Skip to main content
Top

2020 | OriginalPaper | Chapter

5. Hydrogel Responsive Nanomaterials for Colorimetric Chemical Sensors

Authors : Dandan Men, Honghua Zhang, Yue Li

Published in: Responsive Nanomaterials for Sustainable Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The stimuli-responsive hydrogels are three-dimensional hydrophilic polymeric networks with a fascinating property that they will undergo an obvious and reversible volumetric variation in response to a small variation of external environmental stimuli. In particular, combining of the stimuli-responsive hydrogels with photonic crystals (PCs) or Au nanoparticles (NPs), the volumetric variation responded to external stimuli could be converted into a color change, thus creating a kind of colorimetric sensors. These colorimetric sensors attract more and more interest of researchers in different fields due to their simple operation and visualized readout. Herein, after presenting a brief review on the basis concept, synthesis methods and sensitive mechanisms of the stimuli-responsive hydrogels, this chapter mainly focuses on their applications as colorimetric chemical sensors by combining with PCs. And some typical applications are proposed in detail, such as detecting pH value, ionic species, solvents, humidity, and biomolecules. In order to meet the increasing requirements of practical applications, the selectivity, response rate, and resolution ratio of these colorimetric sensors need to be improved in the near further.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Mahinroosta, Z.J. Farsangi, A. Allahverdi et al., Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mater. Today Chem. 8, 42–55 (2018)CrossRef M. Mahinroosta, Z.J. Farsangi, A. Allahverdi et al., Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mater. Today Chem. 8, 42–55 (2018)CrossRef
2.
go back to reference T.E. Brown, B.J. Carberry, B.T. Worrell et al., Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange. Biomaterials 178, 496–503 (2018)CrossRef T.E. Brown, B.J. Carberry, B.T. Worrell et al., Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange. Biomaterials 178, 496–503 (2018)CrossRef
3.
go back to reference B.H. Cipriano, S.J. Banik, R. Sharma et al., Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules 47(13), 4445–4452 (2014)CrossRef B.H. Cipriano, S.J. Banik, R. Sharma et al., Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules 47(13), 4445–4452 (2014)CrossRef
4.
go back to reference M.T.I. Mredha, Y.Z. Guo, T. Nonoyama et al., A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv. Mater. 30(9), 1704937 (2018)CrossRef M.T.I. Mredha, Y.Z. Guo, T. Nonoyama et al., A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv. Mater. 30(9), 1704937 (2018)CrossRef
5.
go back to reference Y. Zhou, M. Layani, S.C. Wang et al., Fully printed flexible smart hybrid hydrogels. Adv. Funct. Mater. 28(9), 1705365 (2018)CrossRef Y. Zhou, M. Layani, S.C. Wang et al., Fully printed flexible smart hybrid hydrogels. Adv. Funct. Mater. 28(9), 1705365 (2018)CrossRef
6.
go back to reference I. Tokarev, S. Minko, Stimuli-responsive hydrogel thin films. Soft Matter 5(3), 511–524 (2009)CrossRef I. Tokarev, S. Minko, Stimuli-responsive hydrogel thin films. Soft Matter 5(3), 511–524 (2009)CrossRef
7.
go back to reference A. Richter, G. Paschew, S. Klatt et al., Review on hydrogel-based pH sensors and microsensors. Sensors 8(1), 561–581 (2008)CrossRef A. Richter, G. Paschew, S. Klatt et al., Review on hydrogel-based pH sensors and microsensors. Sensors 8(1), 561–581 (2008)CrossRef
8.
go back to reference S. Basu, H.S. Samanta, J. Ganguly, Green synthesis and swelling behavior of Ag-nanocomposite semi-IPN hydrogels and their drug delivery using dolichos biflorus linn. Soft Mater 16(1), 7–19 (2018)CrossRef S. Basu, H.S. Samanta, J. Ganguly, Green synthesis and swelling behavior of Ag-nanocomposite semi-IPN hydrogels and their drug delivery using dolichos biflorus linn. Soft Mater 16(1), 7–19 (2018)CrossRef
9.
go back to reference T. Montheil, C. Echalier, J. Martinez et al., Inorganic polymerization: an attractive route to biocompatible hybrid hydrogels. J. Mater. Chem. B 6(21), 3434–3448 (2018)CrossRef T. Montheil, C. Echalier, J. Martinez et al., Inorganic polymerization: an attractive route to biocompatible hybrid hydrogels. J. Mater. Chem. B 6(21), 3434–3448 (2018)CrossRef
10.
go back to reference S.L. Vega, M.Y. Kwon, K.H. Song et al., Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nat. Commun. 9, 614 (2018)CrossRef S.L. Vega, M.Y. Kwon, K.H. Song et al., Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nat. Commun. 9, 614 (2018)CrossRef
11.
go back to reference S.J. Buwalda, K.W.M. Boere, P.J. Dijkstra et al., Hydrogels in a historical perspective: from simple networks to smart materials. J. Control. Rel. 190, 254–273 (2014)CrossRef S.J. Buwalda, K.W.M. Boere, P.J. Dijkstra et al., Hydrogels in a historical perspective: from simple networks to smart materials. J. Control. Rel. 190, 254–273 (2014)CrossRef
12.
go back to reference A.M. Rosales, K.S. Anseth, The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 1(2), 15012 (2016)CrossRef A.M. Rosales, K.S. Anseth, The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 1(2), 15012 (2016)CrossRef
13.
go back to reference B.H. Hu, C.O. Owh, P.L. Chee et al., Supramolecular hydrogels for antimicrobial therapy. Chem. Soc. Rev. 47(18), 6917–6929 (2018)CrossRef B.H. Hu, C.O. Owh, P.L. Chee et al., Supramolecular hydrogels for antimicrobial therapy. Chem. Soc. Rev. 47(18), 6917–6929 (2018)CrossRef
14.
go back to reference S.Y. Chin, Y.C. Poh, A.C. Kohler et al., Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices. Sci. Robot. 2(2), 6451 (2017)CrossRef S.Y. Chin, Y.C. Poh, A.C. Kohler et al., Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices. Sci. Robot. 2(2), 6451 (2017)CrossRef
15.
go back to reference Q.F. Rong, W.W. Lei, M.J. Liu, Conductive hydrogels as smart materials for flexible electronic devices. Chemistry–A European Journal 24(64), 16930–16943 (2018)CrossRef Q.F. Rong, W.W. Lei, M.J. Liu, Conductive hydrogels as smart materials for flexible electronic devices. Chemistry–A European Journal 24(64), 16930–16943 (2018)CrossRef
16.
go back to reference H.Y. Peng, W. Wang, F.H. Gao et al., Ultrasensitive diffraction gratings based on smart hydrogels for highly selective and rapid detection of trace heavy metal ions. J. Mater. Chem. C 6(42), 11356–11367 (2018)CrossRef H.Y. Peng, W. Wang, F.H. Gao et al., Ultrasensitive diffraction gratings based on smart hydrogels for highly selective and rapid detection of trace heavy metal ions. J. Mater. Chem. C 6(42), 11356–11367 (2018)CrossRef
17.
