Skip to main content
Top

2013 | OriginalPaper | Chapter

5. Hydrodynamic Fluctuations from the Boltzmann Equation

Author : Matteo Colangeli

Published in: From Kinetic Models to Hydrodynamics

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Several solution techniques have been introduced in the literature to obtain approximate solutions of the Boltzmann equation. In particular, the CE method extends the hydrodynamics beyond the NSF approximation in such a way that the decay rate of the nextorder approximations (Burnett and super-Burnett) are polynomials of higher order in k.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In the notation in [8, 18, 19], the distribution function is written as a sum over \(n\)-fold contracted products of \(n\)th-rank tensors \(f(\mathbf{{c}})=f_0(c)\sum _{k,n=0}^\infty \left\langle {\phi }_k^n\right\rangle \odot ^n{\phi }_k^n(\mathbf{{c}})\) with \(\left\langle {\phi }_k^n\right\rangle =\int f(\mathbf{{c}}){\phi }_k^n\ \mathrm{{d}}\mathbf c \) and base functions https://static-content.springer.com/image/chp%3A10.1007%2F978-1-4614-6306-1_5/303225_1_En_5_IEq168_HTML.gif , where \(L_k^n\) are the associated Laguerre (\(k\)th-order) polynomials [20], \(\otimes ^n\mathbf{{c}}\) denotes the \(n\)-fold tensor product, and https://static-content.springer.com/image/chp%3A10.1007%2F978-1-4614-6306-1_5/303225_1_En_5_IEq173_HTML.gif denotes the irreducible part of a tensor \(\mathbf a \). For the explicit construction of \(n\)th-rank irreducible tensors https://static-content.springer.com/image/chp%3A10.1007%2F978-1-4614-6306-1_5/303225_1_En_5_IEq176_HTML.gif , see [18, p. 160]. The normalization coefficients evaluate as \(l_k^n=(\sqrt{\pi }k!(1+2n)!!/[2(k+n+1/2)!n!])^{1/2}\). The base function \({\phi }_k^n(\mathbf{{c}})\) is thus a \((2k+n)\)th-order polynomial in \(c\). The lowest-order base functions read \({\phi }_0^0 =1\), \({\phi }_0^1 =\sqrt{2}\mathbf{{c}}\), \({\phi }_1^0 =\sqrt{2/3}(3/2-c^2)\), \({\phi }_1^1 =(2/\sqrt{5})(5/2-c^2)\mathbf{{c}}\), and https://static-content.springer.com/image/chp%3A10.1007%2F978-1-4614-6306-1_5/303225_1_En_5_IEq185_HTML.gif . Density, velocity, temperature, heat flux, and stress tensor are related to the moments as follows: \(\tilde{n}=\left\langle {\phi }_0^0\right\rangle \), \(\tilde{\mathbf{u}}=\left\langle {\phi }_0^1\right\rangle /\sqrt{2}\), \(\tilde{T}=\left\langle {\phi }_1^0\right\rangle \sqrt{3/2}\), \({\mathbf{{q}}}=\left\langle {\phi }_1^1\right\rangle \), and \({\sigma }=\left\langle {\phi }_0^2\right\rangle /\sqrt{2}\). The distribution function is then split into (orthogonal) parts as \(f(\mathbf{{c}})=f^\mathrm{{LM}}(\mathbf{{c}})+\delta f^\mathrm{{Grad}}(\mathbf{{c}})+\delta f^\mathrm{{rest}}(\mathbf{{c}})\) with \(f^\mathrm{{LM}}(\mathbf{{c}})\equiv f_0(c)(\left\langle {\phi }_0^0\right\rangle {\phi }_0^0 + \left\langle {\phi }_0^1\right\rangle {\phi }_0^1 + \left\langle {\phi }_1^0\right\rangle {\phi }_1^0)\) and \(\delta f^\mathrm{{Grad}}(\mathbf{{c}}) \equiv f_0(c)(\left\langle {\phi }_1^1\right\rangle {\phi }_1^1 + \left\langle {\phi }_0^2\right\rangle {\phi }_0^2)\), while the sum in \(\delta f^\mathrm{{rest}}(\mathbf{{c}})=\sum _{k,n} \left\langle {\phi }_k^n\right\rangle \odot ^n {\phi }_k^n(\mathbf{{c}})\) extends over the remaining \((k,n)\)-pairs. Number density, velocity, and temperature are therefore determined by \(f^\mathrm{{LM}}\) alone, and \(\delta f\) automatically obeys constraints such as the orthogonality requirement \(\int \delta f(\mathbf{{c}}) {\phi }_1^0\ \mathrm{{d}}\mathbf c =0\) and also \(\int \delta f(\mathbf{{c}})\xi (\mathbf{{c}})\mathrm{{d}}\mathbf c =0\), as mentioned in the text. These conditions become redundant if calculations are performed using the particular basis \({\phi }_k^n\). For Maxwell molecules, the dependence on the polar angle \(\phi \) can be included by replacing \(P_l(z)\) by \(e^{im\phi } P_l^m(z)\), involving the associated Legendre polynomials [20], and the eigenvalues are independent of \(m\). Then these base functions reduce to the eigenfunctions \(\psi _{r,l}(c,z)\) (5.29) of the Maxwell gas.
 
