Skip to main content
Top
Published in: Wireless Personal Communications 3/2020

29-01-2020

Hybrid Wireless Sensors Deployment Scheme with Connectivity and Coverage Maintaining in Wireless Sensor Networks

Authors: Arouna Ndam Njoya, Ado Adamou Abba Ari, Marah Nana Awa, Chafiq Titouna, Nabila Labraoui, Joseph Yves Effa, Wahabou Abdou, Abdelhak Gueroui

Published in: Wireless Personal Communications | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the rapid growth of the internet of things (IoT), an impressive number of IoT’s application based on wireless sensor networks (WSNs) has been deployed in various domain. Due to its wide ranged applications, WSNs that have the capability to monitor a given sensing field, became the most used platform of IoT. Therefore, coverage becomes one of the most important challenge of WSNs. The search for better positions to assign to the sensors in order to control each point of an area of interest and the collection of data from sensors are major concerns in WSNs. This work addresses these problems by providing a hybrid approach that ensures sensors deployment on a grid for targets coverage while taking into account connectivity. The proposed sequential hybrid approach is based on three algorithms. The first places the sensors so as to all targets are covered. The second removes redundancies from the placement algorithm to reduce the number of sensors deployed. The third one, based on the genetic algorithm, aims to generate a connected graph which provide a minimal path that links deployed sensors and sink. Simulations and a comparative study were carried out to prove the relevance of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Thakur, D., Kumar, Y., Kumar, A., & Singh, P. K. (2019). Applicability of wireless sensor networks in precision agriculture: A review. Wireless Personal Communications, 107, 1–42. Thakur, D., Kumar, Y., Kumar, A., & Singh, P. K. (2019). Applicability of wireless sensor networks in precision agriculture: A review. Wireless Personal Communications, 107, 1–42.
2.
go back to reference Ari, A. A. A., Yenke, B. O., Labraoui, N., Damakoa, I., & Gueroui, A. (2016). A power efficient cluster-based routing algorithm for wireless sensor networks: Honeybees swarm intelligence based approach. Journal of Network and Computer Applications, 69, 77–97. Ari, A. A. A., Yenke, B. O., Labraoui, N., Damakoa, I., & Gueroui, A. (2016). A power efficient cluster-based routing algorithm for wireless sensor networks: Honeybees swarm intelligence based approach. Journal of Network and Computer Applications, 69, 77–97.
3.
go back to reference Gherbi, C., Aliouat, Z., & Benmohammed, M. (2016). An adaptive clustering approach to dynamic load balancing and energy efficiency in wireless sensor networks. Energy, 114, 647–662. Gherbi, C., Aliouat, Z., & Benmohammed, M. (2016). An adaptive clustering approach to dynamic load balancing and energy efficiency in wireless sensor networks. Energy, 114, 647–662.
4.
go back to reference Titouna, C., Ari, A. A. A., & Moumen, H. (2018). FDRA: Fault detection and recovery algorithm for wireless sensor networks. In International conference on mobile web and intelligent information systems (pp. 72–85). Springer. Titouna, C., Ari, A. A. A., & Moumen, H. (2018). FDRA: Fault detection and recovery algorithm for wireless sensor networks. In International conference on mobile web and intelligent information systems (pp. 72–85). Springer.
5.
go back to reference Myoupo, J. F., Nana, B. P., & Tchendji, V. K. (2018). Fault-tolerant and energy-efficient routing protocols for a virtual three-dimensional wireless sensor network. Computers and Electrical Engineering, 72, 949–964. Myoupo, J. F., Nana, B. P., & Tchendji, V. K. (2018). Fault-tolerant and energy-efficient routing protocols for a virtual three-dimensional wireless sensor network. Computers and Electrical Engineering, 72, 949–964.
6.
go back to reference Wang, B., Deng, X., Liu, W., Yang, L. T., & Chao, H.-C. (2013). Confident information coverage in sensor networks for field reconstruction. IEEE Wireless Communications, 20(6), 74–81. Wang, B., Deng, X., Liu, W., Yang, L. T., & Chao, H.-C. (2013). Confident information coverage in sensor networks for field reconstruction. IEEE Wireless Communications, 20(6), 74–81.
7.
go back to reference Mini, S., Udgata, S. K., & Sabat, S. L. (2014). Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sensors Journal, 14(3), 636–644. Mini, S., Udgata, S. K., & Sabat, S. L. (2014). Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sensors Journal, 14(3), 636–644.
