Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Journal of Nanoparticle Research 7/2022

01-07-2022 | Research paper

Hydrogen and humidity sensing characteristics of Nafion, Nafion/graphene, and Nafion/carbon nanotube resistivity sensors

Authors: Thye-Foo Choo, Nur Ubaidah Saidin, Nurazila Mat Zali, Kuan-Ying Kok

Published in: Journal of Nanoparticle Research | Issue 7/2022

Login to get access
share
SHARE

Abstract

In this work, Nafion-based resistivity sensors were investigated for their efficiencies in hydrogen and humidity sensing characteristics. The sensors comprise of Nafion coated on two types of carbon nanomaterials, graphene and carbon nanotubes, respectively, as sensing platform interconnect between pairs of microelectrodes. The study showed that the hydrogen sensing of Nafion/CNT sensor was higher than Nafion/graphene sensor, and its response and recovery times were also faster. In the absence of carbon nanomaterials, Nafion-only sensor was also capable of detecting the presence of hydrogen but its sensing responses were lower with higher signal drift. In humidity sensing, both Nafion/CNT and Nafion/graphene sensors demonstrated lower and inverse humidity responses compared to Nafion-only sensor. Among the fabricated sensors, Nafion/CNT materials were found to offer promising sensing platform for application in real-time hydrogen gas and humidity detection.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Miyamoto A, Kuwaki Y, Sano T, Hatakeyama K, Quitain A, Sasaki M, Kida T (2017) Solid electrolyte gas sensor based on a proton-conducting graphene oxide membrane. ACS Omega 2:2994–3001 CrossRef Miyamoto A, Kuwaki Y, Sano T, Hatakeyama K, Quitain A, Sasaki M, Kida T (2017) Solid electrolyte gas sensor based on a proton-conducting graphene oxide membrane. ACS Omega 2:2994–3001 CrossRef
2.
go back to reference Kuwata S, Miura N, Yamazoe N (1988) A solid-state amperometric oxygen sensor using NAFION membrane operative at room temperature. Chem Lett 17:1197–1200 CrossRef Kuwata S, Miura N, Yamazoe N (1988) A solid-state amperometric oxygen sensor using NAFION membrane operative at room temperature. Chem Lett 17:1197–1200 CrossRef
3.
go back to reference Guan Y, Dai M, Liu T, Liu Y, Liu F, Liang X, Suo H, Sun P, Lu G (2016) Effect of the dispersants on the performance of fuel cell type CO sensor with Pt–C/Nafion electrodes. Sens Actuators, B Chem 230:61–69 CrossRef Guan Y, Dai M, Liu T, Liu Y, Liu F, Liang X, Suo H, Sun P, Lu G (2016) Effect of the dispersants on the performance of fuel cell type CO sensor with Pt–C/Nafion electrodes. Sens Actuators, B Chem 230:61–69 CrossRef
4.
go back to reference Guan Y, Liu F, Wang B, Yang X, Liang X, Suo H, Sun P, Sun Y, Ma J, Zheng J, Wang Y, Lu G (2017) Highly sensitive amperometric Nafion-based CO sensor using Pt/C electrodes with different kinds of carbon materials. Sens Actuators, B Chem 239:696–703 CrossRef Guan Y, Liu F, Wang B, Yang X, Liang X, Suo H, Sun P, Sun Y, Ma J, Zheng J, Wang Y, Lu G (2017) Highly sensitive amperometric Nafion-based CO sensor using Pt/C electrodes with different kinds of carbon materials. Sens Actuators, B Chem 239:696–703 CrossRef
5.
go back to reference Wallgren K, Sotiropoulos S (2009) Nafion-based co-planar electrode amperometric sensor for methanol determination in the gas phase. J Chem Sci 121:703–709 CrossRef Wallgren K, Sotiropoulos S (2009) Nafion-based co-planar electrode amperometric sensor for methanol determination in the gas phase. J Chem Sci 121:703–709 CrossRef
