Skip to main content
Top
Published in: Journal of Scientific Computing 3/2018

05-09-2018

Hybridized Discontinuous Galerkin Methods for Wave Propagation

Authors: P. Fernandez, A. Christophe, S. Terrana, N. C. Nguyen, J. Peraire

Published in: Journal of Scientific Computing | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present the recent development of hybridizable and embedded discontinuous Galerkin (DG) methods for wave propagation problems in fluids, solids, and electromagnetism. In each of these areas, we describe the methods, discuss their main features, display numerical results to illustrate their performance, and conclude with bibliography notes. The main ingredients in devising these DG methods are (1) a local Galerkin projection of the underlying partial differential equations at the element level onto spaces of polynomials of degree k to parametrize the numerical solution in terms of the numerical trace; (2) a judicious choice of the numerical flux to provide stability and consistency; and (3) a global jump condition that enforces the continuity of the numerical flux to obtain a global system in terms of the numerical trace. These DG methods are termed hybridized DG methods, because they are amenable to hybridization (static condensation) and hence to more efficient implementations. They share many common advantages of DG methods and possess some unique features that make them well-suited to wave propagation problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Strictly speaking, the finite element mesh can only partition the problem domain if \(\partial \Omega \) is piecewise p-th degree polynomial. For simplicity of exposition, and without loss of generality, we assume hereinafter that \(\mathcal {T}_h\) actually partitions \(\Omega \).
 
2
Note the amplification factor \(N_1\) in the y-axis is a logarithmic quantity.
 
3
Note the amplitude of the instabilities in Fig. 3 is non-dimensionalized with respect to the freestream velocity.
 
4
The mismatch between the simulation and the experimental data near the leading edge is due to the missing vortex upwash induced by the finite extent of the computational domain, and not due to discretization errors [49, 50].
 
Literature
1.
go back to reference Ahnert, T., Bärwolff, G.: Numerical comparison of hybridized discontinuous Galerkin and finite volume methods for incompressible flow. Int. J. Numer. Methods Fluids 76(5), 267–281 (2014)MathSciNet Ahnert, T., Bärwolff, G.: Numerical comparison of hybridized discontinuous Galerkin and finite volume methods for incompressible flow. Int. J. Numer. Methods Fluids 76(5), 267–281 (2014)MathSciNet
2.
go back to reference Alexander, R.: Diagonally implicit Runge–Kutta methods for stiff ODEs. SIAM J. Numer. Anal. 14, 1006–1021 (1977)MathSciNetMATH Alexander, R.: Diagonally implicit Runge–Kutta methods for stiff ODEs. SIAM J. Numer. Anal. 14, 1006–1021 (1977)MathSciNetMATH
3.
go back to reference Balan, A., Woopen, M., May, G.: Adjoint-based hp-adaptation for a class of high-order hybridized finite element schemes for compressible flows. In: 21st AIAA Computational Fluid Dynamics Conference (2013) Balan, A., Woopen, M., May, G.: Adjoint-based hp-adaptation for a class of high-order hybridized finite element schemes for compressible flows. In: 21st AIAA Computational Fluid Dynamics Conference (2013)
4.
go back to reference Bonnasse-Gahot, M., Calandra, H., Diaz, J., Lanteri, S.: Hybridizable discontinuous galerkin method for the 2-d frequency-domain elastic wave equations. Geophys. J. Int. 213(1), 637–659 (2018) Bonnasse-Gahot, M., Calandra, H., Diaz, J., Lanteri, S.: Hybridizable discontinuous galerkin method for the 2-d frequency-domain elastic wave equations. Geophys. J. Int. 213(1), 637–659 (2018)
5.
go back to reference Bui-Thanh, T.: From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations. J. Comput. Phys. 295, 114–146 (2015)MathSciNetMATH Bui-Thanh, T.: From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations. J. Comput. Phys. 295, 114–146 (2015)MathSciNetMATH
6.
go back to reference Cai, X.C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21, 792–797 (1999)MathSciNetMATH Cai, X.C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21, 792–797 (1999)MathSciNetMATH
7.
go back to reference Celiker, F., Cockburn, B., Shi, K.: Hybridizable discontinuous Galerkin methods for Timoshenko beams. J. Sci. Comput. 44(1), 1–37 (2010)MathSciNetMATH Celiker, F., Cockburn, B., Shi, K.: Hybridizable discontinuous Galerkin methods for Timoshenko beams. J. Sci. Comput. 44(1), 1–37 (2010)MathSciNetMATH
8.
go back to reference Cesmelioglu, A., Cockburn, B., Nguyen, N.C., Peraire, J.: Analysis of HDG methods for Oseen equations. J. Sci. Comput. 55, 392–431 (2013)MathSciNetMATH Cesmelioglu, A., Cockburn, B., Nguyen, N.C., Peraire, J.: Analysis of HDG methods for Oseen equations. J. Sci. Comput. 55, 392–431 (2013)MathSciNetMATH
9.
go back to reference Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. Math. Comput. 86(306), 1643–1670 (2017)MathSciNetMATH Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. Math. Comput. 86(306), 1643–1670 (2017)MathSciNetMATH
10.
go back to reference Chabaud, B., Cockburn, B.: Uniform-in-time superconvergence of HDG methods for the heat equation. Math. Comput. 81, 107–129 (2012)MathSciNetMATH Chabaud, B., Cockburn, B.: Uniform-in-time superconvergence of HDG methods for the heat equation. Math. Comput. 81, 107–129 (2012)MathSciNetMATH
11.
go back to reference Chaurasia, H.K.: A time-spectral hybridizable discontinuous Galerkin method for periodic flow problems. Ph.D. thesis, Massachusetts Institute of Technology (2014) Chaurasia, H.K.: A time-spectral hybridizable discontinuous Galerkin method for periodic flow problems. Ph.D. thesis, Massachusetts Institute of Technology (2014)
12.