8.
go back to reference Yoon, Y., & Kim, Y.-H. (2013). An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks. IEEE Transactions on Cybernetics, 43(5), 1473–1483. Yoon, Y., & Kim, Y.-H. (2013). An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks. IEEE Transactions on Cybernetics, 43(5), 1473–1483.
9.
go back to reference Titouna, C., Moumen, H., & Ari, A. A. A. (2019). Cluster head recovery algorithm for wireless sensor networks. In 2019 6th international conference on control, decision and information technologies (CoDIT) (pp. 1905–1910). IEEE. Titouna, C., Moumen, H., & Ari, A. A. A. (2019). Cluster head recovery algorithm for wireless sensor networks. In 2019 6th international conference on control, decision and information technologies (CoDIT) (pp. 1905–1910). IEEE.
10.
go back to reference Liu, X. (2015). A deployment strategy for multiple types of requirements in wireless sensor networks. IEEE Transactions on Cybernetics, 45(10), 2364–2376. Liu, X. (2015). A deployment strategy for multiple types of requirements in wireless sensor networks. IEEE Transactions on Cybernetics, 45(10), 2364–2376.
11.
go back to reference Njoya, A. N., Thron, C., Barry, J., Abdou, W., Tonye, E., Konje, N. S. L., et al. (2017). Efficient scalable sensor node placement algorithm for fixed target coverage applications of wireless sensor networks. IET Wireless Sensor Systems, 7(2), 44–54. Njoya, A. N., Thron, C., Barry, J., Abdou, W., Tonye, E., Konje, N. S. L., et al. (2017). Efficient scalable sensor node placement algorithm for fixed target coverage applications of wireless sensor networks. IET Wireless Sensor Systems, 7(2), 44–54.
12.
go back to reference Kabakulak, B. (2019). Sensor and sink placement, scheduling and routing algorithms for connected coverage of wireless sensor networks. Ad Hoc Networks, 86, 83–102. Kabakulak, B. (2019). Sensor and sink placement, scheduling and routing algorithms for connected coverage of wireless sensor networks. Ad Hoc Networks, 86, 83–102.
13.
go back to reference Wang, B. (2011). Coverage problems in sensor networks: A survey. ACM Computing Surveys (CSUR), 43(4), 32. Wang, B. (2011). Coverage problems in sensor networks: A survey. ACM Computing Surveys (CSUR), 43(4), 32.
14.
go back to reference Diop, B., Diongue, D., & Thiare, O. (2014). Target coverage management in wireless sensor networks. In 2014 IEEE conference on wireless sensors (ICWiSE) (pp. 25–30). IEEE. Diop, B., Diongue, D., & Thiare, O. (2014). Target coverage management in wireless sensor networks. In 2014 IEEE conference on wireless sensors (ICWiSE) (pp. 25–30). IEEE.
15.
go back to reference Diop, B., Diongue, D., & Thiare, O. (2014). A weight-based greedy algorithm for target coverage problem in wireless sensor networks. In 2014 international conference on computer, communications, and control technology (I4CT) (pp. 120–125). IEEE. Diop, B., Diongue, D., & Thiare, O. (2014). A weight-based greedy algorithm for target coverage problem in wireless sensor networks. In 2014 international conference on computer, communications, and control technology (I4CT) (pp. 120–125). IEEE.
16.
go back to reference Deif, D. S., & Gadallah, Y. (2014). Classification of wireless sensor networks deployment techniques. IEEE Communications Surveys and Tutorials, 16(2), 834–855. Deif, D. S., & Gadallah, Y. (2014). Classification of wireless sensor networks deployment techniques. IEEE Communications Surveys and Tutorials, 16(2), 834–855.
17.
go back to reference Eledlebi, K., Ruta, D., Saffre, F., Al-Hammadi, Y., & Isakovic, A. F. (2018). A model for self-deployment of autonomous mobile sensor network in an unknown indoor environment. In Ad Hoc Networks (pp. 208–215). Cham: Springer. Eledlebi, K., Ruta, D., Saffre, F., Al-Hammadi, Y., & Isakovic, A. F. (2018). A model for self-deployment of autonomous mobile sensor network in an unknown indoor environment. In Ad Hoc Networks (pp. 208–215). Cham: Springer.