6.
go back to reference Li W, Zhang Y, Hao X, Zhang Y, Yang X, Liang X, Liu F, Yan X, Zhang S, Lu G (2020) Nafion-based methanol gas sensor for fuel cell vehicles. Sens Actuators, B Chem 311:127905 CrossRef Li W, Zhang Y, Hao X, Zhang Y, Yang X, Liang X, Liu F, Yan X, Zhang S, Lu G (2020) Nafion-based methanol gas sensor for fuel cell vehicles. Sens Actuators, B Chem 311:127905 CrossRef
7.
go back to reference Pašti IA, JanoševićLežaić A, Ćirić-Marjanović G, Mirsky VM (2016) Resistive gas sensors based on the composites of nanostructured carbonized polyaniline and Nafion. J Solid State Electrochem 20:3061–3069 CrossRef Pašti IA, JanoševićLežaić A, Ćirić-Marjanović G, Mirsky VM (2016) Resistive gas sensors based on the composites of nanostructured carbonized polyaniline and Nafion. J Solid State Electrochem 20:3061–3069 CrossRef
8.
go back to reference Yang X, Zhang Y, Hao X, Song Y, Liang X, Liu F, Liu F, Sun P, Gao Y, Yan X, Lu G (2018) Nafion-based amperometric H 2S sensor using Pt-Rh/C sensing electrode. Sens Actuators, B Chem 273:635–641 CrossRef Yang X, Zhang Y, Hao X, Song Y, Liang X, Liu F, Liu F, Sun P, Gao Y, Yan X, Lu G (2018) Nafion-based amperometric H 2S sensor using Pt-Rh/C sensing electrode. Sens Actuators, B Chem 273:635–641 CrossRef
9.
go back to reference Ho K, Hung W (2001) An amperometric NO 2 gas sensor based on Pt/Nafion® Electrode. Sens Actuators, B Chem 79:11–16 CrossRef Ho K, Hung W (2001) An amperometric NO 2 gas sensor based on Pt/Nafion® Electrode. Sens Actuators, B Chem 79:11–16 CrossRef
10.
go back to reference Do J, Chang W (2004) Amperometric nitrogen dioxide gas sensor based on PAn/Au/Nafion® prepared by constant current and cyclic voltammetry methods. Sens Actuators, B Chem 101:97–106 CrossRef Do J, Chang W (2004) Amperometric nitrogen dioxide gas sensor based on PAn/Au/Nafion® prepared by constant current and cyclic voltammetry methods. Sens Actuators, B Chem 101:97–106 CrossRef
11.
go back to reference Sakthivel M, Weppner W (2006) Response behaviour of a hydrogen sensor based on ionic conducting polymer-metal interfaces prepared by the chemical reduction method. Sensors 6:284–297 CrossRef Sakthivel M, Weppner W (2006) Response behaviour of a hydrogen sensor based on ionic conducting polymer-metal interfaces prepared by the chemical reduction method. Sensors 6:284–297 CrossRef
12.
go back to reference Do J, Chen Y, Tsai M (2018) Planar solid-state amperometric hydrogen gas sensor based on Nafion®/Pt/nano-structured polyaniline/Au/Al 2O 3 electrode. Int J Hydrogen Energy 43:14848–14858 CrossRef Do J, Chen Y, Tsai M (2018) Planar solid-state amperometric hydrogen gas sensor based on Nafion®/Pt/nano-structured polyaniline/Au/Al 2O 3 electrode. Int J Hydrogen Energy 43:14848–14858 CrossRef
13.
go back to reference Jung S, Lee EK, Kim JH, Lee S (2020) High-concentration Nafion-based hydrogen sensor for fuel-cell electric vehicles. Solid State Ionics 344:115134 CrossRef Jung S, Lee EK, Kim JH, Lee S (2020) High-concentration Nafion-based hydrogen sensor for fuel-cell electric vehicles. Solid State Ionics 344:115134 CrossRef
14.
