Skip to main content
Top
Published in: Mathematical Models and Computer Simulations 3/2020

01-05-2020

Hybrid Stochastic Fractal-Based Approach to Modeling the Switching Kinetics of Ferroelectrics in the Injection Mode

Authors: L. I. Moroz, A. G. Maslovskaya

Published in: Mathematical Models and Computer Simulations | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper is devoted to the development and implementation of a hybrid stochastic fractal-based approach for modeling electron-induced kinetics of polarization switching in ferroelectrics as the self-similar memory physical systems. The mathematical model of fractal dynamic system includes the initial value problem for the fractional order differential equation. Computational schemes for solving fractional differential problem are constructed using the Adams–Bashforth–Moulton type predictor-corrector methods. The stochastic algorithm based on the Monte Carlo method is proposed to simulate the domain nucleation process during restructuring the domain structure in ferroelectrics. The polarization switching current of ferroelectrics in the electron injection mode is evaluated to demonstrate the computational experiment results with a comparison of the experimental data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. V. Bozhokin and D. A. Parshin, Fractals and Multifractals (RKhD, Izhevsk, 2001) [in Russian]. S. V. Bozhokin and D. A. Parshin, Fractals and Multifractals (RKhD, Izhevsk, 2001) [in Russian].
2.
go back to reference J. W. Kantelhard, Fractal and Multifractal Time Series (Inst. Phys., Martin-Luther-Univ., Halle-Wittenberg, 2010). J. W. Kantelhard, Fractal and Multifractal Time Series (Inst. Phys., Martin-Luther-Univ., Halle-Wittenberg, 2010).
3.
go back to reference A. Arneodo, N. Decoster, and S. G. Roux, “A wavelet-based method for multifractal image analysis. I. Methodology and test applications on isotropic and anisotropic random rough surfaces,” Eur. Phys. J. B 15, 567–600 (2000).CrossRef A. Arneodo, N. Decoster, and S. G. Roux, “A wavelet-based method for multifractal image analysis. I. Methodology and test applications on isotropic and anisotropic random rough surfaces,” Eur. Phys. J. B 15, 567–600 (2000).CrossRef
4.
go back to reference S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Application (Gordon and Breach Science, Switzerland, Philadelphia, PA, 1993).MATH S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Application (Gordon and Breach Science, Switzerland, Philadelphia, PA, 1993).MATH
5.
go back to reference I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Vol. 198 of Fractional Differential Equations (Academic, San Diego, CA, 1999), p. 340. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Vol. 198 of Fractional Differential Equations (Academic, San Diego, CA, 1999), p. 340.
6.
go back to reference I. Petras, Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation (Springer, Berlin, Heidelberg, 2011).CrossRef I. Petras, Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation (Springer, Berlin, Heidelberg, 2011).CrossRef
7.
go back to reference A. N. Bogolyubov, A. A. Koblikov, D. D. Smirnova, and N. E. Shapkina, “Mathematical modelling of media with time dispersion using fractional derivatives,” Mat. Model. 25 (12), 50–64 (2013).MathSciNetMATH A. N. Bogolyubov, A. A. Koblikov, D. D. Smirnova, and N. E. Shapkina, “Mathematical modelling of media with time dispersion using fractional derivatives,” Mat. Model. 25 (12), 50–64 (2013).MathSciNetMATH
8.
go back to reference K. Diethelm, N. J. Ford, A. D. Freed, and Yu. Luchko, “Algorithms for the fractional calculus: a selection of numerical method,” Comput. Methods Appl. Mech. Eng. 194, 743–773 (2005).MathSciNetCrossRef K. Diethelm, N. J. Ford, A. D. Freed, and Yu. Luchko, “Algorithms for the fractional calculus: a selection of numerical method,” Comput. Methods Appl. Mech. Eng. 194, 743–773 (2005).MathSciNetCrossRef
9.
go back to reference R. Garrapa, “Numerical solution of fractional differential equations: a survey and software tutorial,” Mathematics 6 (16), 1–23 (2018). R. Garrapa, “Numerical solution of fractional differential equations: a survey and software tutorial,” Mathematics 6 (16), 1–23 (2018).
10.
