Mawlood Y, Salih A, Hummadi R, Hasan A, Ibrahim H (2021) Comparison of artificial neural network (ANN) and linear regression modeling with residual errors to predict the unconfined compressive strength and compression index for Erbil City soils, Kurdistan-Iraq. Arab J Geosci 14:1–14. https://doi.org/10.1007/s12517-021-06712-4CrossRef Mawlood Y, Salih A, Hummadi R, Hasan A, Ibrahim H (2021) Comparison of artificial neural network (ANN) and linear regression modeling with residual errors to predict the unconfined compressive strength and compression index for Erbil City soils, Kurdistan-Iraq. Arab J Geosci 14:1–14. https://​doi.​org/​10.​1007/​s12517-021-06712-4CrossRef
go back to reference Musa A, Alhaji MM (2007) Effect of rice husk ash on cement stabilized laterite. Leonardo J Pract Technol 6(11):37–46 Musa A, Alhaji MM (2007) Effect of rice husk ash on cement stabilized laterite. Leonardo J Pract Technol 6(11):37–46
go back to reference Nalbantoglu Z (2006) Lime stabilization of expansive clay. In: Expansive Soils. CRC Press, pp 353–360 Nalbantoglu Z (2006) Lime stabilization of expansive clay. In: Expansive Soils. CRC Press, pp 353–360
go back to reference Portelinha FH, Lima DC, Fontes MP, Carvalho CA (2012) Modification of a lateritic soil with lime and cement: an economical alternative for flexible pavement layers. Soils and Rocks, São Paulo 35(1):51–63CrossRef Portelinha FH, Lima DC, Fontes MP, Carvalho CA (2012) Modification of a lateritic soil with lime and cement: an economical alternative for flexible pavement layers. Soils and Rocks, São Paulo 35(1):51–63CrossRef
go back to reference Salahudeen AB, Sadeeq JA, Badamasi A, Onyelowe KC (2020) Prediction of unconfined compressive strength of treated expansive clay using back-propagation artificial neural networks. Nigerian J Eng 27(1):45–58 Salahudeen AB, Sadeeq JA, Badamasi A, Onyelowe KC (2020) Prediction of unconfined compressive strength of treated expansive clay using back-propagation artificial neural networks. Nigerian J Eng 27(1):45–58
go back to reference Siddique A, Hossain MA (2011) Effects of lime stabilisation on engineering properties of an expansive soil for use in road construction. J Soc Transp Traffic Stud 1(4):1–9 Siddique A, Hossain MA (2011) Effects of lime stabilisation on engineering properties of an expansive soil for use in road construction. J Soc Transp Traffic Stud 1(4):1–9
go back to reference Smith GN (1986) Probability and statistics in civil engineering – an introduction. Collins, London Smith GN (1986) Probability and statistics in civil engineering – an introduction. Collins, London
go back to reference Talamkhani S (2023) Machine learning-based prediction of unconfined compressive strength of sands treated by microbially-induced calcite precipitation (MICP): a gradient boosting approach and correlation analysis. Adv Civ Eng 2023. https://doi.org/10.1155/2023/3692090 Talamkhani S (2023) Machine learning-based prediction of unconfined compressive strength of sands treated by microbially-induced calcite precipitation (MICP): a gradient boosting approach and correlation analysis. Adv Civ Eng 2023. https://​doi.​org/​10.​1155/​2023/​3692090
go back to reference Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1(Jun):211–244 Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1(Jun):211–244
go back to reference Zoubir W, Harichane K, Ghrici M (2013) Effect of lime and natural pozzolana on dredged sludge engineering properties. Electron J Geotech Eng 18(c):589–600 Zoubir W, Harichane K, Ghrici M (2013) Effect of lime and natural pozzolana on dredged sludge engineering properties. Electron J Geotech Eng 18(c):589–600
Metadata
Title
Hybrid soft computing models for predicting unconfined compressive strength of lime stabilized soil using strength property of virgin cohesive soil
Authors
Ismehen Taleb Bahmed
Jitendra Khatti
Kamaldeep Singh Grover
Publication date
01-01-2024
Publisher
Springer Berlin Heidelberg
Published in
Bulletin of Engineering Geology and the Environment / Issue 1/2024
Print ISSN: 1435-9529
Electronic ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-023-03537-1