2
The integrals listed in Table 5.2 obey the following decoupling rules:
$$\begin{aligned} \int \left(c_\parallel ^2-\frac{1}{3}c^2\right) \delta X_n \mathrm{{d}}\mathbf c&\propto 1-\delta _{n,4}, \\ \int c_\parallel c_\perp \delta X_n \mathrm{{d}}\mathbf c&\propto \delta _{n,4}, \\ \int c_\parallel \left(c^2-\frac{5}{2}\right)\delta X_n \mathrm{{d}}\mathbf c&\propto 1-\delta _{n,4} , \\ \int c_\perp \left(c^2-\frac{5}{2}\right)\delta X_n \mathrm{{d}}\mathbf c&\propto \delta _{n,4}. \nonumber \end{aligned}$$
 
Literature
1.
go back to reference A.N. Gorban and I.V. Karlin, Invariant Manifolds for Physical and Chemical Kinetics, Lect. Notes Phys. 660 (Springer, Berlin, 2005). A.N. Gorban and I.V. Karlin, Invariant Manifolds for Physical and Chemical Kinetics, Lect. Notes Phys. 660 (Springer, Berlin, 2005).
2.
go back to reference M. Colangeli, I.V. Karlin and M. Kröger, From hyperbolic regularization to exact hydrodynamics for linearized Grad’s equations, Phys. Rev. E 75, 051204 (2007). M. Colangeli, I.V. Karlin and M. Kröger, From hyperbolic regularization to exact hydrodynamics for linearized Grad’s equations, Phys. Rev. E 75, 051204 (2007).
3.
go back to reference M. Colangeli, I.V. Karlin and M. Kröger, Hyperbolicity of exact hydrodynamics for three-dimensional linearized Grad’s equations, Phys. Rev. E 76, 022201 (2007). M. Colangeli, I.V. Karlin and M. Kröger, Hyperbolicity of exact hydrodynamics for three-dimensional linearized Grad’s equations, Phys. Rev. E 76, 022201 (2007).
4.
go back to reference A.V. Bobylev, Sov. Phys. Dokl. 27, 29 (1982). A.V. Bobylev, Sov. Phys. Dokl. 27, 29 (1982).
5.
go back to reference H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows. Approximation Methods in Kinetic Theory, (Springer-Verlag Berlin Heidelberg 2005). H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows. Approximation Methods in Kinetic Theory, (Springer-Verlag Berlin Heidelberg 2005).
6.
go back to reference H. Struchtrup and M. Torrilhon, H-theorem, regularization, and boundary conditions for linearized 13 moment equations, Phys. Rev. Lett. 99, 014502 (2007). H. Struchtrup and M. Torrilhon, H-theorem, regularization, and boundary conditions for linearized 13 moment equations, Phys. Rev. Lett. 99, 014502 (2007).
7.
go back to reference A.V. Bobylev, Instabilities in the Chapman-Enskog expansion and hyperbolic Burnett equations, J. Stat. Phys. 124, 371 (2006). A.V. Bobylev, Instabilities in the Chapman-Enskog expansion and hyperbolic Burnett equations, J. Stat. Phys. 124, 371 (2006).
8.
go back to reference M. Colangeli, M. Kröger and H. C.Öttinger, Boltzmann equation and hydrodynamic fluctuations, Phys. Rev. E 80, 051202 (2009). M. Colangeli, M. Kröger and H. C.Öttinger, Boltzmann equation and hydrodynamic fluctuations, Phys. Rev. E 80, 051202 (2009).
9.
go back to reference P.L. Bhatnagar, E.P. Gross and M. Krook, A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev. 94, 511 (1954). P.L. Bhatnagar, E.P. Gross and M. Krook, A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev. 94, 511 (1954).
10.
go back to reference U. Marini Bettolo Marconi, A. Puglisi, L. Rondoni and A. Vulpiani, Fluctuation-Dissipation: Response Theory in Statistical Physics, Phys. Rep. 461, 111 (2008). U. Marini Bettolo Marconi, A. Puglisi, L. Rondoni and A. Vulpiani, Fluctuation-Dissipation: Response Theory in Statistical Physics, Phys. Rep. 461, 111 (2008).
11.
go back to reference L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91, 1505 (1953). L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91, 1505 (1953).