go back to reference Chaurasia, H.K., Nguyen, N.C., Peraire, J.: A Time-spectral hybridizable discontinuous Galerkin method for periodic flow problems. In: 21st AIAA Computational Fluid Dynamics Conference, Fluid Dynamics and Co-located Conferences, AIAA 2013-2861. American Institute of Aeronautics and Astronautics (2013) Chaurasia, H.K., Nguyen, N.C., Peraire, J.: A Time-spectral hybridizable discontinuous Galerkin method for periodic flow problems. In: 21st AIAA Computational Fluid Dynamics Conference, Fluid Dynamics and Co-located Conferences, AIAA 2013-2861. American Institute of Aeronautics and Astronautics (2013)
13.
go back to reference Chen, G., Xie, X.: A robust weak galerkin finite element method for linear elasticity with strong symmetric stresses. Comput. Methods Appl. Math. 16(3), 389–408 (2016)MathSciNetMATH Chen, G., Xie, X.: A robust weak galerkin finite element method for linear elasticity with strong symmetric stresses. Comput. Methods Appl. Math. 16(3), 389–408 (2016)MathSciNetMATH
14.
go back to reference Chen, H., Qiu, W., Shi, K., Solano, M.: A superconvergent HDG method for the Maxwell equations. J. Sci. Comput. 70(3), 1010–1029 (2017)MathSciNetMATH Chen, H., Qiu, W., Shi, K., Solano, M.: A superconvergent HDG method for the Maxwell equations. J. Sci. Comput. 70(3), 1010–1029 (2017)MathSciNetMATH
15.
go back to reference Christophe, A., Descombes, S., Lanteri, S.: An implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations. Appl. Math. Comput. 319(Supplement C), 395–408 (2018)MathSciNet Christophe, A., Descombes, S., Lanteri, S.: An implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations. Appl. Math. Comput. 319(Supplement C), 395–408 (2018)MathSciNet
16.
go back to reference Ciuca, C.: Implicit hybridized discontinuous Galerkin methods for magnetohydrodynamics. Master’s thesis, Imperial College London (2018) Ciuca, C.: Implicit hybridized discontinuous Galerkin methods for magnetohydrodynamics. Master’s thesis, Imperial College London (2018)
17.
go back to reference Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77, 1887–1916 (2008)MathSciNetMATH Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77, 1887–1916 (2008)MathSciNetMATH
18.
go back to reference Cockburn, B., Dong, B., Guzmán, J., Restelli, M., Sacco, R.: A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems. SIAM J. Sci. Comput. 31(5), 3827–3846 (2009)MathSciNetMATH Cockburn, B., Dong, B., Guzmán, J., Restelli, M., Sacco, R.: A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems. SIAM J. Sci. Comput. 31(5), 3827–3846 (2009)MathSciNetMATH
19.
go back to reference Cockburn, B., Fu, G.: Superconvergence by \(m\)-decompositions. Part ii: construction of two-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 165–186 (2017)MathSciNetMATH Cockburn, B., Fu, G.: Superconvergence by \(m\)-decompositions. Part ii: construction of two-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 165–186 (2017)MathSciNetMATH
20.
go back to reference Cockburn, B., Fu, G.: Superconvergence by \(m\)-decompositions. Part iii: construction of three-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 365–398 (2017)MathSciNetMATH Cockburn, B., Fu, G.: Superconvergence by \(m\)-decompositions. Part iii: construction of three-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 365–398 (2017)MathSciNetMATH
21.
go back to reference Cockburn, B., Fu, G.: Devising superconvergent hdg methods with symmetric approximate stresses for linear elasticity by M-decompositions. IMA J. Numer. Anal. 38(2), 566–604 (2018)MathSciNet Cockburn, B., Fu, G.: Devising superconvergent hdg methods with symmetric approximate stresses for linear elasticity by M-decompositions. IMA J. Numer. Anal. 38(2), 566–604 (2018)MathSciNet
22.
go back to reference Cockburn, B., Fu, G., Qiu, W.: A note on the devising of superconvergent hdg methods for stokes flow by m-decompositions. IMA J. Numer. Anal. 37(2), 730–749 (2017)MathSciNetMATH Cockburn, B., Fu, G., Qiu, W.: A note on the devising of superconvergent hdg methods for stokes flow by m-decompositions. IMA J. Numer. Anal. 37(2), 730–749 (2017)MathSciNetMATH
23.
go back to reference Cockburn, B., Fu, G., Sayas, F.: Superconvergence by \(m\)-decompositions. Part i: general theory for hdg methods for diffusion. Math. Comput. 86(306), 1609–1641 (2017)MathSciNetMATH Cockburn, B., Fu, G., Sayas, F.: Superconvergence by \(m\)-decompositions. Part i: general theory for hdg methods for diffusion. Math. Comput. 86(306), 1609–1641 (2017)MathSciNetMATH
24.
go back to reference Cockburn, B., Fu, Z., Hungria, A., Ji, L., Sánchez, M.A., Sayas, F.-J.: Stormer-Numerov HDG methods for acoustic waves. J. Sci. Comput. 75(2), 597–624 (2017)MathSciNetMATH Cockburn, B., Fu, Z., Hungria, A., Ji, L., Sánchez, M.A., Sayas, F.-J.: Stormer-Numerov HDG methods for acoustic waves. J. Sci. Comput. 75(2), 597–624 (2017)MathSciNetMATH
25.
go back to reference Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)MathSciNetMATH Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)MathSciNetMATH
26.
go back to reference Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.-J.: Analysis of HDG methods for Stokes flow. Math. Comput. 80, 723–760 (2011)MathSciNetMATH Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.-J.: Analysis of HDG methods for Stokes flow. Math. Comput. 80, 723–760 (2011)MathSciNetMATH
27.
go back to reference Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)MathSciNetMATH Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)MathSciNetMATH
28.
go back to reference Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78, 1–24 (2009)MathSciNetMATH Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78, 1–24 (2009)MathSciNetMATH
29.