18.
go back to reference Barry, J., & Thron, C. (2019). A computational physics-based algorithm for target coverage problems. In Advances in nature-inspired computing and applications (pp. 269–290). Springer. Barry, J., & Thron, C. (2019). A computational physics-based algorithm for target coverage problems. In Advances in nature-inspired computing and applications (pp. 269–290). Springer.
19.
go back to reference Fan, F., Ji, Q., Wu, G., Wang, M., Ye, X., & Mei, Q. (2019). Dynamic barrier coverage in a wireless sensor network for smart grids. Sensors, 19(1), 41. Fan, F., Ji, Q., Wu, G., Wang, M., Ye, X., & Mei, Q. (2019). Dynamic barrier coverage in a wireless sensor network for smart grids. Sensors, 19(1), 41.
20.
go back to reference Chen, Y., Xu, X., & Wang, Y. (2019). Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete and Continuous Dynamical Systems-S, 12(4&5), 887–900.MathSciNetMATH Chen, Y., Xu, X., & Wang, Y. (2019). Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete and Continuous Dynamical Systems-S, 12(4&5), 887–900.MathSciNetMATH
21.
go back to reference Senouci, M. R., & Lehtihet, H. (2018). Sampling-based selection-decimation deployment approach for large-scale wireless sensor networks. Ad Hoc Networks, 75, 135–146. Senouci, M. R., & Lehtihet, H. (2018). Sampling-based selection-decimation deployment approach for large-scale wireless sensor networks. Ad Hoc Networks, 75, 135–146.
22.
go back to reference Choudhuri, R., & Das, R. K. (2019). Efficient area coverage in wireless sensor networks using optimal scheduling. Wireless Personal Communications, 107, 1–12. Choudhuri, R., & Das, R. K. (2019). Efficient area coverage in wireless sensor networks using optimal scheduling. Wireless Personal Communications, 107, 1–12.
23.
go back to reference Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. Journal of Communications and Networks, 21(1), 45–60. Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. Journal of Communications and Networks, 21(1), 45–60.
24.
go back to reference Wang, B. (2010). Coverage control in sensor networks. New York: Springer.MATH Wang, B. (2010). Coverage control in sensor networks. New York: Springer.MATH
25.
go back to reference Guo, J., & Jafarkhani, H. (2018). Movement-efficient sensor deployment in wireless sensor networks. In 2018 IEEE international conference on communications (ICC) (pp. 1–6). IEEE. Guo, J., & Jafarkhani, H. (2018). Movement-efficient sensor deployment in wireless sensor networks. In 2018 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.
26.
go back to reference Ke, W.-C., Liu, B.-H., & Tsai, M.-J. (2007). Constructing a wireless sensor network to fully cover critical grids by deploying minimum sensors on grid points is NP-complete. IEEE Transactions on Computers, 56(5), 710–715.MathSciNetMATH Ke, W.-C., Liu, B.-H., & Tsai, M.-J. (2007). Constructing a wireless sensor network to fully cover critical grids by deploying minimum sensors on grid points is NP-complete. IEEE Transactions on Computers, 56(5), 710–715.MathSciNetMATH
27.
go back to reference Ke, W.-C., Liu, B.-H., & Tsai, M.-J. (2011). The critical-square-grid coverage problem in wireless sensor networks is NP-complete. Computer Networks, 55(9), 2209–2220. Ke, W.-C., Liu, B.-H., & Tsai, M.-J. (2011). The critical-square-grid coverage problem in wireless sensor networks is NP-complete. Computer Networks, 55(9), 2209–2220.
28.
go back to reference Chakrabarty, K., Iyengar, S. S., Qi, H., & Cho, E. (2002). Grid coverage for surveillance and target location in distributed sensor networks. IEEE Transactions on Computers, 51(12), 1448–1453.MathSciNetMATH Chakrabarty, K., Iyengar, S. S., Qi, H., & Cho, E. (2002). Grid coverage for surveillance and target location in distributed sensor networks. IEEE Transactions on Computers, 51(12), 1448–1453.MathSciNetMATH
29.
go back to reference Wang, B. (2008). Sensor placement for complete information coverage in distributed sensor networks. Journal of Circuits, Systems, and Computers, 17(04), 627–636. Wang, B. (2008). Sensor placement for complete information coverage in distributed sensor networks. Journal of Circuits, Systems, and Computers, 17(04), 627–636.