go back to reference Wu R, Sun Y, Lin C, Chen H, Chavali M (2006) Composite of TiO 2 nanowires and Nafion as humidity sensor material. Sens Actuators, B Chem 115:198–204 CrossRef Wu R, Sun Y, Lin C, Chen H, Chavali M (2006) Composite of TiO 2 nanowires and Nafion as humidity sensor material. Sens Actuators, B Chem 115:198–204 CrossRef
15.
go back to reference Wang Y, Wang J, Hao M, Li B, Zhu Z, Gou X, Li L (2020) Rapid preparation of a Nafion/Ag NW composite film and its humidity sensing effect. RSC Adv 10:27447–27455 CrossRef Wang Y, Wang J, Hao M, Li B, Zhu Z, Gou X, Li L (2020) Rapid preparation of a Nafion/Ag NW composite film and its humidity sensing effect. RSC Adv 10:27447–27455 CrossRef
16.
go back to reference Chiriaev S, Madsen ND, Rubahn H, Andersen SM (2017) Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures. AIMS Mater Sci 4:1289–1304 CrossRef Chiriaev S, Madsen ND, Rubahn H, Andersen SM (2017) Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures. AIMS Mater Sci 4:1289–1304 CrossRef
17.
go back to reference Vinothkannan M, Kim AR, Yoo DJ (2021) Potential carbon nanomaterials as additives for state-of-the-art Nafion electrolyte in proton-exchange membrane fuel cells: a concise review. RSC Adv 11:18351–18370 CrossRef Vinothkannan M, Kim AR, Yoo DJ (2021) Potential carbon nanomaterials as additives for state-of-the-art Nafion electrolyte in proton-exchange membrane fuel cells: a concise review. RSC Adv 11:18351–18370 CrossRef
18.
go back to reference Ansari S, Kelarakis A, Estevez L, Giannelis EP (2010) Oriented arrays of graphene in a polymer matrix by in situ reduction of graphite oxide nanosheets. Small 6:205–209 CrossRef Ansari S, Kelarakis A, Estevez L, Giannelis EP (2010) Oriented arrays of graphene in a polymer matrix by in situ reduction of graphite oxide nanosheets. Small 6:205–209 CrossRef
19.
go back to reference Asmatulu R, Khan A, Adigoppula VK, Hwang G (2018) Enhanced transport properties of graphene-based, thin Nafion® membrane for polymer electrolyte membrane fuel cells. Int J Energy Res 42:508–519 CrossRef Asmatulu R, Khan A, Adigoppula VK, Hwang G (2018) Enhanced transport properties of graphene-based, thin Nafion® membrane for polymer electrolyte membrane fuel cells. Int J Energy Res 42:508–519 CrossRef
20.
go back to reference Kannan R, Kakade BA, Pillai VK (2008) Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes. Angew Chem Int Ed 47:2653–2656 CrossRef Kannan R, Kakade BA, Pillai VK (2008) Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes. Angew Chem Int Ed 47:2653–2656 CrossRef
21.
go back to reference Liu Y, Yi B, Shao Z, Xing D, Zhang H (2006) Carbon nanotubes reinforced Nafion composite membrane for fuel cell applications. Electrochem Solid-State Lett 9:A356 CrossRef Liu Y, Yi B, Shao Z, Xing D, Zhang H (2006) Carbon nanotubes reinforced Nafion composite membrane for fuel cell applications. Electrochem Solid-State Lett 9:A356 CrossRef
22.
go back to reference Broka K, Ekdunge P (1997) Oxygen and hydrogen permeation properties and water uptake of Nafion® 117 membrane and recast film for PEM fuel cell. J Appl Electrochem 27:117–123 CrossRef Broka K, Ekdunge P (1997) Oxygen and hydrogen permeation properties and water uptake of Nafion® 117 membrane and recast film for PEM fuel cell. J Appl Electrochem 27:117–123 CrossRef
23.
go back to reference Kusoglu A, Weber AZ (2017) New insights into perfluorinated sulfonic-acid ionomers. Chem Rev 117:987–1104 CrossRef Kusoglu A, Weber AZ (2017) New insights into perfluorinated sulfonic-acid ionomers. Chem Rev 117:987–1104 CrossRef