go back to reference Q.S. Chen, W.H. Shi, M.F. Cheng et al., Molecularly imprinted photonic hydrogel sensor for optical detection of L-histidine. Microchim. Acta 185(12), 557 (2018)CrossRef Q.S. Chen, W.H. Shi, M.F. Cheng et al., Molecularly imprinted photonic hydrogel sensor for optical detection of L-histidine. Microchim. Acta 185(12), 557 (2018)CrossRef
18.
go back to reference R. Wu, S.H. Zhang, Q. Zhang et al., Volumetric hydrogel sensor enables visual and quantitative detection of sulfion. Sensor. Actuat. B: Chem. 282, 750–755 (2019)CrossRef R. Wu, S.H. Zhang, Q. Zhang et al., Volumetric hydrogel sensor enables visual and quantitative detection of sulfion. Sensor. Actuat. B: Chem. 282, 750–755 (2019)CrossRef
19.
go back to reference Z.Y. Lei, Q.K. Wang, S.T. Sun et al., A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 29(22), 1700321 (2017)CrossRef Z.Y. Lei, Q.K. Wang, S.T. Sun et al., A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 29(22), 1700321 (2017)CrossRef
20.
go back to reference M.Q. Li, H.W. Liao, Q.L. Deng et al., Preparation of an intelligent hydrogel sensor based on g-C3N4 nanosheets for selective detection of Ag+. J. Macromol. Sci. Part A 55(5), 408–413 (2018)CrossRef M.Q. Li, H.W. Liao, Q.L. Deng et al., Preparation of an intelligent hydrogel sensor based on g-C3N4 nanosheets for selective detection of Ag+. J. Macromol. Sci. Part A 55(5), 408–413 (2018)CrossRef
21.
go back to reference C. Chen, Z.Q. Dong, J.H. Shen et al., 2D photonic crystal hydrogel sensor for tear glucose monitoring. ACS Omega 3(3), 3211–3217 (2018)CrossRef C. Chen, Z.Q. Dong, J.H. Shen et al., 2D photonic crystal hydrogel sensor for tear glucose monitoring. ACS Omega 3(3), 3211–3217 (2018)CrossRef
22.
go back to reference J. Nam, I.B. Jung, B. Kim et al., A colorimetric hydrogel biosensor for rapid detection of nitrite ions. Sensor. Actuat. B: Chem. 270, 112–118 (2018)CrossRef J. Nam, I.B. Jung, B. Kim et al., A colorimetric hydrogel biosensor for rapid detection of nitrite ions. Sensor. Actuat. B: Chem. 270, 112–118 (2018)CrossRef
23.
go back to reference H. Liu, M.X. Li, C. Ouyang et al., Biofriendly, stretchable, and reusable hydrogel electronics as wearable force sensors. Small 14(36), 1801711 (2018)CrossRef H. Liu, M.X. Li, C. Ouyang et al., Biofriendly, stretchable, and reusable hydrogel electronics as wearable force sensors. Small 14(36), 1801711 (2018)CrossRef
24.
go back to reference J.J. Qin, B.H. Dong, L.X. Cao et al., Photonic hydrogels for the ultratrace sensing of divalent beryllium in seawater. J. Mater. Chem. C 6(15), 4234–4242 (2018)CrossRef J.J. Qin, B.H. Dong, L.X. Cao et al., Photonic hydrogels for the ultratrace sensing of divalent beryllium in seawater. J. Mater. Chem. C 6(15), 4234–4242 (2018)CrossRef
25.
go back to reference R. Wu, S.H. Zhang, J. Lyu et al., A visual volumetric hydrogel sensor enables quantitative and sensitive detection of copper ions. Chem. Commun. 51(38), 8078–8081 (2015)CrossRef R. Wu, S.H. Zhang, J. Lyu et al., A visual volumetric hydrogel sensor enables quantitative and sensitive detection of copper ions. Chem. Commun. 51(38), 8078–8081 (2015)CrossRef
26.
go back to reference I. Willner, Stimuli-controlled hydrogels and their applications. Acc. Chem. Res. 50(4), 657–658 (2017)CrossRef I. Willner, Stimuli-controlled hydrogels and their applications. Acc. Chem. Res. 50(4), 657–658 (2017)CrossRef
27.
go back to reference M. Sun, R.B. Bai, X.Y. Yang et al., Hydrogels: hydrogel interferometry for ultrasensitive and highly selective chemical detection. Adv. Mater. 30(46), 1870352 (2018)CrossRef M. Sun, R.B. Bai, X.Y. Yang et al., Hydrogels: hydrogel interferometry for ultrasensitive and highly selective chemical detection. Adv. Mater. 30(46), 1870352 (2018)CrossRef
28.
go back to reference H.Z. Kang, A.C. Trondoli, G.Z. Zhu et al., Near-infrared light-responsive core-shell nanogels for targeted drug delivery. ACS Nano 5(6), 5094–5099 (2011)CrossRef H.Z. Kang, A.C. Trondoli, G.Z. Zhu et al., Near-infrared light-responsive core-shell nanogels for targeted drug delivery. ACS Nano 5(6), 5094–5099 (2011)CrossRef
29.
go back to reference T. Jing, H.R. Du, Q. Dai et al., Magnetic molecularly imprinted nanoparticles for recognition of lysozyme. Biosensor. Bioelectro 26(2), 301–306 (2010)CrossRef T. Jing, H.R. Du, Q. Dai et al., Magnetic molecularly imprinted nanoparticles for recognition of lysozyme. Biosensor. Bioelectro 26(2), 301–306 (2010)CrossRef
30.
go back to reference B.G. Kabra, S.H. Gehrke, R.J. Spontak, Microporous, responsive hydroxypropyl cellulose gels. 1. Synthesis and microstructure. Macromolecules 31(7), 2166–2173 (1998)CrossRef B.G. Kabra, S.H. Gehrke, R.J. Spontak, Microporous, responsive hydroxypropyl cellulose gels. 1. Synthesis and microstructure. Macromolecules 31(7), 2166–2173 (1998)CrossRef
31.
go back to reference W.A. Laftah, S. Hashim, A.N. Ibrahim, Polymer hydrogels: a review. Polym. Plast. Technol. 50(14), 1475–1486 (2011)CrossRef W.A. Laftah, S. Hashim, A.N. Ibrahim, Polymer hydrogels: a review. Polym. Plast. Technol. 50(14), 1475–1486 (2011)CrossRef
32.
go back to reference I. Tokarev, S. Minko, Stimuli-responsive porous hydrogels at interfaces for molecular filtration, separation, controlled release, and gating in capsules and membranes. Adv. Mater. 22(31), 3446–3462 (2010)CrossRef I. Tokarev, S. Minko, Stimuli-responsive porous hydrogels at interfaces for molecular filtration, separation, controlled release, and gating in capsules and membranes. Adv. Mater. 22(31), 3446–3462 (2010)CrossRef
33.
go back to reference H. Li, T.Y. Ng, Y.K. Yew et al., Modeling and simulation of the swelling behavior of pH-stimulus-responsive hydrogels. Biomacromol 6(1), 109–120 (2005)CrossRef H. Li, T.Y. Ng, Y.K. Yew et al., Modeling and simulation of the swelling behavior of pH-stimulus-responsive hydrogels. Biomacromol 6(1), 109–120 (2005)CrossRef
34.