go back to reference Cockburn, B., Nguyen, N.C., Peraire, J.: A comparison of HDG methods for Stokes flow. J. Sci. Comput. 45(1–3), 215–237 (2010)MathSciNetMATH Cockburn, B., Nguyen, N.C., Peraire, J.: A comparison of HDG methods for Stokes flow. J. Sci. Comput. 45(1–3), 215–237 (2010)MathSciNetMATH
30.
go back to reference Cockburn, B., Nguyen, N.C., Peraire, J.: A comparison of HDG methods for Stokes flow. J. Sci. Comput. 45(1), 215–237 (2010)MathSciNetMATH Cockburn, B., Nguyen, N.C., Peraire, J.: A comparison of HDG methods for Stokes flow. J. Sci. Comput. 45(1), 215–237 (2010)MathSciNetMATH
31.
go back to reference Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of hdg methods for second-order elliptic problems. Math. Comput. 81(279), 1327–1353 (2012)MathSciNetMATH Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of hdg methods for second-order elliptic problems. Math. Comput. 81(279), 1327–1353 (2012)MathSciNetMATH
32.
go back to reference Cockburn, B., Qiu, W., Shi, K.: Superconvergent hdg methods on isoparametric elements for second-order elliptic problems. SIAM J. Numer. Anal. 50(3), 1417–1432 (2012)MathSciNetMATH Cockburn, B., Qiu, W., Shi, K.: Superconvergent hdg methods on isoparametric elements for second-order elliptic problems. SIAM J. Numer. Anal. 50(3), 1417–1432 (2012)MathSciNetMATH
33.
go back to reference Cockburn, B., Quenneville-Bélair, V.: Uniform-in-time superconvergence of HDG methods for the acoustic wave equation. Math. Comput. 83, 65–85 (2014)MathSciNetMATH Cockburn, B., Quenneville-Bélair, V.: Uniform-in-time superconvergence of HDG methods for the acoustic wave equation. Math. Comput. 83, 65–85 (2014)MathSciNetMATH
34.
go back to reference Cockburn, B., Sayas, F.J.: Divergence-conforming HDG methods for Stokes flow. Math. Comput. 83, 1571–1598 (2014)MathSciNetMATH Cockburn, B., Sayas, F.J.: Divergence-conforming HDG methods for Stokes flow. Math. Comput. 83, 1571–1598 (2014)MathSciNetMATH
35.
go back to reference Cockburn, B., Shi, K.: Conditions for superconvergence of HDG methods for Stokes flow. Math. Comput. 82, 651–671 (2013)MathSciNetMATH Cockburn, B., Shi, K.: Conditions for superconvergence of HDG methods for Stokes flow. Math. Comput. 82, 651–671 (2013)MathSciNetMATH
36.
go back to reference Cockburn, B., Shi, K.: Superconvergent HDG methods for linear elasticity with weakly symmetric stresses. IMA J. Numer. Anal. 33(3), 747–770 (2013)MathSciNetMATH Cockburn, B., Shi, K.: Superconvergent HDG methods for linear elasticity with weakly symmetric stresses. IMA J. Numer. Anal. 33(3), 747–770 (2013)MathSciNetMATH
37.
go back to reference Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016)MathSciNetMATH Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016)MathSciNetMATH
38.
go back to reference Cui, J., Zhang, W.: An analysis of HDG methods for the Helmholtz equation. IMA J. Numer. Anal. 34(1), 279–295 (2014)MathSciNetMATH Cui, J., Zhang, W.: An analysis of HDG methods for the Helmholtz equation. IMA J. Numer. Anal. 34(1), 279–295 (2014)MathSciNetMATH
39.
go back to reference Dahm, J.P.S., Fidkowski, K.J.: Error estimation and adaptation in hybridized discontinuous Galerkin methods. In: 52nd Aerospace Sciences Meeting, AIAA 2014-0078 (2014) Dahm, J.P.S., Fidkowski, K.J.: Error estimation and adaptation in hybridized discontinuous Galerkin methods. In: 52nd Aerospace Sciences Meeting, AIAA 2014-0078 (2014)
40.
go back to reference Dedner, A., Kemm, F., Kröner, D., Munz, C.D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175(2), 645–673 (2002)MathSciNetMATH Dedner, A., Kemm, F., Kröner, D., Munz, C.D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175(2), 645–673 (2002)MathSciNetMATH
41.
go back to reference Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)MathSciNetMATH Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)MathSciNetMATH
42.
go back to reference Dong, B.: Optimally convergent HDG method for third-order Korteweg-de Vries type equations. J. Sci. Comput. 73(2), 712–735 (2017)MathSciNetMATH Dong, B.: Optimally convergent HDG method for third-order Korteweg-de Vries type equations. J. Sci. Comput. 73(2), 712–735 (2017)MathSciNetMATH
43.
go back to reference Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows: a constrained transport method. Astrophys. J. 332(2), 659–677 (1988) Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows: a constrained transport method. Astrophys. J. 332(2), 659–677 (1988)
44.
go back to reference Eyck, A.T., Celiker, F., Lew, A.: Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: motivation, formulation, and numerical examples. Comput. Methods Appl. Mech. Eng. 197, 1–21 (2007)MathSciNetMATH Eyck, A.T., Celiker, F., Lew, A.: Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: motivation, formulation, and numerical examples. Comput. Methods Appl. Mech. Eng. 197, 1–21 (2007)MathSciNetMATH
45.
go back to reference Eyck, A.T., Celiker, F., Lew, A.: Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: analytical estimates. Comput. Methods Appl. Mech. Eng. 197, 2989–3000 (2008)MathSciNetMATH Eyck, A.T., Celiker, F., Lew, A.: Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: analytical estimates. Comput. Methods Appl. Mech. Eng. 197, 2989–3000 (2008)MathSciNetMATH
46.
go back to reference Feng, X., Lu, P., Xu, X.: A hybridizable discontinuous Galerkin method for the time-harmonic Maxwell equations with high wave number. Comput. Methods Appl. Math. 16(3), 429–445 (2016)MathSciNetMATH Feng, X., Lu, P., Xu, X.: A hybridizable discontinuous Galerkin method for the time-harmonic Maxwell equations with high wave number. Comput. Methods Appl. Math. 16(3), 429–445 (2016)MathSciNetMATH
47.
