Skip to main content
Top

2023 | OriginalPaper | Chapter

Hybrid Twin: An Intimate Alliance of Knowledge and Data

Authors : Francisco Chinesta, Fouad El Khaldi, Elias Cueto

Published in: The Digital Twin

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Models based on physics were the major protagonists of the Simulation Based Engineering Sciences during the last century. However, engineering is focusing the more and more on performances. Thus, the new engineering must conciliate two usually opposite requirements: fast and accurate. With the irruption of data, and the technologies for efficiently manipulating it, in particular artificial intelligence and machine learning, data serves to enrich physics-based models, and the last allows data becoming smarter. When combined, physics-based and data-driven models, within the concept of Hybrid Twin, real-time predictions are possible while ensuring the highest accuracy. This chapter introduces the Hybrid Twin concept, with the associated technologies, applications and business model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., Alfaro, I., Ammar, A., & Huerta, A. (2013). Parametric PGD based computational vademecum for efficient design, optimization and control. Archives of Computational Methods in Engineering, 20(1), 31–59. 10.1007/s11831-013-9080-x.MathSciNetCrossRefMATH Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., Alfaro, I., Ammar, A., & Huerta, A. (2013). Parametric PGD based computational vademecum for efficient design, optimization and control. Archives of Computational Methods in Engineering, 20(1), 31–59. 10.1007/s11831-013-9080-x.MathSciNetCrossRefMATH
8.
go back to reference Ibanez, R., Abisset-Chavanne, E., Aguado, J. V., Gonzalez, D., Cueto, E., Chinesta, F. (2018). A manifold-based methodological approach to data-driven computational elasticity and inelasticity. Archives of Computational Methods in Engineering, 25(1), 47–57. https://doi.org/10.1007/s11831-016-9197-9 Ibanez, R., Abisset-Chavanne, E., Aguado, J. V., Gonzalez, D., Cueto, E., Chinesta, F. (2018). A manifold-based methodological approach to data-driven computational elasticity and inelasticity. Archives of Computational Methods in Engineering, 25(1), 47–57. https://​doi.​org/​10.​1007/​s11831-016-9197-9
10.
go back to reference Ibanez, R., Abisset-Chavanne, E., Ammar, A., González, D., Cueto, E., Huerta, A., Duval, J. L., Chinesta, F. (2018). A multi-dimensional data-driven sparse identification technique: The sparse Proper Generalized Decomposition. Complexity, Article ID 5608286. https://doi.org/10.1155/2018/5608286 Ibanez, R., Abisset-Chavanne, E., Ammar, A., González, D., Cueto, E., Huerta, A., Duval, J. L., Chinesta, F. (2018). A multi-dimensional data-driven sparse identification technique: The sparse Proper Generalized Decomposition. Complexity, Article ID 5608286. https://​doi.​org/​10.​1155/​2018/​5608286
15.
go back to reference Gonzalez, D., Chinesta, F., Cueto, E. (2019). Learning corrections for hyperelastic models from data. Frontiers in Materials - Section Computational Materials Science, 6(14). Gonzalez, D., Chinesta, F., Cueto, E. (2019). Learning corrections for hyperelastic models from data. Frontiers in Materials - Section Computational Materials Science, 6(14).
16.
go back to reference Ibanez, R., Abisset-Chavanne, E., Gonzalez, D., Duval, J. L., Cueto, E., Chinesta, F. (2019). Hybrid constitutive modeling: Data-driven learning of corrections to plasticity models. International Journal of Material Forming, 12, 717–725. Ibanez, R., Abisset-Chavanne, E., Gonzalez, D., Duval, J. L., Cueto, E., Chinesta, F. (2019). Hybrid constitutive modeling: Data-driven learning of corrections to plasticity models. International Journal of Material Forming, 12, 717–725.
17.
go back to reference Yun, M., Argerich, C., Gilormini, P., Chinesta, F., Advani, S. (2020). Predicting data-driven fiber-fiber interactions in semi-concentrated flowing suspensions. Entropy, 22(30). Yun, M., Argerich, C., Gilormini, P., Chinesta, F., Advani, S. (2020). Predicting data-driven fiber-fiber interactions in semi-concentrated flowing suspensions. Entropy, 22(30).
18.
go back to reference Frahi, T., Chinesta, F., Falco, A., Badias, A., Cueto, E., Choi, H. Y., Han, M., & Duval, J.-L. (2021). Empowering advanced driver-assistance systems from topological data analysis. Mathematics, 9(6), 634.CrossRef Frahi, T., Chinesta, F., Falco, A., Badias, A., Cueto, E., Choi, H. Y., Han, M., & Duval, J.-L. (2021). Empowering advanced driver-assistance systems from topological data analysis. Mathematics, 9(6), 634.CrossRef
19.
go back to reference Moya, B., Badías, A., Alfaro, I., Chinesta, F., & Cueto, E. (2020). Digital twins that learn and correct themselves. International Journal for Numerical Methods in Engineering. Accepted for publication. Moya, B., Badías, A., Alfaro, I., Chinesta, F., & Cueto, E. (2020). Digital twins that learn and correct themselves. International Journal for Numerical Methods in Engineering. Accepted for publication.
20.
go back to reference Ibañez, R., Abisset-Chavanne, E., Ammar, A., González, D., Cueto, E., Huerta, A., Duval, J. L., & Chinesta, F. (2018). A multi-dimensional data-driven sparse identification technique: the sparse Proper Generalized Decomposition. Complexity. Paper 5608286. Ibañez, R., Abisset-Chavanne, E., Ammar, A., González, D., Cueto, E., Huerta, A., Duval, J. L., & Chinesta, F. (2018). A multi-dimensional data-driven sparse identification technique: the sparse Proper Generalized Decomposition. Complexity. Paper 5608286.
21.
go back to reference Sancarlos, A., Cameron, M., Le Peuvedic, J.-M., Groulier, J., Duval, J.-L., Cueto, E., & Chinesta, F. (2021). Learning stable reduced-order models for hybrid twins. Data-Centric Engineering. Data-Centric Engineering, 2:e10, 2021. Sancarlos, A., Cameron, M., Le Peuvedic, J.-M., Groulier, J., Duval, J.-L., Cueto, E., & Chinesta, F. (2021). Learning stable reduced-order models for hybrid twins. Data-Centric Engineering. Data-Centric Engineering, 2:e10, 2021.
22.
go back to reference Sancarlos, A., Cameron, M., Abel, A., Cueto, E., Duval, J.-L., & Chinesta, F. (2021). From ROM of electrochemistry to AI-based battery digital and hybrid twin. Archives of Computational Methods in Engineering, 28, 979–1015.MathSciNetCrossRef Sancarlos, A., Cameron, M., Abel, A., Cueto, E., Duval, J.-L., & Chinesta, F. (2021). From ROM of electrochemistry to AI-based battery digital and hybrid twin. Archives of Computational Methods in Engineering, 28, 979–1015.MathSciNetCrossRef
Metadata
Title
Hybrid Twin: An Intimate Alliance of Knowledge and Data
Authors
Francisco Chinesta
Fouad El Khaldi
Elias Cueto
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-21343-4_11

Premium Partner