go back to reference A. Döring, W. Birnbaum, D. Kuckling, Responsive hydrogels-structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. Chem. Soc. Rev. 42(17), 7391–7420 (2013)CrossRef A. Döring, W. Birnbaum, D. Kuckling, Responsive hydrogels-structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. Chem. Soc. Rev. 42(17), 7391–7420 (2013)CrossRef
35.
go back to reference R.V. Kulkarni, S.A. Biswanath, Electrically responsive smart hydrogels in drug delivery: a review. J. Appl. Biomater. Funct. Mater. 5(3), 125–139 (2007) R.V. Kulkarni, S.A. Biswanath, Electrically responsive smart hydrogels in drug delivery: a review. J. Appl. Biomater. Funct. Mater. 5(3), 125–139 (2007)
36.
go back to reference A.L. Navarro-Verdugo, F.M. Goycoolea, G. Romero-Meléndez et al., A modified Boltzmann sigmoidal model for the phase transition of smart gels. Soft Mater. 7(12), 5847–5853 (2011)CrossRef A.L. Navarro-Verdugo, F.M. Goycoolea, G. Romero-Meléndez et al., A modified Boltzmann sigmoidal model for the phase transition of smart gels. Soft Mater. 7(12), 5847–5853 (2011)CrossRef
37.
go back to reference Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliver. Rev 53(3), 321–339 (2001)CrossRef Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliver. Rev 53(3), 321–339 (2001)CrossRef
38.
go back to reference Y. Ogawa, K. Ogawa, E. Kokufuta, Swelling-shrinking behavior of a polyampholyte gel composed of positively charged networks with immobilized polyanions. Langmuir 20(7), 2546–2552 (2004)CrossRef Y. Ogawa, K. Ogawa, E. Kokufuta, Swelling-shrinking behavior of a polyampholyte gel composed of positively charged networks with immobilized polyanions. Langmuir 20(7), 2546–2552 (2004)CrossRef
39.
go back to reference F. Ganji, F.S. Vasheghani, F.E. Vasheghani, Theoretical description of hydrogel swelling: a review. Iran. Polym. J. 19(5), 375–398 (2010) F. Ganji, F.S. Vasheghani, F.E. Vasheghani, Theoretical description of hydrogel swelling: a review. Iran. Polym. J. 19(5), 375–398 (2010)
40.
go back to reference J. Kim, M.J. Serpe, L.A. Lyon, Hydrogel microparticles as dynamically tunable microlenses. J. Am. Chem. Soc. 126(31), 9512–9513 (2004)CrossRef J. Kim, M.J. Serpe, L.A. Lyon, Hydrogel microparticles as dynamically tunable microlenses. J. Am. Chem. Soc. 126(31), 9512–9513 (2004)CrossRef
41.
go back to reference H.L. Li, D.D. Men, Y.Q. Sun et al., Optical sensing properties of Au nanoparticle/hydrogel composite microbeads using droplet microfluidics. Nanotechnology 28, 405502 (2017)CrossRef H.L. Li, D.D. Men, Y.Q. Sun et al., Optical sensing properties of Au nanoparticle/hydrogel composite microbeads using droplet microfluidics. Nanotechnology 28, 405502 (2017)CrossRef
42.
go back to reference X.L. Xiong, C.C. Wu, C.S. Zhou et al., Responsive DNA-based hydrogels and their applications. Macromol. Rapid Commun. 34(16), 1271–1283 (2013)CrossRef X.L. Xiong, C.C. Wu, C.S. Zhou et al., Responsive DNA-based hydrogels and their applications. Macromol. Rapid Commun. 34(16), 1271–1283 (2013)CrossRef
43.
go back to reference D.D. Men, H.H. Zhang, Y. Li et al., Optical sensor based on hydrogel films with 2D colloidal arrays attached on both the surfaces: anti-curling performance and enhanced optical diffraction intensity. J. Mater. Chem. C 3, 3659–3665 (2015)CrossRef D.D. Men, H.H. Zhang, Y. Li et al., Optical sensor based on hydrogel films with 2D colloidal arrays attached on both the surfaces: anti-curling performance and enhanced optical diffraction intensity. J. Mater. Chem. C 3, 3659–3665 (2015)CrossRef
44.
go back to reference D.D. Men, F. Zhou, Y. Li et al., Gold nanoshell arrays-based visualized sensors of pH: Facile fabrication and high diffraction intensity. J. Mater. Res. 32(4), 717–725 (2017)CrossRef D.D. Men, F. Zhou, Y. Li et al., Gold nanoshell arrays-based visualized sensors of pH: Facile fabrication and high diffraction intensity. J. Mater. Res. 32(4), 717–725 (2017)CrossRef
45.
go back to reference D.D. Men, L.F. Hang, Y. Li et al., 3-Acrylamidophenylboronic acid-modified hydrogel film attached to a gold nanosphere array to detect hydrofluoric acid with good selectivity and recyclability. Chem. Nano Mat. 4(2), 165–169 (2018) D.D. Men, L.F. Hang, Y. Li et al., 3-Acrylamidophenylboronic acid-modified hydrogel film attached to a gold nanosphere array to detect hydrofluoric acid with good selectivity and recyclability. Chem. Nano Mat. 4(2), 165–169 (2018)
46.
go back to reference X.G. Han, Y.D. Liu, Y.D. Yin, Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Lett. 14(5), 2466–2470 (2014)CrossRef X.G. Han, Y.D. Liu, Y.D. Yin, Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Lett. 14(5), 2466–2470 (2014)CrossRef
47.
go back to reference C. Fenzl, S. Wilhelm, T. Hirsch et al., Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix. ACS Appl. Mater. Interfaces 5(1), 173–178 (2013)CrossRef C. Fenzl, S. Wilhelm, T. Hirsch et al., Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix. ACS Appl. Mater. Interfaces 5(1), 173–178 (2013)CrossRef
48.
go back to reference L. Nucara, V. Piazza, F. Greco et al., Ionic strength responsive sulfonated polystyrene opals. ACS Appl. Mater. Interfaces 9(5), 4818–4827 (2017)CrossRef L. Nucara, V. Piazza, F. Greco et al., Ionic strength responsive sulfonated polystyrene opals. ACS Appl. Mater. Interfaces 9(5), 4818–4827 (2017)CrossRef
49.
go back to reference J.P. Couturier, M. Sütterlin, A. Laschewsky et al., Responsive inverse opal hydrogels for the sensing of macromolecules. Angew. Chem. Int. Ed. 54(22), 6641–6644 (2015)CrossRef J.P. Couturier, M. Sütterlin, A. Laschewsky et al., Responsive inverse opal hydrogels for the sensing of macromolecules. Angew. Chem. Int. Ed. 54(22), 6641–6644 (2015)CrossRef
50.