30.
go back to reference Wang, J., & Zhong, N. (2006). Efficient point coverage in wireless sensor networks. Journal of Combinatorial Optimization, 11(3), 291–304.MathSciNetMATH Wang, J., & Zhong, N. (2006). Efficient point coverage in wireless sensor networks. Journal of Combinatorial Optimization, 11(3), 291–304.MathSciNetMATH
31.
go back to reference Xu, X., & Sahni, S. (2007). Approximation algorithms for sensor deployment. IEEE Transactions on Computers, 56(12), 1681–1695.MathSciNetMATH Xu, X., & Sahni, S. (2007). Approximation algorithms for sensor deployment. IEEE Transactions on Computers, 56(12), 1681–1695.MathSciNetMATH
32.
go back to reference Altınel, İ. K., Aras, N., Güney, E., & Ersoy, C. (2008). Binary integer programming formulation and heuristics for differentiated coverage in heterogeneous sensor networks. Computer Networks, 52(12), 2419–2431.MATH Altınel, İ. K., Aras, N., Güney, E., & Ersoy, C. (2008). Binary integer programming formulation and heuristics for differentiated coverage in heterogeneous sensor networks. Computer Networks, 52(12), 2419–2431.MATH
33.
go back to reference Dhillon, S. S., Chakrabarty, K., & Iyengar, S. S. (2002). Sensor placement for grid coverage under imprecise detections. In Proceedings of the fifth international conference on information fusion, 2002 (Vol. 2, pp. 1581–1587). IEEE. Dhillon, S. S., Chakrabarty, K., & Iyengar, S. S. (2002). Sensor placement for grid coverage under imprecise detections. In Proceedings of the fifth international conference on information fusion, 2002 (Vol. 2, pp. 1581–1587). IEEE.
34.
go back to reference Etancelin, J.-M., Fabbri, A., Guinand, F., & Rosalie, M. (2019). Dacyclem: A decentralized algorithm for maximizing coverage and lifetime in a mobile wireless sensor network. Ad Hoc Networks, 87, 174–187. Etancelin, J.-M., Fabbri, A., Guinand, F., & Rosalie, M. (2019). Dacyclem: A decentralized algorithm for maximizing coverage and lifetime in a mobile wireless sensor network. Ad Hoc Networks, 87, 174–187.
35.
go back to reference Mishra, R., Tripathi, R. K., & Sharma, A. K. (2019). Design of probability density function targeting efficient coverage in wireless sensor networks. Wireless Personal Communications, 105(1), 61–85. Mishra, R., Tripathi, R. K., & Sharma, A. K. (2019). Design of probability density function targeting efficient coverage in wireless sensor networks. Wireless Personal Communications, 105(1), 61–85.
36.
go back to reference Wu, Q., Rao, N. S., Du, X., Iyengar, S. S., & Vaishnavi, V. K. (2007). On efficient deployment of sensors on planar grid. Computer Communications, 30(14–15), 2721–2734. Wu, Q., Rao, N. S., Du, X., Iyengar, S. S., & Vaishnavi, V. K. (2007). On efficient deployment of sensors on planar grid. Computer Communications, 30(14–15), 2721–2734.
37.
go back to reference Seo, J.-H., Kim, Y.-H., Ryou, H.-B., Cha, S.-H., & Jo, M. (2008). Optimal sensor deployment for wireless surveillance sensor networks by a hybrid steady-state genetic algorithm. IEICE Transactions on Communications, 91(11), 3534–3543. Seo, J.-H., Kim, Y.-H., Ryou, H.-B., Cha, S.-H., & Jo, M. (2008). Optimal sensor deployment for wireless surveillance sensor networks by a hybrid steady-state genetic algorithm. IEICE Transactions on Communications, 91(11), 3534–3543.
38.
go back to reference Jia, J., Chen, J., Chang, G., & Tan, Z. (2009). Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm. Computers and Mathematics with Applications, 57(11–12), 1756–1766.MathSciNetMATH Jia, J., Chen, J., Chang, G., & Tan, Z. (2009). Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm. Computers and Mathematics with Applications, 57(11–12), 1756–1766.MathSciNetMATH
39.
go back to reference Li, D., Liu, W., & Cui, L. (2010). Easidesign: An improved ant colony algorithm for sensor deployment in real sensor network system. In 2010 IEEE global telecommunications conference (GLOBECOM 2010) (pp. 1–5). IEEE. Li, D., Liu, W., & Cui, L. (2010). Easidesign: An improved ant colony algorithm for sensor deployment in real sensor network system. In 2010 IEEE global telecommunications conference (GLOBECOM 2010) (pp. 1–5). IEEE.