go back to reference Feng, X., Xing, Y.: Absolutely stable local discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comput. 82(283), 1269–1296 (2012)MathSciNetMATH Feng, X., Xing, Y.: Absolutely stable local discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comput. 82(283), 1269–1296 (2012)MathSciNetMATH
48.
go back to reference Fernandez, P.: The hybridized discontinuous Galerkin methods for large-eddy simulation of transitional and turbulent flows. PhD thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology (2018) Fernandez, P.: The hybridized discontinuous Galerkin methods for large-eddy simulation of transitional and turbulent flows. PhD thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology (2018)
49.
go back to reference Fernandez, P., Nguyen, N.C., Peraire, J.: Subgrid-scale modeling and implicit numerical dissipation in DG-based Large-Eddy Simulation. In: 23rd AIAA Computational Fluid Dynamics Conference, AIAA 2017-3951, Denver, Colorado, USA (2017) Fernandez, P., Nguyen, N.C., Peraire, J.: Subgrid-scale modeling and implicit numerical dissipation in DG-based Large-Eddy Simulation. In: 23rd AIAA Computational Fluid Dynamics Conference, AIAA 2017-3951, Denver, Colorado, USA (2017)
50.
go back to reference Fernandez, P., Nguyen, N.C., Peraire, J.: The hybridized discontinuous Galerkin method for implicit large-eddy simulation of transitional turbulent flows. J. Comput. Phys. 336, 308–329 (2017)MathSciNetMATH Fernandez, P., Nguyen, N.C., Peraire, J.: The hybridized discontinuous Galerkin method for implicit large-eddy simulation of transitional turbulent flows. J. Comput. Phys. 336, 308–329 (2017)MathSciNetMATH
51.
go back to reference Fernandez, P., Nguyen, N.C., Peraire, J.: A physics-based shock capturing method for unsteady laminar and turbulent flows. In: 56th AIAA Aerospace Sciences Meeting, Orlando, Florida, Jan 2018. American Institute of Aeronautics and Astronautics (2018) Fernandez, P., Nguyen, N.C., Peraire, J.: A physics-based shock capturing method for unsteady laminar and turbulent flows. In: 56th AIAA Aerospace Sciences Meeting, Orlando, Florida, Jan 2018. American Institute of Aeronautics and Astronautics (2018)
52.
go back to reference Fernandez, P., Nguyen, N.C., Peraire, J.: Entropy-stable hybridized discontinuous Galerkin methods for the compressible Euler and Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. (Under Review). arXiv preprint arXiv:1808.05066 (2018) Fernandez, P., Nguyen, N.C., Peraire, J.: Entropy-stable hybridized discontinuous Galerkin methods for the compressible Euler and Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. (Under Review). arXiv preprint arXiv:​1808.​05066 (2018)
53.
go back to reference Fernandez, P., Nguyen, N.C., Peraire, J.: A physics-based shock capturing method for large-eddy simulation. J. Comput. Phys. (Under Review). arXiv preprint arXiv:1806.06449 (2018) Fernandez, P., Nguyen, N.C., Peraire, J.: A physics-based shock capturing method for large-eddy simulation. J. Comput. Phys. (Under Review). arXiv preprint arXiv:​1806.​06449 (2018)
54.
go back to reference Fernandez, P., Nguyen, N.C., Roca, X., Peraire, J.: Implicit large-eddy simulation of compressible flows using the interior embedded discontinuous Galerkin method. In: 54th AIAA Aerospace Sciences Meeting, San Diego, California, USA, Jan 2016. American Institute of Aeronautics and Astronautics (2016) Fernandez, P., Nguyen, N.C., Roca, X., Peraire, J.: Implicit large-eddy simulation of compressible flows using the interior embedded discontinuous Galerkin method. In: 54th AIAA Aerospace Sciences Meeting, San Diego, California, USA, Jan 2016. American Institute of Aeronautics and Astronautics (2016)
55.
go back to reference Fernandez, P., Moura, R., Mengaldo, G., Peraire, J.: Non-modal analysis of spectral element methods: towards accurate and robust large-eddy simulations. arXiv preprint arXiv:1804.09712 (2018) Fernandez, P., Moura, R., Mengaldo, G., Peraire, J.: Non-modal analysis of spectral element methods: towards accurate and robust large-eddy simulations. arXiv preprint arXiv:​1804.​09712 (2018)
56.
go back to reference Fidkowski, K.J.: A hybridized discontinuous Galerkin method on mapped deforming domains. Comput. Fluids 139, 80–91 (2016)MathSciNetMATH Fidkowski, K.J.: A hybridized discontinuous Galerkin method on mapped deforming domains. Comput. Fluids 139, 80–91 (2016)MathSciNetMATH
57.
go back to reference Fu, G., Cockburn, B., Stolarski, H.: Analysis of an HDG method for linear elasticity. Int. J. Numer. Methods Eng. 102(3–4), 551–575 (2015)MathSciNetMATH Fu, G., Cockburn, B., Stolarski, H.: Analysis of an HDG method for linear elasticity. Int. J. Numer. Methods Eng. 102(3–4), 551–575 (2015)MathSciNetMATH
58.
go back to reference Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous Galerkin p-adaptivity for wave propagation problems. Int. J. Numer. Methods Fluids 72(12), 1244–1262 (2013)MathSciNet Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous Galerkin p-adaptivity for wave propagation problems. Int. J. Numer. Methods Fluids 72(12), 1244–1262 (2013)MathSciNet
59.
go back to reference Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous Galerkin with degree adaptivity for the incompressible Navier–Stokes equations. Comput. Fluids 98, 196–208 (2014)MathSciNetMATH Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous Galerkin with degree adaptivity for the incompressible Navier–Stokes equations. Comput. Fluids 98, 196–208 (2014)MathSciNetMATH
60.