go back to reference G.B. Huang, Y.B. Yin, Z. Pan et al., Fabrication of 3D photonic crystals from chitosan that are responsive to organic solvents. Biomacromol 15(12), 4396–4402 (2014)CrossRef G.B. Huang, Y.B. Yin, Z. Pan et al., Fabrication of 3D photonic crystals from chitosan that are responsive to organic solvents. Biomacromol 15(12), 4396–4402 (2014)CrossRef
51.
go back to reference C. Fenzl, T. Hirsch, O.S. Wolfbeis, Photonic crystals for chemical sensing and biosensing. Angew. Chem. Int. Ed. 53(13), 3318–3335 (2014)CrossRef C. Fenzl, T. Hirsch, O.S. Wolfbeis, Photonic crystals for chemical sensing and biosensing. Angew. Chem. Int. Ed. 53(13), 3318–3335 (2014)CrossRef
52.
go back to reference J.Y. Xu, C.X. Yan, C. Liu et al., Photonic crystal hydrogel sensor for detection of nerve agent. IOP Conf. Ser.: Mater. Sci. Eng. 167(1), 012024 (2017) J.Y. Xu, C.X. Yan, C. Liu et al., Photonic crystal hydrogel sensor for detection of nerve agent. IOP Conf. Ser.: Mater. Sci. Eng. 167(1), 012024 (2017)
53.
go back to reference H. Xu, J.Y. Zhang, Y.S. Xu et al., Down’s syndrome screening with hydrogel photonic barcodes. Sensor. Actuat. B: Chem. 255, 2690–2696 (2018)CrossRef H. Xu, J.Y. Zhang, Y.S. Xu et al., Down’s syndrome screening with hydrogel photonic barcodes. Sensor. Actuat. B: Chem. 255, 2690–2696 (2018)CrossRef
54.
go back to reference Y.S. Xu, H. Wang, C.X. Luan et al., Porous hydrogel encapsulated photonic barcodes for multiplex microRNA quantification. Adv. Funct. Mater. 28(1), 1704458 (2018)CrossRef Y.S. Xu, H. Wang, C.X. Luan et al., Porous hydrogel encapsulated photonic barcodes for multiplex microRNA quantification. Adv. Funct. Mater. 28(1), 1704458 (2018)CrossRef
55.
go back to reference Y.J. Zhao, X.W. Zhao, Z.Z. Gu, Photonic crystals in bioassays. Adv. Funct. Mater. 20(18), 2970–2988 (2010)CrossRef Y.J. Zhao, X.W. Zhao, Z.Z. Gu, Photonic crystals in bioassays. Adv. Funct. Mater. 20(18), 2970–2988 (2010)CrossRef
56.
go back to reference K.I. MacConaghy, C.I. Geary, J.L. Kaar et al., Photonic crystal kinase biosensor. J. Am. Chem. Soc. 136(19), 6896–6899 (2014)CrossRef K.I. MacConaghy, C.I. Geary, J.L. Kaar et al., Photonic crystal kinase biosensor. J. Am. Chem. Soc. 136(19), 6896–6899 (2014)CrossRef
57.
go back to reference D.D. Men, D.L. Liu, Y. Li, Visualized optical sensors based on two/three-dimensional photonic crystals for biochemicals. Sci. Bul. 61(17), 1358–1371 (2016)CrossRef D.D. Men, D.L. Liu, Y. Li, Visualized optical sensors based on two/three-dimensional photonic crystals for biochemicals. Sci. Bul. 61(17), 1358–1371 (2016)CrossRef
58.
go back to reference J.P. Ge, Y.D. Yin, Responsive photonic crystals. Angew. Chem. Int. Ed. 50(7), 1492–1522 (2011)CrossRef J.P. Ge, Y.D. Yin, Responsive photonic crystals. Angew. Chem. Int. Ed. 50(7), 1492–1522 (2011)CrossRef
59.
go back to reference P. Lova, G. Manfredi, D. Comoretto, Advances in functional solution processed planar 1D photonic crystals. Adv. Opt. Mater. 1800730 (2018) P. Lova, G. Manfredi, D. Comoretto, Advances in functional solution processed planar 1D photonic crystals. Adv. Opt. Mater. 1800730 (2018)
60.
go back to reference J. Sevilla, A. Andueza, Optical sensing based on photonic crystal structures. Fiber Opt. Sens. 21, 223–240 (2017)CrossRef J. Sevilla, A. Andueza, Optical sensing based on photonic crystal structures. Fiber Opt. Sens. 21, 223–240 (2017)CrossRef
61.
go back to reference C.I. Aguirre, E. Reguera, A. Stein, Tunable colors in opals and inverse opal photonic crystals. Adv. Funct. Mater. 20(16), 2565–2578 (2010)CrossRef C.I. Aguirre, E. Reguera, A. Stein, Tunable colors in opals and inverse opal photonic crystals. Adv. Funct. Mater. 20(16), 2565–2578 (2010)CrossRef
62.
go back to reference H. Wang, K.Q. Zhang, Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 13(4), 4192–4213 (2013)CrossRef H. Wang, K.Q. Zhang, Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 13(4), 4192–4213 (2013)CrossRef
63.
go back to reference Y.J. Zhao, Z.Y. Xie, H.C. Gu et al., Bio-inspired variable structural color materials. Chem. Soc. Rev. 41(8), 3297–3317 (2012)CrossRef Y.J. Zhao, Z.Y. Xie, H.C. Gu et al., Bio-inspired variable structural color materials. Chem. Soc. Rev. 41(8), 3297–3317 (2012)CrossRef
64.
go back to reference S.J. Jeon, M.C. Chiappelli, R.C. Hayward, Photocrosslinkable nanocomposite multilayers for responsive 1D photonic crystals. Adv. Funct. Mater. 26(5), 722–728 (2016)CrossRef S.J. Jeon, M.C. Chiappelli, R.C. Hayward, Photocrosslinkable nanocomposite multilayers for responsive 1D photonic crystals. Adv. Funct. Mater. 26(5), 722–728 (2016)CrossRef
65.
go back to reference W.D. Zhao, M.H. Quan, Z.Q. Cao et al., Visual multi-triggered sensor based on inverse opal hydrogel. Colloid. Surf. A: Physicochem. Eng. 554, 93–99 (2018)CrossRef W.D. Zhao, M.H. Quan, Z.Q. Cao et al., Visual multi-triggered sensor based on inverse opal hydrogel. Colloid. Surf. A: Physicochem. Eng. 554, 93–99 (2018)CrossRef
66.
go back to reference Z. Hu, X. Lu, J. Gao, Hydrogel opals. Adv. Mater. 13(22), 1708–1712 (2001)CrossRef Z. Hu, X. Lu, J. Gao, Hydrogel opals. Adv. Mater. 13(22), 1708–1712 (2001)CrossRef
67.
go back to reference Y. Takeoka, M. Watanabe, Tuning structural color changes of porous thermosensitive gels through quantitative adjustment of the cross-linker in pre-gel solutions. Langmuir 19(22), 9104–9106 (2003)CrossRef Y. Takeoka, M. Watanabe, Tuning structural color changes of porous thermosensitive gels through quantitative adjustment of the cross-linker in pre-gel solutions. Langmuir 19(22), 9104–9106 (2003)CrossRef
68.
