Skip to main content
Top

2016 | OriginalPaper | Chapter

3. Hydrogen Production Plant

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Research is going forward to produce hydrogen based on nuclear energy. Hydrogen production processes necessitate high temperatures that can be reached in fourth generation nuclear reactors. Technological studies are now under way that aim to define and qualify components that in the future will enable us to retrieve and transfer heat produced by these reactors. Hydrogen combustion turbine power could be one of the solutions to our future energy needs, particularly when it comes to on-peak demand for electricity, but until recently the problem with hydrogen power was its production for use as an energy source. Although hydrogen is the most common element in the known universe, actually capturing it for energy use is a process that itself usually requires some form of fuel or energy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wade A. Amos. (1998). Costs of storing and transporting hydrogen. National Renewable Energy Laboratory, US Department of Energy DE-AC36-83CH10093, November 1998. Wade A. Amos. (1998). Costs of storing and transporting hydrogen. National Renewable Energy Laboratory, US Department of Energy DE-AC36-83CH10093, November 1998.
2.
go back to reference Flynn, T. M. (1992). A liquefaction of gases. McGraw-Hill encyclopedia of science & technology (7th ed., Vol. 10, pp. 106–109). New York: McGraw-Hill. Flynn, T. M. (1992). A liquefaction of gases. McGraw-Hill encyclopedia of science & technology (7th ed., Vol. 10, pp. 106–109). New York: McGraw-Hill.
3.
go back to reference Timmerhaus, C., & Flynn, T. M. (1989). Cryogenic engineering. New York: Plenum Press. Timmerhaus, C., & Flynn, T. M. (1989). Cryogenic engineering. New York: Plenum Press.
4.
go back to reference Schwarz, J. A., & Amonkwah, K. A. G. (1993). Hydrogen storage systems. Washington, DC: U.S. Geological Survey. Schwarz, J. A., & Amonkwah, K. A. G. (1993). Hydrogen storage systems. Washington, DC: U.S. Geological Survey.
5.
go back to reference Garret, D. E. (1989). Chemical engineering economics. New York: Von Nostrand Reinhold.CrossRef Garret, D. E. (1989). Chemical engineering economics. New York: Von Nostrand Reinhold.CrossRef
6.
go back to reference Zittel, W., & Wurster, R. (1996). Hydrogen in the energy sector. Ottobrunn: Ludwig-Bolkow-Systemtechnik GmbH. Zittel, W., & Wurster, R. (1996). Hydrogen in the energy sector. Ottobrunn: Ludwig-Bolkow-Systemtechnik GmbH.
7.
go back to reference Hart, D. (1997). Hydrogen power: The commercial future of ‘the Ultimate Fuel’. London: Financial Times Energy Publishing. Hart, D. (1997). Hydrogen power: The commercial future of ‘the Ultimate Fuel’. London: Financial Times Energy Publishing.
8.
go back to reference Zohuri, B. (2015). Combined cycle driven efficiency for next generation nuclear power plants: An innovative design approach. Heidelberg: Springer.CrossRef Zohuri, B. (2015). Combined cycle driven efficiency for next generation nuclear power plants: An innovative design approach. Heidelberg: Springer.CrossRef
9.
go back to reference Zohuri, B. (2014). Innovative open air Brayton combined cycle systems for the next generation nuclear power plants. Albuquerque, NM: University of New Mexico Publications. Zohuri, B. (2014). Innovative open air Brayton combined cycle systems for the next generation nuclear power plants. Albuquerque, NM: University of New Mexico Publications.
10.
go back to reference Forsberg, C., McDaniel, P., & Zohuri, B. (2015). Variable electricity and steam from salt, helium, and sodium cooled base-load reactors with gas turbines and heat storage. Proceedings of ICAPP 2015 May 03-06, 2015, Nice, France. Paper 15115. Forsberg, C., McDaniel, P., & Zohuri, B. (2015). Variable electricity and steam from salt, helium, and sodium cooled base-load reactors with gas turbines and heat storage. Proceedings of ICAPP 2015 May 03-06, 2015, Nice, France. Paper 15115.
11.
go back to reference Feasibility study of hydrogen production at existing nuclear power plants, electric transportation applications. INL/EXT-09-16326. Feasibility study of hydrogen production at existing nuclear power plants, electric transportation applications. INL/EXT-09-16326.
12.
go back to reference Summary of electrolytic hydrogen production. National Renewable Energy Laboratory (NREL) Report, September 2004. Summary of electrolytic hydrogen production. National Renewable Energy Laboratory (NREL) Report, September 2004.
13.
go back to reference Mintz, M., & Gillette, J. (2005). H2A delivery scenario model and analysis. Argonne National Laboratory, February 8, 2005. Mintz, M., & Gillette, J. (2005). H2A delivery scenario model and analysis. Argonne National Laboratory, February 8, 2005.
14.