go back to reference Gopalakrishnan, J., Li, F., Nguyen, N.C., Peraire, J.: Spectral approximations by the HDG method. Math. Comput. 84(293), 1037–1059 (2015)MathSciNetMATH Gopalakrishnan, J., Li, F., Nguyen, N.C., Peraire, J.: Spectral approximations by the HDG method. Math. Comput. 84(293), 1037–1059 (2015)MathSciNetMATH
61.
go back to reference Griesmaier, R., Monk, P.: Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation. J. Sci. Comput. 49(3), 291–310 (2011)MathSciNetMATH Griesmaier, R., Monk, P.: Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation. J. Sci. Comput. 49(3), 291–310 (2011)MathSciNetMATH
62.
go back to reference Gürkan, C., Kronbichler, M., Fernández-Méndez, S.: Extended hybridizable discontinuous Galerkin with heaviside enrichment for heat bimaterial problems. J. Sci. Comput. 72(2), 542–567 (2017)MathSciNetMATH Gürkan, C., Kronbichler, M., Fernández-Méndez, S.: Extended hybridizable discontinuous Galerkin with heaviside enrichment for heat bimaterial problems. J. Sci. Comput. 72(2), 542–567 (2017)MathSciNetMATH
63.
go back to reference Güzey, S., Cockburn, B., Stolarski, H.K.: The embedded discontinuous Galerkin methods: application to linear shells problems. Int. J. Numer. Methods Eng. 70, 757–790 (2007)MathSciNetMATH Güzey, S., Cockburn, B., Stolarski, H.K.: The embedded discontinuous Galerkin methods: application to linear shells problems. Int. J. Numer. Methods Eng. 70, 757–790 (2007)MathSciNetMATH
64.
go back to reference Hungria, A., Prada, D., Sayas, F.-J.: HDG methods for elastodynamics. Comput. Math. Appl. 74(11), 2671–2690 (2017)MathSciNetMATH Hungria, A., Prada, D., Sayas, F.-J.: HDG methods for elastodynamics. Comput. Math. Appl. 74(11), 2671–2690 (2017)MathSciNetMATH
65.
go back to reference Huynh, L.N.T., Nguyen, N.C., Peraire, J., Khoo, B.C.: A high-order hybridizable discontinuous Galerkin method for elliptic interface problems. Int. J. Numer. Methods Fluids 93(2), 183–200 (2013)MathSciNetMATH Huynh, L.N.T., Nguyen, N.C., Peraire, J., Khoo, B.C.: A high-order hybridizable discontinuous Galerkin method for elliptic interface problems. Int. J. Numer. Methods Fluids 93(2), 183–200 (2013)MathSciNetMATH
66.
go back to reference Jaust, A., Schütz, J.: A temporally adaptive hybridized discontinuous Galerkin method for time-dependent compressible flows. Comput. Fluids 98, 177–185 (2014)MathSciNetMATH Jaust, A., Schütz, J.: A temporally adaptive hybridized discontinuous Galerkin method for time-dependent compressible flows. Comput. Fluids 98, 177–185 (2014)MathSciNetMATH
67.
go back to reference Kabaria, H., Lew, A., Cockburn, B.: A hybridizable discontinuous Galerkin formulation for non-linear elasticity. Comput. Methods Appl. Mech. Eng. 283, 303–329 (2015)MathSciNetMATH Kabaria, H., Lew, A., Cockburn, B.: A hybridizable discontinuous Galerkin formulation for non-linear elasticity. Comput. Methods Appl. Mech. Eng. 283, 303–329 (2015)MathSciNetMATH
68.
go back to reference Kolkman, L.N.: Implementation of an implicit-explicit scheme for hybridizable discontinuous Galerkin methods. Master’s thesis, Massachusetts Institute of Technology (2018) Kolkman, L.N.: Implementation of an implicit-explicit scheme for hybridizable discontinuous Galerkin methods. Master’s thesis, Massachusetts Institute of Technology (2018)
69.
go back to reference Lehrenfeld, C., Schöberl, J.: High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. Comput. Methods Appl. Mech. Eng. 307, 339–361 (2016)MathSciNet Lehrenfeld, C., Schöberl, J.: High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. Comput. Methods Appl. Mech. Eng. 307, 339–361 (2016)MathSciNet
70.
go back to reference Li, F., Xu, L., Yakovlev, S.: Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field. J. Comput. Phys. 230(12), 4828–4847 (2011)MathSciNetMATH Li, F., Xu, L., Yakovlev, S.: Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field. J. Comput. Phys. 230(12), 4828–4847 (2011)MathSciNetMATH
71.
go back to reference Li, L., Lanteri, S., Mortensen, N.A., Wubs, M.: A hybridizable discontinuous Galerkin method for solving nonlocal optical response models. Comput. Phys. Commun. 219, 99–107 (2017)MathSciNet Li, L., Lanteri, S., Mortensen, N.A., Wubs, M.: A hybridizable discontinuous Galerkin method for solving nonlocal optical response models. Comput. Phys. Commun. 219, 99–107 (2017)MathSciNet
72.
go back to reference Li, L., Lanteri, S., Perrussel, R.: A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell’s equations. J. Comput. Phys. 256, 563–581 (2014)MathSciNetMATH Li, L., Lanteri, S., Perrussel, R.: A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell’s equations. J. Comput. Phys. 256, 563–581 (2014)MathSciNetMATH
73.
go back to reference Li, L., Lanteri, S., Perrussel, R.: A class of locally well-posed hybridizable discontinuous Galerkin methods for the solution of time-harmonic Maxwell’s equations. Comput. Phys. Commun. 192, 23–31 (2015)MathSciNetMATH Li, L., Lanteri, S., Perrussel, R.: A class of locally well-posed hybridizable discontinuous Galerkin methods for the solution of time-harmonic Maxwell’s equations. Comput. Phys. Commun. 192, 23–31 (2015)MathSciNetMATH
74.