24.
go back to reference Dariyal P, Sharma S, Chauhan GS, Pratap Singh B, Dhakate SR (2021) Recent trends in gas sensing via carbon nanomaterials: outlook and challenges. Nanoscale Adv 3:6514–6544 CrossRef Dariyal P, Sharma S, Chauhan GS, Pratap Singh B, Dhakate SR (2021) Recent trends in gas sensing via carbon nanomaterials: outlook and challenges. Nanoscale Adv 3:6514–6544 CrossRef
25.
go back to reference Choo TF, Saidin NU, Kok KY (2018) A novel self-heating zinc oxide/indium tin oxide based hydrogen gas sensor: dual sensing mode of hydrogen gas detection. Chem Phys Lett 713:180–184 CrossRef Choo TF, Saidin NU, Kok KY (2018) A novel self-heating zinc oxide/indium tin oxide based hydrogen gas sensor: dual sensing mode of hydrogen gas detection. Chem Phys Lett 713:180–184 CrossRef
26.
go back to reference Choo TF, Saidin NU, Kok KY (2018) Hydrogen sensing enhancement of zinc oxide nanorods via voltage biasing. R Soc Open Sci 5:172372 CrossRef Choo TF, Saidin NU, Kok KY (2018) Hydrogen sensing enhancement of zinc oxide nanorods via voltage biasing. R Soc Open Sci 5:172372 CrossRef
27.
go back to reference Choo TF, Kok KY, Saidin NU, Mat Zali N (2021) Effect of chemical treatment and intrinsic resistance on the humidity sensitivity of pencil graphite sensing material coated on paper substrate. Sens Actuators A: Phys 332:113085 CrossRef Choo TF, Kok KY, Saidin NU, Mat Zali N (2021) Effect of chemical treatment and intrinsic resistance on the humidity sensitivity of pencil graphite sensing material coated on paper substrate. Sens Actuators A: Phys 332:113085 CrossRef
28.
go back to reference Akhavan O (2015) Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81:158–166 CrossRef Akhavan O (2015) Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81:158–166 CrossRef
29.
go back to reference Mukaddam M, Litwiller E, Pinnau I (2016) Gas sorption, diffusion, and permeation in Nafion. Macromol 49:280–286 CrossRef Mukaddam M, Litwiller E, Pinnau I (2016) Gas sorption, diffusion, and permeation in Nafion. Macromol 49:280–286 CrossRef
30.
go back to reference Schalenbach M, Hoefner T, Paciok P, Carmo M, Lueke W, Stolten D (2015) Gas permeation through Nafion. Part 1: Measurements. J Phys Chem C 119:25145–25155 CrossRef Schalenbach M, Hoefner T, Paciok P, Carmo M, Lueke W, Stolten D (2015) Gas permeation through Nafion. Part 1: Measurements. J Phys Chem C 119:25145–25155 CrossRef
31.
go back to reference Jung D, Han M, Lee GS (2014) Gas sensor using a multi-walled carbon nanotube sheet to detect hydrogen molecules. Sens Actuators, A 211:51–54 CrossRef Jung D, Han M, Lee GS (2014) Gas sensor using a multi-walled carbon nanotube sheet to detect hydrogen molecules. Sens Actuators, A 211:51–54 CrossRef
32.
go back to reference Leng X, Luo D, Xu Z, Wang F (2018) Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity. Sens Actuators, B Chem 257:372–381 CrossRef Leng X, Luo D, Xu Z, Wang F (2018) Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity. Sens Actuators, B Chem 257:372–381 CrossRef
33.
go back to reference Khalifa M, Wuzella G, Lammer H, Mahendran AR (2020) Smart paper from graphene coated cellulose for high-performance humidity and piezoresistive force sensor. Synth Met 266:116420 CrossRef Khalifa M, Wuzella G, Lammer H, Mahendran AR (2020) Smart paper from graphene coated cellulose for high-performance humidity and piezoresistive force sensor. Synth Met 266:116420 CrossRef