go back to reference K. Ueno, K. Matsubara, M. Watanabe et al., An electro-thermochromic hydrogel as a full-color indicator. Adv. Mater. 19(19), 2807–2812 (2007)CrossRef K. Ueno, K. Matsubara, M. Watanabe et al., An electro-thermochromic hydrogel as a full-color indicator. Adv. Mater. 19(19), 2807–2812 (2007)CrossRef
69.
go back to reference M.C. Chiappelli, R.C. Hayward, Photonic multilayer sensors from photo-crosslinkable polymer films. Adv. Mater. 24(45), 6100–6104 (2012)CrossRef M.C. Chiappelli, R.C. Hayward, Photonic multilayer sensors from photo-crosslinkable polymer films. Adv. Mater. 24(45), 6100–6104 (2012)CrossRef
70.
go back to reference J. Wang, Y. Hu, R. Deng et al., Multiresponsive hydrogel photonic crystal microparticles with inverse-opal structure. Langmuir 29(28), 8825–8834 (2013)CrossRef J. Wang, Y. Hu, R. Deng et al., Multiresponsive hydrogel photonic crystal microparticles with inverse-opal structure. Langmuir 29(28), 8825–8834 (2013)CrossRef
71.
go back to reference W.T. Wang, X.Q. Fan, F.H. Li et al., Magnetochromic photonic hydrogel for an alternating magnetic field-responsive color display. Adv. Opt. Mater. 6(4), 1701093 (2018)CrossRef W.T. Wang, X.Q. Fan, F.H. Li et al., Magnetochromic photonic hydrogel for an alternating magnetic field-responsive color display. Adv. Opt. Mater. 6(4), 1701093 (2018)CrossRef
72.
go back to reference D.D. Men, F. Zhou, Y. Li et al., A functional hydrogel film attached with a 2D Au nanosphere array and its ultrahigh optical diffraction intensity as a visualized sensor. J. Mater. Chem. C 4, 2117–2122 (2016)CrossRef D.D. Men, F. Zhou, Y. Li et al., A functional hydrogel film attached with a 2D Au nanosphere array and its ultrahigh optical diffraction intensity as a visualized sensor. J. Mater. Chem. C 4, 2117–2122 (2016)CrossRef
73.
go back to reference J. Shin, P.V. Braun, W. Lee, Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sensor. Actuat. B: Chem. 150(1), 183–190 (2010)CrossRef J. Shin, P.V. Braun, W. Lee, Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sensor. Actuat. B: Chem. 150(1), 183–190 (2010)CrossRef
74.
go back to reference E.T. Tian, Y. Ma, L.Y. Cui et al., Color-oscillating photonic crystal hydrogel. Macromol. Rapid Commun. 30(20), 1719–1724 (2009)CrossRef E.T. Tian, Y. Ma, L.Y. Cui et al., Color-oscillating photonic crystal hydrogel. Macromol. Rapid Commun. 30(20), 1719–1724 (2009)CrossRef
76.
go back to reference Y.J. Lee, P.V. Braun, Tunable inverse opal hydrogel pH sensors. Adv. Mater. 15(7–8), 563–566 (2003)CrossRef Y.J. Lee, P.V. Braun, Tunable inverse opal hydrogel pH sensors. Adv. Mater. 15(7–8), 563–566 (2003)CrossRef
77.
go back to reference J.Y. Wang, Y. Cao, Y. Feng et al., Multiresponsive inverse-opal hydrogels. Adv. Mater. 19(22), 3865–3871 (2007)CrossRef J.Y. Wang, Y. Cao, Y. Feng et al., Multiresponsive inverse-opal hydrogels. Adv. Mater. 19(22), 3865–3871 (2007)CrossRef
78.
go back to reference W. Luo, J.D. Yan, Y.L. Tan et al., Rotating 1-D magnetic photonic crystal balls with a tunable lattice constant. Nanoscale 9(27), 9548–9555 (2017)CrossRef W. Luo, J.D. Yan, Y.L. Tan et al., Rotating 1-D magnetic photonic crystal balls with a tunable lattice constant. Nanoscale 9(27), 9548–9555 (2017)CrossRef
79.
go back to reference A.V. Goponenko, S.A. Asher, Modeling of stimulated hydrogel volume changes in photonic crystal Pb2+ Sensing materials. J. Am. Chem. Soc. 127, 10753–10759 (2005)CrossRef A.V. Goponenko, S.A. Asher, Modeling of stimulated hydrogel volume changes in photonic crystal Pb2+ Sensing materials. J. Am. Chem. Soc. 127, 10753–10759 (2005)CrossRef
80.
go back to reference W. Hong, W.H. Li, X.B. Hu et al., Highly sensitive colorimetric sensing for heavy metal ions by strong polyelectrolyte photonic hydrogels. J. Mater. Chem. 21(43), 17193–17201 (2011)CrossRef W. Hong, W.H. Li, X.B. Hu et al., Highly sensitive colorimetric sensing for heavy metal ions by strong polyelectrolyte photonic hydrogels. J. Mater. Chem. 21(43), 17193–17201 (2011)CrossRef
81.
go back to reference W. Hong, X.B. Hu, B.Y. Zhao et al., Tunable photonic polyelectrolyte colorimetric sensing for anions, cations and zwitterions. Adv. Mater. 22(44), 5043–5047 (2010)CrossRef W. Hong, X.B. Hu, B.Y. Zhao et al., Tunable photonic polyelectrolyte colorimetric sensing for anions, cations and zwitterions. Adv. Mater. 22(44), 5043–5047 (2010)CrossRef
82.
go back to reference B.F. Ye, Y.J. Zhao, Y. Cheng et al., Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions. Nanoscale 4(19), 5998–6003 (2012)CrossRef B.F. Ye, Y.J. Zhao, Y. Cheng et al., Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions. Nanoscale 4(19), 5998–6003 (2012)CrossRef
83.
go back to reference C. Price, J. Carroll, T.L. Clare, Chemoresistive and photonic hydrogel sensors of transition metal ions via Hofmeister series principles. Sensor. Actuat. B: Chem. 256, 870–877 (2018)CrossRef C. Price, J. Carroll, T.L. Clare, Chemoresistive and photonic hydrogel sensors of transition metal ions via Hofmeister series principles. Sensor. Actuat. B: Chem. 256, 870–877 (2018)CrossRef
84.
go back to reference X. Jia, T. Zhang, J. Wang et al., Responsive photonic hydrogel-based colorimetric sensors for detection of aldehydes in aqueous solution. Langmuir 34(13), 3987–3992 (2018)CrossRef X. Jia, T. Zhang, J. Wang et al., Responsive photonic hydrogel-based colorimetric sensors for detection of aldehydes in aqueous solution. Langmuir 34(13), 3987–3992 (2018)CrossRef
85.
go back to reference C.J. Zhang, M.D. Losego, P.V. Braun, Hydrogel-based glucose sensors: effects of phenylboronic acid chemical structure on response. Chem. Mater. 25, 3239–3250 (2013)CrossRef C.J. Zhang, M.D. Losego, P.V. Braun, Hydrogel-based glucose sensors: effects of phenylboronic acid chemical structure on response. Chem. Mater. 25, 3239–3250 (2013)CrossRef
86.