40.
go back to reference Kalayci, T. E., & Uğur, A. (2011). Genetic algorithm-based sensor deployment with area priority. Cybernetics and Systems, 42(8), 605–620. Kalayci, T. E., & Uğur, A. (2011). Genetic algorithm-based sensor deployment with area priority. Cybernetics and Systems, 42(8), 605–620.
41.
go back to reference Banimelhem, O., Mowafi, M., & Aljoby, W. (2013). Genetic algorithm based node deployment in hybrid wireless sensor networks. Communications and Network, 5(04), 273. Banimelhem, O., Mowafi, M., & Aljoby, W. (2013). Genetic algorithm based node deployment in hybrid wireless sensor networks. Communications and Network, 5(04), 273.
42.
go back to reference Njoya, A. N., Abdou, W., Dipanda, A., & Tonye, E. (2015). Evolutionary-based wireless sensor deployment for target coverage In 2015 11th international conference on signal-image technology & internet-based systems (SITIS) (pp. 739–745). IEEE. Njoya, A. N., Abdou, W., Dipanda, A., & Tonye, E. (2015). Evolutionary-based wireless sensor deployment for target coverage In 2015 11th international conference on signal-image technology & internet-based systems (SITIS) (pp. 739–745). IEEE.
43.
go back to reference Njoya, A. N., Abdou, W., Dipanda, A., & Tonye, E. (2016). Optimization of sensor deployment using multi-objective evolutionary algorithms. Journal of Reliable Intelligent Environments, 2(4), 209–220. Njoya, A. N., Abdou, W., Dipanda, A., & Tonye, E. (2016). Optimization of sensor deployment using multi-objective evolutionary algorithms. Journal of Reliable Intelligent Environments, 2(4), 209–220.
44.
go back to reference Ari, A. A. A., Labraoui, N., Yenké, B. O., & Gueroui, A. (2018). Clustering algorithm for wireless sensor networks: The honeybee swarms nest-sites selection process based approach. International Journal of Sensor Networks, 27(1), 1–13. Ari, A. A. A., Labraoui, N., Yenké, B. O., & Gueroui, A. (2018). Clustering algorithm for wireless sensor networks: The honeybee swarms nest-sites selection process based approach. International Journal of Sensor Networks, 27(1), 1–13.
45.
go back to reference Hamidouche, R., Aliouat, Z., Gueroui, A. M., Ari, A. A. A., & Louail, L. (2018). Classical and bio-inspired mobility in sensor networks for iot applications. Journal of Network and Computer Applications, 121, 70–88. Hamidouche, R., Aliouat, Z., Gueroui, A. M., Ari, A. A. A., & Louail, L. (2018). Classical and bio-inspired mobility in sensor networks for iot applications. Journal of Network and Computer Applications, 121, 70–88.
46.
go back to reference Ari, A. A. A., Damakoa, I., Gueroui, A., Titouna, C., Labraoui, N., Kaladzavi, G., et al. (2017). Bacterial foraging optimization scheme for mobile sensing in wireless sensor networks. International Journal of Wireless Information Networks, 24(3), 254–267. Ari, A. A. A., Damakoa, I., Gueroui, A., Titouna, C., Labraoui, N., Kaladzavi, G., et al. (2017). Bacterial foraging optimization scheme for mobile sensing in wireless sensor networks. International Journal of Wireless Information Networks, 24(3), 254–267.
47.
go back to reference Hamidouche, R., Khentout, M., Aliouat, Z., Gueroui, A. M., & Abba Ari, A. A. (2018). Sink mobility based on bacterial foraging optimization algorithm. In Proceedings of the computational intelligence and its applications: 6th IFIP TC 5 international conference, CIIA 2018, Oran, Algeria, May 8–10, 2018 (Vol. 6, pp. 352–363). Springer. Hamidouche, R., Khentout, M., Aliouat, Z., Gueroui, A. M., & Abba Ari, A. A. (2018). Sink mobility based on bacterial foraging optimization algorithm. In Proceedings of the computational intelligence and its applications: 6th IFIP TC 5 international conference, CIIA 2018, Oran, Algeria, May 8–10, 2018 (Vol. 6, pp. 352–363). Springer.