go back to reference Lu, P., Chen, H., Qiu, W.: An absolutely stable hp-HDG method for the time-harmonic Maxwell equations with high wave number. Math. Comput. 86(306), 1553–1577 (2017)MathSciNetMATH Lu, P., Chen, H., Qiu, W.: An absolutely stable hp-HDG method for the time-harmonic Maxwell equations with high wave number. Math. Comput. 86(306), 1553–1577 (2017)MathSciNetMATH
75.
go back to reference McGhee, R., Walker, B., Millard, B.: Experimental Results for the Eppler 387 airfoil at Low Reynolds Number in the Langley Low-Turbulence Pressure Tunnel. Technical Report, NASA Langley Research Center, Langley (1988) McGhee, R., Walker, B., Millard, B.: Experimental Results for the Eppler 387 airfoil at Low Reynolds Number in the Langley Low-Turbulence Pressure Tunnel. Technical Report, NASA Langley Research Center, Langley (1988)
76.
go back to reference Moro, D., Nguyen, N.C., Peraire, J.: Navier–Stokes Solution Using Hybridizable Discontinuous Galerkin methods. Hawaii, Technical Report, Honolulu (2011) Moro, D., Nguyen, N.C., Peraire, J.: Navier–Stokes Solution Using Hybridizable Discontinuous Galerkin methods. Hawaii, Technical Report, Honolulu (2011)
77.
go back to reference Moro, D., Nguyen, N.C., Peraire, J.: Dilation-based shock capturing for high-order methods. Int. J. Numer. Methods Fluids 82(7), 398–416 (2016)MathSciNet Moro, D., Nguyen, N.C., Peraire, J.: Dilation-based shock capturing for high-order methods. Int. J. Numer. Methods Fluids 82(7), 398–416 (2016)MathSciNet
78.
go back to reference Moro, D., Nguyen, N.C., Peraire, J., Drela, M.: Advances in the development of a high order, viscous-inviscid interaction solver. In: 21st AIAA Computational Fluid Dynamics Conference, AIAA 2013-2943, San Diego (2013) Moro, D., Nguyen, N.C., Peraire, J., Drela, M.: Advances in the development of a high order, viscous-inviscid interaction solver. In: 21st AIAA Computational Fluid Dynamics Conference, AIAA 2013-2943, San Diego (2013)
79.
go back to reference Moro, D., Nguyen, N.C., Peraire, J., Drela, M.: Mesh topology preserving boundary-layer adaptivity method for steady viscous flows. AIAA J. 55(6), 1970–1985 (2017) Moro, D., Nguyen, N.C., Peraire, J., Drela, M.: Mesh topology preserving boundary-layer adaptivity method for steady viscous flows. AIAA J. 55(6), 1970–1985 (2017)
80.
go back to reference Munz, C.D., Omnes, P., Schneider, R., Sonnendrücker, E., Voß, U.: Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys. 161(2), 484–511 (2000)MathSciNetMATH Munz, C.D., Omnes, P., Schneider, R., Sonnendrücker, E., Voß, U.: Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys. 161(2), 484–511 (2000)MathSciNetMATH
81.
go back to reference Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods. In: Proceedings of the International Conference on Spectral and High Order Methods, Trondheim (2009) Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods. In: Proceedings of the International Conference on Spectral and High Order Methods, Trondheim (2009)
82.
go back to reference Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. In: Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2010-362, Orlando (2010) Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. In: Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2010-362, Orlando (2010)
83.
go back to reference Nguyen, N.C., Peraire, J.: An adaptive shock-capturing HDG method for compressible flows. In: 20th AIAA Computational Fluid Dynamics Conference, AIAA 2011–3060, Reston, Virigina, 2011. American Institute of Aeronautics and Astronautics (2011) Nguyen, N.C., Peraire, J.: An adaptive shock-capturing HDG method for compressible flows. In: 20th AIAA Computational Fluid Dynamics Conference, AIAA 2011–3060, Reston, Virigina, 2011. American Institute of Aeronautics and Astronautics (2011)
84.
go back to reference Nguyen, N.C., Peraire, J.: Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J. Comput. Phys. 231(18), 5955–5988 (2012)MathSciNetMATH Nguyen, N.C., Peraire, J.: Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J. Comput. Phys. 231(18), 5955–5988 (2012)MathSciNetMATH
85.
go back to reference Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009)MathSciNetMATH Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009)MathSciNetMATH
86.
go back to reference Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection diffusion equations. J. Comput. Phys. 228(23), 8841–8855 (2009)MathSciNetMATH Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection diffusion equations. J. Comput. Phys. 228(23), 8841–8855 (2009)MathSciNetMATH
87.
go back to reference Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199(9–12), 582–597 (2010)MathSciNetMATH Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199(9–12), 582–597 (2010)MathSciNetMATH
88.
go back to reference Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 230(4), 1147–1170 (2011)MathSciNetMATH Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 230(4), 1147–1170 (2011)MathSciNetMATH
89.
go back to reference Nguyen, N.C., Peraire, J., Cockburn, B.: High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230(10), 3695–3718 (2011)MathSciNetMATH Nguyen, N.C., Peraire, J., Cockburn, B.: High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230(10), 3695–3718 (2011)MathSciNetMATH
90.
go back to reference Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230(19), 7151–7175 (2011)MathSciNetMATH Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230(19), 7151–7175 (2011)MathSciNetMATH
91.
go back to reference Nguyen, N.C., Peraire, J., Cockburn, B.: A class of embedded discontinuous Galerkin methods for computational fluid dynamics. J. Comput. Phys. 302, 674–692 (2015)MathSciNetMATH Nguyen, N.C., Peraire, J., Cockburn, B.: A class of embedded discontinuous Galerkin methods for computational fluid dynamics. J. Comput. Phys. 302, 674–692 (2015)MathSciNetMATH
92.
go back to reference Nguyen, N.C., Peraire, J., Reitich, F., Cockburn, B.: A phase-based hybridizable discontinuous Galerkin method for the numerical solution of the Helmholtz equation. J. Comput. Phys. 290, 318–335 (2015)MathSciNetMATH Nguyen, N.C., Peraire, J., Reitich, F., Cockburn, B.: A phase-based hybridizable discontinuous Galerkin method for the numerical solution of the Helmholtz equation. J. Comput. Phys. 290, 318–335 (2015)MathSciNetMATH
93.
