Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-06-2015 | 2014 Edward DeMille Campbell Memorial Lecture ASM Internatinal | Issue 6/2015

Metallurgical and Materials Transactions A 6/2015

Hydrogen Embrittlement Understood

Journal:
Metallurgical and Materials Transactions A > Issue 6/2015
Authors:
Ian M. Robertson, P. Sofronis, A. Nagao, M. L. Martin, S. Wang, D. W. Gross, K. E. Nygren
Important notes

Electronic supplementary material

The online version of this article (doi:10.​1007/​s11661-015-2836-1) contains supplementary material, which is available to authorized users.
Ian M. Robertson is the Dean of the College of Engineering and a professor in Materials Science and Engineering as well as Engineering Physics at the University of Wisconsin-Madison. His research focuses on the use of the electron microscope as an experimental laboratory in which dynamic experiments can be conducted to reveal the atomistic processes responsible for the macroscopic response of a material. He has applied this technique to enhance our understanding of the reaction pathways and kinetics that occur during deformation, phase transformation, irradiation and hydrogen embrittlement of metallic materials. His insight to the mechanisms responsible for hydrogen embrittlement of metals was recognized by the Department of Energy in 1984 when he, along with Howard Birnbaum, received the DOE prize for Outstanding Scientific Accomplishment in Metallurgy and Ceramics. In 2011, he received the DOE EE Fuel Cell Program award for contributions to our understanding of mechanisms of hydrogen embrittlement. He was selected recently as the 2014 recipient of the ASM Edward DeMille Campbell Memorial Lectureship. He is the Editor-in-Chief of the review journal Current Opinion in Solid State and Materials Science.
Manuscript submitted January 17, 2015.

Abstract

The connection between hydrogen-enhanced plasticity and the hydrogen-induced fracture mechanism and pathway is established through examination of the evolved microstructural state immediately beneath fracture surfaces including voids, “quasi-cleavage,” and intergranular surfaces. This leads to a new understanding of hydrogen embrittlement in which hydrogen-enhanced plasticity processes accelerate the evolution of the microstructure, which establishes not only local high concentrations of hydrogen but also a local stress state. Together, these factors establish the fracture mechanism and pathway.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Supplementary Material
Available only for authorised users
Literature
About this article

Other articles of this Issue 6/2015

Metallurgical and Materials Transactions A 6/2015 Go to the issue

Premium Partner

    Image Credits