go back to reference Y.X. Yuan, Z.L. Li, Y. Liu et al., Hydrogel photonic sensor for the detection of 3-Pyridinecarboxamide. Chem. Eur. J. 18, 303–309 (2012)CrossRef Y.X. Yuan, Z.L. Li, Y. Liu et al., Hydrogel photonic sensor for the detection of 3-Pyridinecarboxamide. Chem. Eur. J. 18, 303–309 (2012)CrossRef
87.
go back to reference C.J. Zhang, G.G. Cano, P.V. Braun, Linear and fast hydrogel glucose sensor materials enabled by volume resetting agents. Adv. Mater. 26, 5678–5683 (2014)CrossRef C.J. Zhang, G.G. Cano, P.V. Braun, Linear and fast hydrogel glucose sensor materials enabled by volume resetting agents. Adv. Mater. 26, 5678–5683 (2014)CrossRef
88.
go back to reference K.I. MacConaghy, D.M. Chadly, M.P. Stoykovich et al., Optically diffracting hydrogels for screening kinase activity in vitro and in cell lysate: impact of material and solution properties. Anal. Chem. 87(6), 3467–3475 (2015)CrossRef K.I. MacConaghy, D.M. Chadly, M.P. Stoykovich et al., Optically diffracting hydrogels for screening kinase activity in vitro and in cell lysate: impact of material and solution properties. Anal. Chem. 87(6), 3467–3475 (2015)CrossRef
89.
go back to reference Y.S. Huang, Y.L. Ma, Y.H. Chen et al., Target-responsive DNAzyme cross-linked hydrogel for visual quantitative detection of lead. Anal. Chem. 86(22), 11434–11439 (2014)CrossRef Y.S. Huang, Y.L. Ma, Y.H. Chen et al., Target-responsive DNAzyme cross-linked hydrogel for visual quantitative detection of lead. Anal. Chem. 86(22), 11434–11439 (2014)CrossRef
90.
go back to reference D.L. Liu, L.L. Fang, Y. Li et al., Ultrasensitive and stable Au dimer-based colorimetric sensors using the dynamically tunable gap-dependent plasmonic coupling optical properties. Adv. Funct. Mater. 28(18), 1707392 (2018)CrossRef D.L. Liu, L.L. Fang, Y. Li et al., Ultrasensitive and stable Au dimer-based colorimetric sensors using the dynamically tunable gap-dependent plasmonic coupling optical properties. Adv. Funct. Mater. 28(18), 1707392 (2018)CrossRef
91.
go back to reference J.H. Kim, B.W. Boote, J.A. Pham et al., Thermally tunable catalytic and optical properties of gold-hydrogel nanocomposites. Nanotechnology 23(27), 275606 (2012)CrossRef J.H. Kim, B.W. Boote, J.A. Pham et al., Thermally tunable catalytic and optical properties of gold-hydrogel nanocomposites. Nanotechnology 23(27), 275606 (2012)CrossRef
92.
go back to reference J.J. Zhang, L. Mou, X.Y. Jiang, Hydrogels Incorporating Au@ polydopamine nanoparticles: robust performance for optical sensing. Anal. Chem. 90(19), 11423–11430 (2018)CrossRef J.J. Zhang, L. Mou, X.Y. Jiang, Hydrogels Incorporating Au@ polydopamine nanoparticles: robust performance for optical sensing. Anal. Chem. 90(19), 11423–11430 (2018)CrossRef
93.
go back to reference S. Lim, J.E. Song, J.A. La et al., Gold nanospheres assembled on hydrogel colloids display a wide range of thermoreversible changes in optical bandwidth for various plasmonic-based color switches. Chem. Mater. 26(10), 3272–3279 (2014)CrossRef S. Lim, J.E. Song, J.A. La et al., Gold nanospheres assembled on hydrogel colloids display a wide range of thermoreversible changes in optical bandwidth for various plasmonic-based color switches. Chem. Mater. 26(10), 3272–3279 (2014)CrossRef
94.
go back to reference J.T. Zhang, L.L. Wang, D.N. Lamont et al., Fabrication of large-area two-dimensional colloidal crystals. Angew. Chem. Int. Ed. 51(25), 6117–6220 (2012)CrossRef J.T. Zhang, L.L. Wang, D.N. Lamont et al., Fabrication of large-area two-dimensional colloidal crystals. Angew. Chem. Int. Ed. 51(25), 6117–6220 (2012)CrossRef
95.
go back to reference Z.F. Sun, F.C. Lv, L.J. Cao et al., Multistimuli-responsive, moldable supramolecular hydrogels cross-linked by ultrafast complexation of metal ions and biopolymers. Angew. Chem. Int. Ed. 54(27), 7944–7948 (2015)CrossRef Z.F. Sun, F.C. Lv, L.J. Cao et al., Multistimuli-responsive, moldable supramolecular hydrogels cross-linked by ultrafast complexation of metal ions and biopolymers. Angew. Chem. Int. Ed. 54(27), 7944–7948 (2015)CrossRef
96.
go back to reference M.M.W. Muscatello, S.A. Asher, Poly (vinyl alcohol) rehydratable photonic crystal sensor materials. Adv. Funct. Mater. 18(8), 1186–1193 (2008)CrossRef M.M.W. Muscatello, S.A. Asher, Poly (vinyl alcohol) rehydratable photonic crystal sensor materials. Adv. Funct. Mater. 18(8), 1186–1193 (2008)CrossRef
97.
go back to reference Y. Liu, Y.J. Zhang, Y. Guan, New polymerized crystalline colloidal array for glucose sensing. Chem. Commun. (14), 1867–1869 (2009) Y. Liu, Y.J. Zhang, Y. Guan, New polymerized crystalline colloidal array for glucose sensing. Chem. Commun. (14), 1867–1869 (2009)
98.
go back to reference A.K. Yetisen, N. Jiang, A. Fallahi et al., Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid. Adv. Mater. 29(15), 1606380 (2017)CrossRef A.K. Yetisen, N. Jiang, A. Fallahi et al., Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid. Adv. Mater. 29(15), 1606380 (2017)CrossRef
99.
go back to reference H.L. Li, D.D. Men, Y. Li et al., Surface enhanced Raman scattering properties of dynamically tunable nanogaps between Au nanoparticles self-assembled on hydrogel microspheres controlled by pH. J. Colloid Interface Sci. 505, 467–475 (2017)CrossRef H.L. Li, D.D. Men, Y. Li et al., Surface enhanced Raman scattering properties of dynamically tunable nanogaps between Au nanoparticles self-assembled on hydrogel microspheres controlled by pH. J. Colloid Interface Sci. 505, 467–475 (2017)CrossRef
100.
go back to reference X. Fei, T. Lu, J. Ma et al., Bioinspired polymeric photonic crystals for high cycling pH-sensing performance. ACS Appl. Mater. Interfaces 8(40), 27091–27098 (2016)CrossRef X. Fei, T. Lu, J. Ma et al., Bioinspired polymeric photonic crystals for high cycling pH-sensing performance. ACS Appl. Mater. Interfaces 8(40), 27091–27098 (2016)CrossRef
101.