go back to reference Nguyen, N.C., Roca, X., Moro, D., Peraire, J.: A hybridized multiscale discontinuous Galerkin method for compressible flows. In: 51st AIAA Aerospace Sciences Meeting iIncluding the New Horizons Forum and Aerospace Exposition, AIAA-2013-689 (2013) Nguyen, N.C., Roca, X., Moro, D., Peraire, J.: A hybridized multiscale discontinuous Galerkin method for compressible flows. In: 51st AIAA Aerospace Sciences Meeting iIncluding the New Horizons Forum and Aerospace Exposition, AIAA-2013-689 (2013)
94.
go back to reference Park, H.-R., Chen, X., Nguyen, N.C., Oh, S.-H., Peraire, J.: Nanogap-enhanced Terahertz sensing of 1-nm-thick dielectric films. ACS Photonics 2(3), 417–424 (2015) Park, H.-R., Chen, X., Nguyen, N.C., Oh, S.-H., Peraire, J.: Nanogap-enhanced Terahertz sensing of 1-nm-thick dielectric films. ACS Photonics 2(3), 417–424 (2015)
95.
go back to reference Peraire, J., Nguyen, N.C., Cockburn, B.: A hybridizable discontinuous Galerkin method for the compressible Euler and Navier–Stokes equations. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA 2010-363 (2010) Peraire, J., Nguyen, N.C., Cockburn, B.: A hybridizable discontinuous Galerkin method for the compressible Euler and Navier–Stokes equations. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA 2010-363 (2010)
96.
go back to reference Peraire, J., Nguyen, N.C., Cockburn, B.: An embedded discontinuous Galerkin method for the compressible Euler and Navier–Stokes equations. In 20th AIAA Computational Fluid Dynamics Conference, AIAA 2011-3228, Reston, Virigina, Jun 2011. American Institute of Aeronautics and Astronautics (2011) Peraire, J., Nguyen, N.C., Cockburn, B.: An embedded discontinuous Galerkin method for the compressible Euler and Navier–Stokes equations. In 20th AIAA Computational Fluid Dynamics Conference, AIAA 2011-3228, Reston, Virigina, Jun 2011. American Institute of Aeronautics and Astronautics (2011)
97.
go back to reference Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. 87(309), 69–93 (2018)MathSciNetMATH Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. 87(309), 69–93 (2018)MathSciNetMATH
98.
go back to reference Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36(4), 1943–1967 (2016)MathSciNetMATH Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36(4), 1943–1967 (2016)MathSciNetMATH
99.
go back to reference Rhebergen, S., Cockburn, B.: A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J. Comput. Phys. 231(11), 4185–4204 (2012)MathSciNetMATH Rhebergen, S., Cockburn, B.: A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J. Comput. Phys. 231(11), 4185–4204 (2012)MathSciNetMATH
100.
go back to reference Roca, X., Nguyen, N.C., Peraire, J.: Scalable parallelization of the hybridized discontinuous Galerkin method for compressible flow. In: 21st AIAA Computational Fluid Dynamics Conference, AIAA-2013-2939 (2013) Roca, X., Nguyen, N.C., Peraire, J.: Scalable parallelization of the hybridized discontinuous Galerkin method for compressible flow. In: 21st AIAA Computational Fluid Dynamics Conference, AIAA-2013-2939 (2013)
101.
go back to reference Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)MathSciNetMATH Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)MathSciNetMATH
102.
go back to reference Samii, A., Dawson, C.: An explicit hybridized discontinuous Galerkin method for Serre–Green–Naghdi wave model. Comput. Methods Appl. Mech. Eng. 330(Supplement C), 447–470 (2018)MathSciNet Samii, A., Dawson, C.: An explicit hybridized discontinuous Galerkin method for Serre–Green–Naghdi wave model. Comput. Methods Appl. Mech. Eng. 330(Supplement C), 447–470 (2018)MathSciNet
103.
go back to reference Sánchez, M.A., Ciuca, C., Nguyen, N.C., Peraire, J., Cockburn, B.: Symplectic Hamiltonian HDG methods for wave propagation phenomena. J. Comput. Phys. 350(Supplement C), 951–973 (2017)MathSciNetMATH Sánchez, M.A., Ciuca, C., Nguyen, N.C., Peraire, J., Cockburn, B.: Symplectic Hamiltonian HDG methods for wave propagation phenomena. J. Comput. Phys. 350(Supplement C), 951–973 (2017)MathSciNetMATH
104.
go back to reference Schütz, J., May, G.: A hybrid mixed method for the compressible Navier–Stokes equations. J. Comput. Phys. 240, 58–75 (2013)MathSciNetMATH Schütz, J., May, G.: A hybrid mixed method for the compressible Navier–Stokes equations. J. Comput. Phys. 240, 58–75 (2013)MathSciNetMATH
105.
go back to reference Schutz, J., May, G.: An adjoint consistency analysis for a class of hybrid mixed methods. IMA J. Numer. Anal. 34, 1222–1239 (2013)MathSciNetMATH Schutz, J., May, G.: An adjoint consistency analysis for a class of hybrid mixed methods. IMA J. Numer. Anal. 34, 1222–1239 (2013)MathSciNetMATH
106.
go back to reference Sheldon, J.P., Miller, S.T., Pitt, J.S.: A hybridizable discontinuous Galerkin method for modeling fluid-structure interaction. J. Comput. Phys. 326(Supplement C), 91–114 (2016)MathSciNetMATH Sheldon, J.P., Miller, S.T., Pitt, J.S.: A hybridizable discontinuous Galerkin method for modeling fluid-structure interaction. J. Comput. Phys. 326(Supplement C), 91–114 (2016)MathSciNetMATH
107.
go back to reference Soon, S.-C.: Hybridizable discontinuosu Galerkin methods for solid mechanics. Ph.D thesis, University of Minnesota (2008) Soon, S.-C.: Hybridizable discontinuosu Galerkin methods for solid mechanics. Ph.D thesis, University of Minnesota (2008)
108.