34.
go back to reference Park J, Jang IR, Lee K, Kim HJ (2019) High efficiency crumpled carbon nanotube heaters for low drift hydrogen sensing. Sensors 19:3878 CrossRef Park J, Jang IR, Lee K, Kim HJ (2019) High efficiency crumpled carbon nanotube heaters for low drift hydrogen sensing. Sensors 19:3878 CrossRef
35.
go back to reference Han M, Kim JK, Kang S, Jung D (2019) Post-treatment effects on the gas sensing performance of carbon nanotube sheets. Appl Surf Sci 481:597–603 CrossRef Han M, Kim JK, Kang S, Jung D (2019) Post-treatment effects on the gas sensing performance of carbon nanotube sheets. Appl Surf Sci 481:597–603 CrossRef
36.
go back to reference Dhall S, Sood K, Nathawat R (2017) Room temperature hydrogen gas sensors of functionalized carbon nanotubes based hybrid nanostructure: role of Pt sputtered nanoparticles. Int J Hydrogen Energy 42:8392–8398 CrossRef Dhall S, Sood K, Nathawat R (2017) Room temperature hydrogen gas sensors of functionalized carbon nanotubes based hybrid nanostructure: role of Pt sputtered nanoparticles. Int J Hydrogen Energy 42:8392–8398 CrossRef
37.
go back to reference Jaidev, Baro M, Ramaprabhu S (2018) Room temperature hydrogen gas sensing properties of mono dispersed platinum nanoparticles on graphene-like carbon-wrapped carbon nanotubes. Int Jf Hydrogen Energy 43:16421–16429 CrossRef Jaidev, Baro M, Ramaprabhu S (2018) Room temperature hydrogen gas sensing properties of mono dispersed platinum nanoparticles on graphene-like carbon-wrapped carbon nanotubes. Int Jf Hydrogen Energy 43:16421–16429 CrossRef
38.
go back to reference Randeniya L, Martin P, Bendavid A (2012) Detection of hydrogen using multi-walled carbon-nanotube yarns coated with nanocrystalline Pd and Pd/Pt layered structures. Carbon 50:1786–1792 CrossRef Randeniya L, Martin P, Bendavid A (2012) Detection of hydrogen using multi-walled carbon-nanotube yarns coated with nanocrystalline Pd and Pd/Pt layered structures. Carbon 50:1786–1792 CrossRef
39.
go back to reference Yan K, Toku Y, Ju Y (2019) Highly sensitive hydrogen sensor based on a new suspended structure of cross-stacked multiwall carbon nanotube sheet. Int J Hydrogen Energy 44:6344–6352 CrossRef Yan K, Toku Y, Ju Y (2019) Highly sensitive hydrogen sensor based on a new suspended structure of cross-stacked multiwall carbon nanotube sheet. Int J Hydrogen Energy 44:6344–6352 CrossRef
40.
go back to reference Xiao M, Liang S, Han J, Zhong D, Liu J, Zhang Z, Peng L (2018) batch fabrication of ultrasensitive carbon nanotube hydrogen sensors with sub-ppm detection limit. ACS Sens 3:749–756 CrossRef Xiao M, Liang S, Han J, Zhong D, Liu J, Zhang Z, Peng L (2018) batch fabrication of ultrasensitive carbon nanotube hydrogen sensors with sub-ppm detection limit. ACS Sens 3:749–756 CrossRef
Metadata
Title
Hydrogen and humidity sensing characteristics of Nafion, Nafion/graphene, and Nafion/carbon nanotube resistivity sensors
Authors
Thye-Foo Choo
Nur Ubaidah Saidin
Nurazila Mat Zali
Kuan-Ying Kok
Publication date
01-07-2022
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 7/2022
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-022-05536-x

Other articles of this Issue 7/2022

Journal of Nanoparticle Research 7/2022 Go to the issue

Premium Partners