48.
go back to reference Yue, Y., Cao, L., & Luo, Z. (2019). Hybrid artificial bee colony algorithm for improving the coverage and connectivity of wireless sensor networks. Wireless Personal Communications, 108, 1–14. Yue, Y., Cao, L., & Luo, Z. (2019). Hybrid artificial bee colony algorithm for improving the coverage and connectivity of wireless sensor networks. Wireless Personal Communications, 108, 1–14.
49.
go back to reference Sun, G., Liu, Y., Li, H., Wang, A., Liang, S., & Zhang, Y. (2018). A novel connectivity and coverage algorithm based on shortest path for wireless sensor networks. Computers and Electrical Engineering, 71, 1025–1039. Sun, G., Liu, Y., Li, H., Wang, A., Liang, S., & Zhang, Y. (2018). A novel connectivity and coverage algorithm based on shortest path for wireless sensor networks. Computers and Electrical Engineering, 71, 1025–1039.
50.
go back to reference Chand, S., Kumar, B., et al. (2018). Genetic algorithm-based meta-heuristic for target coverage problem. IET Wireless Sensor Systems, 8(4), 170–175. Chand, S., Kumar, B., et al. (2018). Genetic algorithm-based meta-heuristic for target coverage problem. IET Wireless Sensor Systems, 8(4), 170–175.
51.
go back to reference Elhabyan, R., Shi, W., & St-Hilaire, M. (2018). A full area coverage guaranteed, energy efficient network configuration strategy for 3D wireless sensor networks. In 2018 IEEE Canadian conference on electrical & computer engineering (CCECE) (pp. 1–6). IEEE. Elhabyan, R., Shi, W., & St-Hilaire, M. (2018). A full area coverage guaranteed, energy efficient network configuration strategy for 3D wireless sensor networks. In 2018 IEEE Canadian conference on electrical & computer engineering (CCECE) (pp. 1–6). IEEE.
52.
go back to reference Bai, X., Yun, Z., Xuan, D., Lai, T. H., & Jia, W. (2010). Optimal patterns for four-connectivity and full coverage in wireless sensor networks. IEEE Transactions on Mobile Computing, 9(3), 435. Bai, X., Yun, Z., Xuan, D., Lai, T. H., & Jia, W. (2010). Optimal patterns for four-connectivity and full coverage in wireless sensor networks. IEEE Transactions on Mobile Computing, 9(3), 435.
53.
go back to reference Yun, Z., Bai, X., Xuan, D., Lai, T. H., & Jia, W. (2010). Optimal deployment patterns for full coverage and k-connectivity (k 6) wireless sensor networks. IEEE/ACM Transactions on Networking (TON), 18(3), 934–947. Yun, Z., Bai, X., Xuan, D., Lai, T. H., & Jia, W. (2010). Optimal deployment patterns for full coverage and k-connectivity (k 6) wireless sensor networks. IEEE/ACM Transactions on Networking (TON), 18(3), 934–947.
54.
go back to reference Djedouboum, A. C., Ari, A. A. A., Gueroui, A. M., Mohamadou, A., & Aliouat, Z. (2017). Big data collection in large-scale wireless sensor networks. Sensors, 18(11), 34. Djedouboum, A. C., Ari, A. A. A., Gueroui, A. M., Mohamadou, A., & Aliouat, Z. (2017). Big data collection in large-scale wireless sensor networks. Sensors, 18(11), 34.
55.
go back to reference Zhao, W., Su, S., & Shao, F. (2018). Improved DV-Hop algorithm using locally weighted linear regression in anisotropic wireless sensor networks. Wireless Personal Communications, 98(4), 3335–3353. Zhao, W., Su, S., & Shao, F. (2018). Improved DV-Hop algorithm using locally weighted linear regression in anisotropic wireless sensor networks. Wireless Personal Communications, 98(4), 3335–3353.
56.
go back to reference Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., & Gill, C. (2003). Integrated coverage and connectivity configuration in wireless sensor networks. In Proceedings of the 1st international conference on Embedded networked sensor systems (pp. 28–39). ACM. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., & Gill, C. (2003). Integrated coverage and connectivity configuration in wireless sensor networks. In Proceedings of the 1st international conference on Embedded networked sensor systems (pp. 28–39). ACM.