go back to reference Soon, S.-C., Cockburn, B., Stolarski, H.K.: A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Methods Eng. 80(8), 1058–1092 (2009)MathSciNetMATH Soon, S.-C., Cockburn, B., Stolarski, H.K.: A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Methods Eng. 80(8), 1058–1092 (2009)MathSciNetMATH
109.
go back to reference Stanglmeier, M., Nguyen, N.C., Peraire, J., Cockburn, B.: An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation. Comput. Methods Appl. Mech. Eng. 300, 748–769 (2016)MathSciNet Stanglmeier, M., Nguyen, N.C., Peraire, J., Cockburn, B.: An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation. Comput. Methods Appl. Mech. Eng. 300, 748–769 (2016)MathSciNet
110.
go back to reference Terrana, S., Vilotte, J.-P., Guillot, L.: A spectral hybridizable discontinuous galerkin method for elastic–acoustic wave propagation. Geophys. J. Int. 213(1), 574–602 (2018) Terrana, S., Vilotte, J.-P., Guillot, L.: A spectral hybridizable discontinuous galerkin method for elastic–acoustic wave propagation. Geophys. J. Int. 213(1), 574–602 (2018)
111.
go back to reference Ueckermann, M.P., Lermusiaux, P.F.J.: High-order schemes for 2D unsteady biogeochemical ocean models. Ocean Dyn. 60(6), 1415–1445 (2010) Ueckermann, M.P., Lermusiaux, P.F.J.: High-order schemes for 2D unsteady biogeochemical ocean models. Ocean Dyn. 60(6), 1415–1445 (2010)
112.
go back to reference Ueckermann, M.P., Lermusiaux, P.F.J.: Hybridizable discontinuous Galerkin projection methods for Navier–Stokes and Boussinesq equations. J. Comput. Phys. 306, 390–421 (2016)MathSciNetMATH Ueckermann, M.P., Lermusiaux, P.F.J.: Hybridizable discontinuous Galerkin projection methods for Navier–Stokes and Boussinesq equations. J. Comput. Phys. 306, 390–421 (2016)MathSciNetMATH
113.
go back to reference Vidal-Codina, F., Nguyen, N.C., Oh, S.-H., Peraire, J.: A hybridizable discontinuous Galerkin method for computing nonlocal electromagnetic effects in three-dimensional metallic nanostructures. J. Comput. Phys. 355, 548–565 (2018)MathSciNetMATH Vidal-Codina, F., Nguyen, N.C., Oh, S.-H., Peraire, J.: A hybridizable discontinuous Galerkin method for computing nonlocal electromagnetic effects in three-dimensional metallic nanostructures. J. Comput. Phys. 355, 548–565 (2018)MathSciNetMATH
114.
go back to reference Williams, D.: An entropy stable, hybridizable discontinuous Galerkin method for the compressible Navier–Stokes equations. Math. Comput. 87(309), 95–121 (2018)MathSciNetMATH Williams, D.: An entropy stable, hybridizable discontinuous Galerkin method for the compressible Navier–Stokes equations. Math. Comput. 87(309), 95–121 (2018)MathSciNetMATH
115.
go back to reference Woopen, M., Balan, A., May, G.: A hybridized hiscontinuous Galerkin method for three-dimensional compressible flow problems. In: 52nd Aerospace Sciences Meeting, AIAA 2014-0938 (2014) Woopen, M., Balan, A., May, G.: A hybridized hiscontinuous Galerkin method for three-dimensional compressible flow problems. In: 52nd Aerospace Sciences Meeting, AIAA 2014-0938 (2014)
116.
go back to reference Woopen, M., Balan, A., May, G., Schütz, J.: A comparison of hybridized and standard DG methods for target-based hp-adaptive simulation of compressible flow. Comput. Fluids 98, 3–16 (2014)MathSciNetMATH Woopen, M., Balan, A., May, G., Schütz, J.: A comparison of hybridized and standard DG methods for target-based hp-adaptive simulation of compressible flow. Comput. Fluids 98, 3–16 (2014)MathSciNetMATH
117.
go back to reference Woopen, M., May, G., Schütz, J.: Adjoint-based error estimation and mesh adaptation for hybridized discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 76(11), 811–834 (2014)MathSciNet Woopen, M., May, G., Schütz, J.: Adjoint-based error estimation and mesh adaptation for hybridized discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 76(11), 811–834 (2014)MathSciNet
118.
go back to reference Yoo, D., Nguyen, N.C., Martin-Moreno, L., Mohr, D.A., Carretero-Palacios, S., Shaver, J., Peraire, J., Ebbesen, T.W., Oh, S.H.: High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography. Nano Lett. 16(3), 2040–2046 (2016) Yoo, D., Nguyen, N.C., Martin-Moreno, L., Mohr, D.A., Carretero-Palacios, S., Shaver, J., Peraire, J., Ebbesen, T.W., Oh, S.H.: High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography. Nano Lett. 16(3), 2040–2046 (2016)
119.
go back to reference Zhu, L., Huang, T.Z., Li, L.: A hybrid-mesh hybridizable discontinuous Galerkin method for solving the time-harmonic Maxwell’s equations. Appl. Math. Lett. 68, 109–116 (2017)MathSciNetMATH Zhu, L., Huang, T.Z., Li, L.: A hybrid-mesh hybridizable discontinuous Galerkin method for solving the time-harmonic Maxwell’s equations. Appl. Math. Lett. 68, 109–116 (2017)MathSciNetMATH
Metadata
Title
Hybridized Discontinuous Galerkin Methods for Wave Propagation
Authors
P. Fernandez
A. Christophe
S. Terrana
N. C. Nguyen
J. Peraire
Publication date
05-09-2018
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2018
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0811-x

Other articles of this Issue 3/2018

Journal of Scientific Computing 3/2018 Go to the issue

Premium Partner