go back to reference H. Saito, Y. Takeoka, M. Watanabe Simple and precision design of porous gel as a visible indicator for ionic species and concentration. Chem. Commun. 0, 2126–2127 (2003) H. Saito, Y. Takeoka, M. Watanabe Simple and precision design of porous gel as a visible indicator for ionic species and concentration. Chem. Commun. 0, 2126–2127 (2003)
102.
go back to reference Z.Y. Cai, A. Sasmal, X.Y. Liu et al., Responsive photonic crystal carbohydrate hydrogel sensor materials for selective and sensitive lectin protein detection. ACS Sens. 2(10), 1474–1481 (2017)CrossRef Z.Y. Cai, A. Sasmal, X.Y. Liu et al., Responsive photonic crystal carbohydrate hydrogel sensor materials for selective and sensitive lectin protein detection. ACS Sens. 2(10), 1474–1481 (2017)CrossRef
103.
go back to reference S.A. Asher, A.C. Sharma, A.V. Goponenko et al., Photonic crystal aqueous metal cation sensing materials. Anal. Chem. 75(7), 1676–1683 (2003)CrossRef S.A. Asher, A.C. Sharma, A.V. Goponenko et al., Photonic crystal aqueous metal cation sensing materials. Anal. Chem. 75(7), 1676–1683 (2003)CrossRef
104.
go back to reference F. Xue, Z.H. Meng, F.Y. Wang et al., A 2-D photonic crystal hydrogel for selective sensing of glucose. J. Mater. Chem. A 2(25), 9559–9565 (2014)CrossRef F. Xue, Z.H. Meng, F.Y. Wang et al., A 2-D photonic crystal hydrogel for selective sensing of glucose. J. Mater. Chem. A 2(25), 9559–9565 (2014)CrossRef
105.
go back to reference A.C. Sharma, T. Jana, R. Kesavamoorthy et al., A general photonic crystal sensing motif: creatinine in bodily fluids. J. Am. Chem. Soc. 126(9), 2971–2977 (2004)CrossRef A.C. Sharma, T. Jana, R. Kesavamoorthy et al., A general photonic crystal sensing motif: creatinine in bodily fluids. J. Am. Chem. Soc. 126(9), 2971–2977 (2004)CrossRef
106.
go back to reference F. Horkay, I. Tasaki, P.J. Basser, Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromol 1(1), 84–90 (2000)CrossRef F. Horkay, I. Tasaki, P.J. Basser, Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromol 1(1), 84–90 (2000)CrossRef
107.
go back to reference D. Nakayama, Y. Takeoka, M. Watanabe et al., Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew. Chem. Int. Ed. 115(35), 4329–4332 (2003)CrossRef D. Nakayama, Y. Takeoka, M. Watanabe et al., Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew. Chem. Int. Ed. 115(35), 4329–4332 (2003)CrossRef
108.
go back to reference K.W. Kimble, J.P. Walker, D.N. Finegold et al., Progress toward the development of a point-of-care photonic crystal ammonia sensor. Anal. Bioanal. Chem. 385(4), 678–685 (2006)CrossRef K.W. Kimble, J.P. Walker, D.N. Finegold et al., Progress toward the development of a point-of-care photonic crystal ammonia sensor. Anal. Bioanal. Chem. 385(4), 678–685 (2006)CrossRef
109.
go back to reference Z.Y. Cai, N.L. Smith, J.T. Zhang et al., Two-dimensional photonic crystal chemical and biomolecular sensors. Anal. Chem. 87(10), 5013–5025 (2015)CrossRef Z.Y. Cai, N.L. Smith, J.T. Zhang et al., Two-dimensional photonic crystal chemical and biomolecular sensors. Anal. Chem. 87(10), 5013–5025 (2015)CrossRef
110.
go back to reference A. Bal, B. Özkahraman, Z. Özbaş, Preparation and characterization of pH responsive poly (methacrylic acid-acrylamide-N-hydroxyethyl acrylamide) hydrogels for drug delivery systems. J. Appl. Polym. Sci. 133(13), 43226 (2016)CrossRef A. Bal, B. Özkahraman, Z. Özbaş, Preparation and characterization of pH responsive poly (methacrylic acid-acrylamide-N-hydroxyethyl acrylamide) hydrogels for drug delivery systems. J. Appl. Polym. Sci. 133(13), 43226 (2016)CrossRef
111.
go back to reference S. Nesrinne, A. Djamel, Synthesis, characterization and rheological behavior of pH sensitive poly (acrylamide-co-acrylic acid) hydrogels. Arab. J. Chem. 10(4), 539–547 (2017)CrossRef S. Nesrinne, A. Djamel, Synthesis, characterization and rheological behavior of pH sensitive poly (acrylamide-co-acrylic acid) hydrogels. Arab. J. Chem. 10(4), 539–547 (2017)CrossRef
112.
go back to reference K. Lee, S.A. Asher, Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 122(39), 9534–9537 (2000)CrossRef K. Lee, S.A. Asher, Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 122(39), 9534–9537 (2000)CrossRef
113.
go back to reference Y. Zhang, Y.M. Guo, X.Y. Jiang et al., Nanomaterials for ultrasensitive protein detection. Adv. Mater. 25(28), 3802–3819 (2013)CrossRef Y. Zhang, Y.M. Guo, X.Y. Jiang et al., Nanomaterials for ultrasensitive protein detection. Adv. Mater. 25(28), 3802–3819 (2013)CrossRef
114.
go back to reference J.S. Sun, Y.L. Xianyu, X.Y. Jiang, Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem. Soc. Rev. 43(17), 6239–6253 (2014)CrossRef J.S. Sun, Y.L. Xianyu, X.Y. Jiang, Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem. Soc. Rev. 43(17), 6239–6253 (2014)CrossRef
115.
go back to reference Y.P. Chen, Y.L. Xianyu, X.Y. Jiang, Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc. Chem. Res. 50(2), 310–319 (2017)CrossRef Y.P. Chen, Y.L. Xianyu, X.Y. Jiang, Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc. Chem. Res. 50(2), 310–319 (2017)CrossRef
116.
go back to reference D.L. Liu, F. Zhou, Y. Li et al., Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed Au nanospheres by using a reverse emulsion system. Angew. Chem. Int. Ed. 54(33), 9596–9600 (2015)CrossRef D.L. Liu, F. Zhou, Y. Li et al., Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed Au nanospheres by using a reverse emulsion system. Angew. Chem. Int. Ed. 54(33), 9596–9600 (2015)CrossRef
117.
go back to reference D.L. Liu, C.C. Li, Y. Li et al., Capillary gradient-induced self-assembly of periodic Au spherical nanoparticle arrays on an ultralarge scale via a bisolvent system at air/water interface. Adv. Mater. Interfaces 4(10), 1600976 (2017)CrossRef D.L. Liu, C.C. Li, Y. Li et al., Capillary gradient-induced self-assembly of periodic Au spherical nanoparticle arrays on an ultralarge scale via a bisolvent system at air/water interface. Adv. Mater. Interfaces 4(10), 1600976 (2017)CrossRef
118.