12.
go back to reference J. L. Lebowitz, E. Presutti and H. Spohn, Microscopic Models of Hydrodynamic Behavior, J. Stat. Phys. 51, 841 (1988). J. L. Lebowitz, E. Presutti and H. Spohn, Microscopic Models of Hydrodynamic Behavior, J. Stat. Phys. 51, 841 (1988).
13.
go back to reference I.V. Karlin, M. Colangeli and M. Kröger, Exact linear hydrodynamics from the Boltzmann Equation, Phys. Rev. Lett. 100, 214503 (2008). I.V. Karlin, M. Colangeli and M. Kröger, Exact linear hydrodynamics from the Boltzmann Equation, Phys. Rev. Lett. 100, 214503 (2008).
14.
go back to reference P. Resibois, On linearized hydrodynamic modes in statistical physics, J. Stat. Phys. 2, 1 (1970). P. Resibois, On linearized hydrodynamic modes in statistical physics, J. Stat. Phys. 2, 1 (1970).
15.
go back to reference J. M. Blatt, Model equations in the kinetic theory of gases, J. Phys. A: Math. Theor. 8, 980 (1975). J. M. Blatt, Model equations in the kinetic theory of gases, J. Phys. A: Math. Theor. 8, 980 (1975).
16.
go back to reference R. Balescu, Equilibrium and nonequilibrium statistical mechanics (Wiley, 1975). R. Balescu, Equilibrium and nonequilibrium statistical mechanics (Wiley, 1975).
17.
go back to reference L. E. Reichl, A modern course in statistical physics (University of Texas Press, Austin, 1980). L. E. Reichl, A modern course in statistical physics (University of Texas Press, Austin, 1980).
18.
go back to reference M. Kröger, Models for Polymeric and Anisotropic Liquids (Springer, Berlin, 2005). M. Kröger, Models for Polymeric and Anisotropic Liquids (Springer, Berlin, 2005).
19.
go back to reference S. Hess and W. Köhler, Formeln zur Tensor-Rechnung (Palm & Enke, Erlangen, 1980). S. Hess and W. Köhler, Formeln zur Tensor-Rechnung (Palm & Enke, Erlangen, 1980).
20.
go back to reference M. Abramowitz and I.A. Stegun, Handbook of mathematical functions (National Bureau of Standards, Washington, 1967). M. Abramowitz and I.A. Stegun, Handbook of mathematical functions (National Bureau of Standards, Washington, 1967).
21.
go back to reference J.P. Boon and S. Yip, Molecular Hydrodynamics (Dover, 1991). J.P. Boon and S. Yip, Molecular Hydrodynamics (Dover, 1991).
22.
go back to reference C. Cercignani, Theory and Application of the Boltzmann Equation (Scottish Academic Press, Edinburgh, 1975). C. Cercignani, Theory and Application of the Boltzmann Equation (Scottish Academic Press, Edinburgh, 1975).
23.
go back to reference S.S. Chikatamarla, S. Ansumali and I.V. Karlin, Entropic Lattice Boltzmann Models for Hydrodynamics in Three Dimensions, Phys. Rev. Lett. 97, 010201 (2006). S.S. Chikatamarla, S. Ansumali and I.V. Karlin, Entropic Lattice Boltzmann Models for Hydrodynamics in Three Dimensions, Phys. Rev. Lett. 97, 010201 (2006).
24.
go back to reference H. C.Öttinger and H. Struchtrup, The mathematical procedure of coarse graining: From Grad’s ten-moment equations to hydrodynamics, Multiscale Model. Simul. 6, 53 (2007). H. C.Öttinger and H. Struchtrup, The mathematical procedure of coarse graining: From Grad’s ten-moment equations to hydrodynamics, Multiscale Model. Simul. 6, 53 (2007).
25.
go back to reference C. S. Wang Chang and G.E. Uhlenbeck, The kinetic theory of gases (Amsterdam, North-Holland Pub. Co., 1970). C. S. Wang Chang and G.E. Uhlenbeck, The kinetic theory of gases (Amsterdam, North-Holland Pub. Co., 1970).
26.