57.
go back to reference Bai, X., Yun, Z., Xuan, D., Lai, T.-H., & Jia, W. J. (2008). Complete optimal deployment patterns for full-coverage and k-connectivity (\(k\le 6\)). In 9th ACM international symposium on mobile ad hoc networking and computing (ACM MobiHoc 2008)/international symposium on mobile ad hoc networking & computing (pp. 401–410). Bai, X., Yun, Z., Xuan, D., Lai, T.-H., & Jia, W. J. (2008). Complete optimal deployment patterns for full-coverage and k-connectivity (\(k\le 6\)). In 9th ACM international symposium on mobile ad hoc networking and computing (ACM MobiHoc 2008)/international symposium on mobile ad hoc networking & computing (pp. 401–410).
58.
go back to reference Bai, X., Kumar, S., Xuan, D., Yun, Z., & Lai, T. H. (2006). Deploying wireless sensors to achieve both coverage and connectivity. In Proceedings of the 7th ACM international symposium on mobile ad hoc networking and computing (pp. 131–142). ACM. Bai, X., Kumar, S., Xuan, D., Yun, Z., & Lai, T. H. (2006). Deploying wireless sensors to achieve both coverage and connectivity. In Proceedings of the 7th ACM international symposium on mobile ad hoc networking and computing (pp. 131–142). ACM.
59.
go back to reference Bai, X., Yun, Z., Xuan, D., Lai, T.-H., & Jia, W. (2008). Deploying four-connectivity and full-coverage wireless sensor networks. In INFOCOM 2008. The 27th conference on computer communications. IEEE (pp. 296–300). IEEE. Bai, X., Yun, Z., Xuan, D., Lai, T.-H., & Jia, W. (2008). Deploying four-connectivity and full-coverage wireless sensor networks. In INFOCOM 2008. The 27th conference on computer communications. IEEE (pp. 296–300). IEEE.
60.
go back to reference Ammari, H. M., & Das, S. K. (2008). Integrated coverage and connectivity in wireless sensor networks: A two-dimensional percolation problem. IEEE Transactions on Computers, 57(10), 1423–1434.MathSciNetMATH Ammari, H. M., & Das, S. K. (2008). Integrated coverage and connectivity in wireless sensor networks: A two-dimensional percolation problem. IEEE Transactions on Computers, 57(10), 1423–1434.MathSciNetMATH
61.
go back to reference Kershner, R. (1939). The number of circles covering a set. American Journal of Mathematics, 61(3), 665–671.MathSciNetMATH Kershner, R. (1939). The number of circles covering a set. American Journal of Mathematics, 61(3), 665–671.MathSciNetMATH
62.
go back to reference Iyengar, R., Kar, K., & Banerjee, S. (2005). Low-coordination topologies for redundancy in sensor networks. In Proceedings of the 6th ACM international symposium on mobile ad hoc networking and computing (pp. 332–342). ACM. Iyengar, R., Kar, K., & Banerjee, S. (2005). Low-coordination topologies for redundancy in sensor networks. In Proceedings of the 6th ACM international symposium on mobile ad hoc networking and computing (pp. 332–342). ACM.
63.
go back to reference Arora, A., Ramnath, R., Ertin, E., Sinha, P., Bapat, S., Naik, V., et al. (2005). Exscal: Elements of an extreme scale wireless sensor network. In Proceedings of the 11th IEEE international conference on embedded and real-time computing systems and applications, 2005 (pp. 102–108). IEEE. Arora, A., Ramnath, R., Ertin, E., Sinha, P., Bapat, S., Naik, V., et al. (2005). Exscal: Elements of an extreme scale wireless sensor network. In Proceedings of the 11th IEEE international conference on embedded and real-time computing systems and applications, 2005 (pp. 102–108). IEEE.
64.
go back to reference Wang, Y.-C., Hu, C.-C., & Tseng, Y.-C. (2005). Efficient deployment algorithms for ensuring coverage and connectivity of wireless sensor networks. In Proceedings of the first international conference on wireless internet, 2005 (pp. 114–121). IEEE. Wang, Y.-C., Hu, C.-C., & Tseng, Y.-C. (2005). Efficient deployment algorithms for ensuring coverage and connectivity of wireless sensor networks. In Proceedings of the first international conference on wireless internet, 2005 (pp. 114–121). IEEE.