go back to reference P.J. Yan, F. He, W. Wang et al., Novel membrane detector based on smart nanogels for ultrasensitive detection of trace threat substances. ACS Appl. Mater. Interfaces 10(42), 36425–36434 (2018)CrossRef P.J. Yan, F. He, W. Wang et al., Novel membrane detector based on smart nanogels for ultrasensitive detection of trace threat substances. ACS Appl. Mater. Interfaces 10(42), 36425–36434 (2018)CrossRef
119.
go back to reference J.H. Holtz, J.S.W. Holtz, C.H. Munro et al., Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials. Anal. Chem. 70(4), 780–791 (1998)CrossRef J.H. Holtz, J.S.W. Holtz, C.H. Munro et al., Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials. Anal. Chem. 70(4), 780–791 (1998)CrossRef
120.
go back to reference Y. Wang, F. Yang, X.R. Yang, Colorimetric detection of mercury(II) Ion using unmodified silver nanoparticles and mercury-specific oligonucleotides. ACS Appl. Mater. Interfaces 2(2), 339–342 (2010)CrossRef Y. Wang, F. Yang, X.R. Yang, Colorimetric detection of mercury(II) Ion using unmodified silver nanoparticles and mercury-specific oligonucleotides. ACS Appl. Mater. Interfaces 2(2), 339–342 (2010)CrossRef
121.
go back to reference X.F. Ding, L.T. Kong, J. Wang et al., Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS Appl. Mater. Interfaces 5, 7072–7078 (2013)CrossRef X.F. Ding, L.T. Kong, J. Wang et al., Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS Appl. Mater. Interfaces 5, 7072–7078 (2013)CrossRef
122.
go back to reference J.H. Huang, X. Gao, Z.G. Li et al., Graphene oxide-based amplified fluorescent biosensor for Hg2+ detection through hybridization chain reactions. Anal. Chem. 86, 3209–3215 (2014)CrossRef J.H. Huang, X. Gao, Z.G. Li et al., Graphene oxide-based amplified fluorescent biosensor for Hg2+ detection through hybridization chain reactions. Anal. Chem. 86, 3209–3215 (2014)CrossRef
123.
go back to reference B.F. Ye, H.B. Ding, Y. Cheng et al., Photonic crystal microcapsules for label-free multiplex detection. Adv. Mater. 26(20), 3270–3274 (2014)CrossRef B.F. Ye, H.B. Ding, Y. Cheng et al., Photonic crystal microcapsules for label-free multiplex detection. Adv. Mater. 26(20), 3270–3274 (2014)CrossRef
124.
go back to reference E. Kokufuta, Y.Q. Zhang, T. Tanaka et al., Effects of surfactants on the phase transition of poly (N-isopropylacrylamide) gel. Macromolecules 26(5), 1053–1059 (1993)CrossRef E. Kokufuta, Y.Q. Zhang, T. Tanaka et al., Effects of surfactants on the phase transition of poly (N-isopropylacrylamide) gel. Macromolecules 26(5), 1053–1059 (1993)CrossRef
125.
go back to reference J. Sjöström, L. Piculell, Simple gel swelling experiments distinguish between associating and nonassociating polymer-surfactant pairs. Langmuir 17(13), 3836–3843 (2001)CrossRef J. Sjöström, L. Piculell, Simple gel swelling experiments distinguish between associating and nonassociating polymer-surfactant pairs. Langmuir 17(13), 3836–3843 (2001)CrossRef
126.
go back to reference W. Xue, I.W. Hamley, Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with a hydrophobic comonomer. Polymer 43(10), 3069–3077 (2002)CrossRef W. Xue, I.W. Hamley, Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with a hydrophobic comonomer. Polymer 43(10), 3069–3077 (2002)CrossRef
127.
go back to reference J.T. Zhang, N. Smith, S.A. Asher, Two-dimensional photonic crystal surfactant detection. Anal. Chem. 84(15), 6416–6420 (2012)CrossRef J.T. Zhang, N. Smith, S.A. Asher, Two-dimensional photonic crystal surfactant detection. Anal. Chem. 84(15), 6416–6420 (2012)CrossRef
128.
go back to reference F. Tanaka, T. Koga, H. Kojima et al., Temperature and tension-induced coil-globule transition of poly (N-isopropylacrylamide) chains in water and mixed solvent of water/methanol. Macromolecules 42(4), 1321–1330 (2009)CrossRef F. Tanaka, T. Koga, H. Kojima et al., Temperature and tension-induced coil-globule transition of poly (N-isopropylacrylamide) chains in water and mixed solvent of water/methanol. Macromolecules 42(4), 1321–1330 (2009)CrossRef
129.
go back to reference F.M. Winnik, H. Ringsdorf, J. Venzmer, Methanol-water as a co-nonsolvent system for poly (N-isopropylacrylamide). Macromolecules 23(8), 2415–2416 (1990)CrossRef F.M. Winnik, H. Ringsdorf, J. Venzmer, Methanol-water as a co-nonsolvent system for poly (N-isopropylacrylamide). Macromolecules 23(8), 2415–2416 (1990)CrossRef
130.
go back to reference G. Zhang, C. Wu, The water/methanol complexation induced reentrant coil-to-globule-to-coil transition of individual homopolymer chains in extremely dilute solution. J. Am. Chem. Soc. 123(7), 1376–1380 (2001)CrossRef G. Zhang, C. Wu, The water/methanol complexation induced reentrant coil-to-globule-to-coil transition of individual homopolymer chains in extremely dilute solution. J. Am. Chem. Soc. 123(7), 1376–1380 (2001)CrossRef
131.
go back to reference E.T. Tian, J.X. Wang, Y.M. Zheng et al., Colorful humidity sensitive photonic crystal hydrogel. J. Mater. Chem. 18(10), 1116–1122 (2008)CrossRef E.T. Tian, J.X. Wang, Y.M. Zheng et al., Colorful humidity sensitive photonic crystal hydrogel. J. Mater. Chem. 18(10), 1116–1122 (2008)CrossRef
132.
go back to reference R.Y. Xuan, Q.S. Wu, Y.D. Yin et al., Magnetically assembled photonic crystal film for humidity sensing. J. Mater. Chem. 21(10), 3672–3676 (2011)CrossRef R.Y. Xuan, Q.S. Wu, Y.D. Yin et al., Magnetically assembled photonic crystal film for humidity sensing. J. Mater. Chem. 21(10), 3672–3676 (2011)CrossRef
133.
go back to reference V.L. Alexeev, A.C. Sharma, A.V. Goponenko et al., High ionic strength glucose-sensing photonic crystal. Anal. Chem. 75(10), 2316–2323 (2003)CrossRef V.L. Alexeev, A.C. Sharma, A.V. Goponenko et al., High ionic strength glucose-sensing photonic crystal. Anal. Chem. 75(10), 2316–2323 (2003)CrossRef
Metadata
Title
Hydrogel Responsive Nanomaterials for Colorimetric Chemical Sensors
Authors
Dandan Men
Honghua Zhang
Yue Li
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-39994-8_5