go back to reference M. Kröger and M. Hütter, Unifying kinetic approach to phoretic forces and torques for moving and rotating convex particles, J. Chem. Phys. 125, 044105 (2006). M. Kröger and M. Hütter, Unifying kinetic approach to phoretic forces and torques for moving and rotating convex particles, J. Chem. Phys. 125, 044105 (2006).
27.
go back to reference D. Burnett, The distribution of velocities and mean motion in a slight nonuniform gas, Proc. London Math. Soc. 39, 385 (1935). D. Burnett, The distribution of velocities and mean motion in a slight nonuniform gas, Proc. London Math. Soc. 39, 385 (1935).
28.
go back to reference A. N. Gorban and I. V. Karlin, Reconstruction lemma and fluctuation-dissipation theorem, Revista Mexicana de Fisica 48, Suppl. 1, 238 (2002). A. N. Gorban and I. V. Karlin, Reconstruction lemma and fluctuation-dissipation theorem, Revista Mexicana de Fisica 48, Suppl. 1, 238 (2002).
29.
go back to reference L. Rondoni and E. G. D. Cohen, On some derivations of irreversible thermodynamics from dynamical systems theory, Physica D 341 168, (2002). L. Rondoni and E. G. D. Cohen, On some derivations of irreversible thermodynamics from dynamical systems theory, Physica D 341 168, (2002).
30.
go back to reference M. Colangeli and L. Rondoni, Equilibrium, fluctuation relations and transport for irreversible deterministic dynamics, Physica D 241 681 (2012). M. Colangeli and L. Rondoni, Equilibrium, fluctuation relations and transport for irreversible deterministic dynamics, Physica D 241 681 (2012).
31.
go back to reference D. Forster, Hydrodynamic fluctuations, Broken Symmetry, and Correlation Functions (W. A. Benjamin, New York, 1975). D. Forster, Hydrodynamic fluctuations, Broken Symmetry, and Correlation Functions (W. A. Benjamin, New York, 1975).
32.
go back to reference E. Meyer and G. Sessler, Schallausbreitung in Gasen bei hohen Frequenzen and sehr niedrigen Drucken, Z. Phys. 149, 15 (1947). E. Meyer and G. Sessler, Schallausbreitung in Gasen bei hohen Frequenzen and sehr niedrigen Drucken, Z. Phys. 149, 15 (1947).
33.
go back to reference I. M. de Schepper and E. G. D. Cohen, Very-short-wavelength collective modes in fluids, J. Stat. Phys. 27, 2 (1982). I. M. de Schepper and E. G. D. Cohen, Very-short-wavelength collective modes in fluids, J. Stat. Phys. 27, 2 (1982).
34.
go back to reference J. D. Foch and G. W. Ford, in Studies in Statistical Mechanics (North-Holland, Amsterdam, 1970). J. D. Foch and G. W. Ford, in Studies in Statistical Mechanics (North-Holland, Amsterdam, 1970).
35.
go back to reference B.J. Alder and W.E. Alley, Generalized hydrodynamics, Phys. Today 37, 56 (1984). B.J. Alder and W.E. Alley, Generalized hydrodynamics, Phys. Today 37, 56 (1984).
36.
go back to reference B. J. Alder and W.E. Alley, Generalized transport coefficients for hard spheres, Phys. Rev. A 27, 3158 (1983). B. J. Alder and W.E. Alley, Generalized transport coefficients for hard spheres, Phys. Rev. A 27, 3158 (1983).
37.
go back to reference T. R. Kirkpatrick, Short-wavelength collective modes and generalized hydrodynamic equations for hard-sphere particles, Phys. Rev. A 32, 3130 (1985). T. R. Kirkpatrick, Short-wavelength collective modes and generalized hydrodynamic equations for hard-sphere particles, Phys. Rev. A 32, 3130 (1985).
38.
go back to reference H. Grad, On the kinetic theory of rarefied gases, Comm. Pure and Appl. Math. 2, 331 (1949). H. Grad, On the kinetic theory of rarefied gases, Comm. Pure and Appl. Math. 2, 331 (1949).
Metadata
Title
Hydrodynamic Fluctuations from the Boltzmann Equation
Author
Matteo Colangeli
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6306-1_5

Premium Partner