go back to reference W. Deng, “Short memory principle and a predictor-corrector approach for fractional differentional equations,” J. Comput. Appl. Math. 206, 174–188 (2007).MathSciNetCrossRef W. Deng, “Short memory principle and a predictor-corrector approach for fractional differentional equations,” J. Comput. Appl. Math. 206, 174–188 (2007).MathSciNetCrossRef
11.
go back to reference S. Bhalekar and V. D. Gejji, “A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order,” J. Fract. Calculus Appl. 1 (5), 1–9 (2011). S. Bhalekar and V. D. Gejji, “A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order,” J. Fract. Calculus Appl. 1 (5), 1–9 (2011).
12.
go back to reference R. Scherera, S. L. Kallab, Y. Tangc, and J. Huang, “The Grünwald-Letnikov method for fractional differential equations,” Comput. Math. Appl. 62, 902–917 (2011).MathSciNetCrossRef R. Scherera, S. L. Kallab, Y. Tangc, and J. Huang, “The Grünwald-Letnikov method for fractional differential equations,” Comput. Math. Appl. 62, 902–917 (2011).MathSciNetCrossRef
13.
go back to reference T. Ozaki, “Ferroelectric domain structure characterized by prefractals of the pentad cantor sets in KH2PO4,” Ferroelectrics 172, 65–77 (1995).CrossRef T. Ozaki, “Ferroelectric domain structure characterized by prefractals of the pentad cantor sets in KH2PO4,” Ferroelectrics 172, 65–77 (1995).CrossRef
14.
go back to reference N. M. Galiyarova, A. B. Bey, E. A. Kuznetzov, and Y. I. Korchmariyuk, “Fractal dimensionalities and microstructural parameters of piezoceramics PZTNB-1,” Ferroelectrics 307, 205–211 (2004).CrossRef N. M. Galiyarova, A. B. Bey, E. A. Kuznetzov, and Y. I. Korchmariyuk, “Fractal dimensionalities and microstructural parameters of piezoceramics PZTNB-1,” Ferroelectrics 307, 205–211 (2004).CrossRef
15.
go back to reference B. Tadic, “Switching current noise and relaxation of ferroelectric domains,” Eur. Phys. J. B 28, 81–89 (2002).CrossRef B. Tadic, “Switching current noise and relaxation of ferroelectric domains,” Eur. Phys. J. B 28, 81–89 (2002).CrossRef
16.
go back to reference M. K. Roy, J. Paul, and S. Dattagupta, “Domain dynamics and fractal growth analysis in thin ferroelectric films,” IEEE Xplore 109, 014108–014108 (2010). M. K. Roy, J. Paul, and S. Dattagupta, “Domain dynamics and fractal growth analysis in thin ferroelectric films,” IEEE Xplore 109, 014108–014108 (2010).
17.
go back to reference J. F. Scott, Fractal Dimensions in Switching Kinetics of Ferroelectrics (Cambridge Univ. Press, Cambridge, 1998). J. F. Scott, Fractal Dimensions in Switching Kinetics of Ferroelectrics (Cambridge Univ. Press, Cambridge, 1998).
18.
go back to reference R. P. Meilanov and S. A. Sadykov, “Fractal model for polarization switching kinetics in ferroelectric crystals,” Tech. Phys. 44, 595–596 (1999).CrossRef R. P. Meilanov and S. A. Sadykov, “Fractal model for polarization switching kinetics in ferroelectric crystals,” Tech. Phys. 44, 595–596 (1999).CrossRef
19.
go back to reference A. G. Maslovskaya and T. K. Barabash, “Dynamic simulation of polarization reversal processes in ferroelectric crystals under electron beam irradiation,” Ferroelectrics 442, 18–26 (2013).CrossRef A. G. Maslovskaya and T. K. Barabash, “Dynamic simulation of polarization reversal processes in ferroelectric crystals under electron beam irradiation,” Ferroelectrics 442, 18–26 (2013).CrossRef
20.
go back to reference A. G. Maslovskaya and I. B. Kopylova, “Analysis of polarization switching in ferroelectric crystals in the injection mode,” J. Exp. Theor. Phys. 109, 90–94 (2009).CrossRef A. G. Maslovskaya and I. B. Kopylova, “Analysis of polarization switching in ferroelectric crystals in the injection mode,” J. Exp. Theor. Phys. 109, 90–94 (2009).CrossRef
21.
go back to reference M. Omura and Y. Ishibashi, “Simulations of polarization reversals by a two-dimensional lattice model,” Jpn. J. Appl. Phys. 31, 3238–3240 (1992).CrossRef M. Omura and Y. Ishibashi, “Simulations of polarization reversals by a two-dimensional lattice model,” Jpn. J. Appl. Phys. 31, 3238–3240 (1992).CrossRef
Metadata
Title
Hybrid Stochastic Fractal-Based Approach to Modeling the Switching Kinetics of Ferroelectrics in the Injection Mode
Authors
L. I. Moroz
A. G. Maslovskaya
Publication date
01-05-2020
Publisher
Pleiades Publishing
Published in
Mathematical Models and Computer Simulations / Issue 3/2020
Print ISSN: 2070-0482
Electronic ISSN: 2070-0490
DOI
https://doi.org/10.1134/S207004822003014X

Other articles of this Issue 3/2020

Mathematical Models and Computer Simulations 3/2020 Go to the issue

Premium Partner