65.
go back to reference Bredin, J. L., Demaine, E. D., Hajiaghayi, M., & Rus, D. (2005). Deploying sensor networks with guaranteed capacity and fault tolerance. In Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing (pp. 309–319). ACM. Bredin, J. L., Demaine, E. D., Hajiaghayi, M., & Rus, D. (2005). Deploying sensor networks with guaranteed capacity and fault tolerance. In Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing (pp. 309–319). ACM.
66.
go back to reference Rebai, M., Snoussi, H., Hnaien, F., Khoukhi, L., et al. (2015). Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks. Computers and Operations Research, 59, 11–21.MathSciNetMATH Rebai, M., Snoussi, H., Hnaien, F., Khoukhi, L., et al. (2015). Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks. Computers and Operations Research, 59, 11–21.MathSciNetMATH
67.
go back to reference Xu, H., Zhu, J., & Wang, B. (2015). On the deployment of a connected sensor network for confident information coverage. Sensors, 15(5), 11277–11294. Xu, H., Zhu, J., & Wang, B. (2015). On the deployment of a connected sensor network for confident information coverage. Sensors, 15(5), 11277–11294.
68.
go back to reference Gupta, S. K., Kuila, P., & Jana, P. K. (2016). Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks. Computers and Electrical Engineering, 56, 544–556. Gupta, S. K., Kuila, P., & Jana, P. K. (2016). Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks. Computers and Electrical Engineering, 56, 544–556.
69.
go back to reference Zhang, H., & Hou, J. C. (2005). Maintaining sensing coverage and connectivity in large sensor networks. Ad Hoc and Sensor Wireless Networks, 1(1–2), 89–124. Zhang, H., & Hou, J. C. (2005). Maintaining sensing coverage and connectivity in large sensor networks. Ad Hoc and Sensor Wireless Networks, 1(1–2), 89–124.
70.
go back to reference Tian, D., & Georganas, N. D. (2005). Connectivity maintenance and coverage preservation in wireless sensor networks. Ad Hoc Networks, 3(6), 744–761. Tian, D., & Georganas, N. D. (2005). Connectivity maintenance and coverage preservation in wireless sensor networks. Ad Hoc Networks, 3(6), 744–761.
71.
go back to reference Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.
72.
go back to reference Akyildiz, I. F., & Vuran, M. C. (2010). Wireless sensor networks (Vol. 4). New York: Wiley.MATH Akyildiz, I. F., & Vuran, M. C. (2010). Wireless sensor networks (Vol. 4). New York: Wiley.MATH
73.
go back to reference Bounceur, A. (2007). Plateforme cao pour filetest de circuits mixtes, Ph.D. thesis. Institut National Polytechnique de Grenoble (INPG), Laboratoire TIMA. Bounceur, A. (2007). Plateforme cao pour filetest de circuits mixtes, Ph.D. thesis. Institut National Polytechnique de Grenoble (INPG), Laboratoire TIMA.
74.
go back to reference Kirk, J. (2014). Traveling salesman problem: Genetic algorithm, MATLAB Central File Exchange. Retrieved November 11, 2018. Kirk, J. (2014). Traveling salesman problem: Genetic algorithm, MATLAB Central File Exchange. Retrieved November 11, 2018.
76.
go back to reference Ari, A. A. A., Gueroui, A., Titouna, C., Thiare, O., & Aliouat, Z. (2019). Resource allocation scheme for 5G C-RAN: A swarm intelligence based approach. Computer Networks, 165, 106957. Ari, A. A. A., Gueroui, A., Titouna, C., Thiare, O., & Aliouat, Z. (2019). Resource allocation scheme for 5G C-RAN: A swarm intelligence based approach. Computer Networks, 165, 106957.
Metadata
Title
Hybrid Wireless Sensors Deployment Scheme with Connectivity and Coverage Maintaining in Wireless Sensor Networks
Authors
Arouna Ndam Njoya
Ado Adamou Abba Ari
Marah Nana Awa
Chafiq Titouna
Nabila Labraoui
Joseph Yves Effa
Wahabou Abdou
Abdelhak Gueroui
Publication date
29-01-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07132-5

Other articles of this Issue 3/2020

Wireless Personal Communications 3/2020 Go to the issue