go back to reference Melaina, M. W. (2005). Estimating relative station sizes in early hydrogen station networks. Proceeding of the National Hydrogen Association (NHA) Annual Conference, Washington, DC, March 2005. Melaina, M. W. (2005). Estimating relative station sizes in early hydrogen station networks. Proceeding of the National Hydrogen Association (NHA) Annual Conference, Washington, DC, March 2005.
15.
go back to reference Ohi, J. M. (2006). Hydrogen codes and standards: An overview of U.S. DOE activities, WHEC 16/13-16, June 2006, Lyon, France. Ohi, J. M. (2006). Hydrogen codes and standards: An overview of U.S. DOE activities, WHEC 16/13-16, June 2006, Lyon, France.
16.
go back to reference Besenbruch, G. E., Brown, L. C., Funk, J. F., Showalter, S. K. (2000). High efficiency generation of hydrogen fuels using nuclear power. GA Project 30047, September 2000. Besenbruch, G. E., Brown, L. C., Funk, J. F., Showalter, S. K. (2000). High efficiency generation of hydrogen fuels using nuclear power. GA Project 30047, September 2000.
17.
go back to reference International Energy Outlook 2000: DOE/EIA-0484 (2000). The Energy Information Administration of the Department of Energy (www.eia.doe.gov). International Energy Outlook 2000: DOE/EIA-0484 (2000). The Energy Information Administration of the Department of Energy (www.​eia.​doe.​gov).
18.
go back to reference Annual Energy Outlook 2000 with projections to 2020: DOE/EIA-0383 (2000). The Energy Information Administration of the Department of Energy (www.eia.doe.gov). Annual Energy Outlook 2000 with projections to 2020: DOE/EIA-0383 (2000). The Energy Information Administration of the Department of Energy (www.​eia.​doe.​gov).
19.
go back to reference Analysis of the Impacts of an Early Start for Compliance with the Kyoto Protocol: SR/OIAF/99-02. The Energy Information Administration of the Department of Energy (www.eia.doe.gov). Analysis of the Impacts of an Early Start for Compliance with the Kyoto Protocol: SR/OIAF/99-02. The Energy Information Administration of the Department of Energy (www.​eia.​doe.​gov).
20.
go back to reference Impacts of the Kyoto Protocol on U.S. Energy Markets and Economic Activity: SR/OIAF/98-03. The Energy Information Administration of the Department of Energy (www.eia.doe.gov). Impacts of the Kyoto Protocol on U.S. Energy Markets and Economic Activity: SR/OIAF/98-03. The Energy Information Administration of the Department of Energy (www.​eia.​doe.​gov).
21.
go back to reference Davis, C. B., Barner, R. B., Sherman, S. R., & Wilson, D. F. (2005). Thermal-hydraulic analyses of heat transfer fluid requirements and characteristics for coupling a hydrogen product plant to a high-temperature nuclear reactor. The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, June 2005. Davis, C. B., Barner, R. B., Sherman, S. R., & Wilson, D. F. (2005). Thermal-hydraulic analyses of heat transfer fluid requirements and characteristics for coupling a hydrogen product plant to a high-temperature nuclear reactor. The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, June 2005.
22.
go back to reference Hydrogen production using nuclear energy. International Atomic Energy Agency (IAEA) Nuclear Energy Series No. NP-T-42 Report. Hydrogen production using nuclear energy. International Atomic Energy Agency (IAEA) Nuclear Energy Series No. NP-T-42 Report.
23.
go back to reference Peterson, P. F. (2007). Intermediate heat exchanger dynamic thermal response model. Eugenio Urquiza Fernández U.C. Berkeley Report UCBTH-07-006, August 31, 2007. Peterson, P. F. (2007). Intermediate heat exchanger dynamic thermal response model. Eugenio Urquiza Fernández U.C. Berkeley Report UCBTH-07-006, August 31, 2007.
24.
go back to reference Peterson, P. F., Zhao, H., & Fukuda, G. (2003). U.C. Berkeley Report UCBTH-03-004, December 5, 2003. Peterson, P. F., Zhao, H., & Fukuda, G. (2003). U.C. Berkeley Report UCBTH-03-004, December 5, 2003.
25.
go back to reference Zohuri, B., & Fathi, N. (2015). Thermal-hydraulic analysis of nuclear reactors. Heidelberg: Springer.CrossRef Zohuri, B., & Fathi, N. (2015). Thermal-hydraulic analysis of nuclear reactors. Heidelberg: Springer.CrossRef
26.
go back to reference Vernondern, K., & Nishihara, T. (2004). Valuation of the safety concept of the combined nuclear/chemical complex for hydrogen production with HTTR. JUEL-4135. Vernondern, K., & Nishihara, T. (2004). Valuation of the safety concept of the combined nuclear/chemical complex for hydrogen production with HTTR. JUEL-4135.
27.
go back to reference Smith, C., Beck, S., & Galyean, B. (2005). An engineering analysis for separation requirements of a hydrogen production plant and high-temperature nuclear reactor. INL/EXT-05-00137 Rev 0, March 2005. Smith, C., Beck, S., & Galyean, B. (2005). An engineering analysis for separation requirements of a hydrogen production plant and high-temperature nuclear reactor. INL/EXT-05-00137 Rev 0, March 2005.
28.
go back to reference Dewson, S. J, & Thonon, B. (2003). The development of high efficiency heat exchangers for helium gas cooled reactors. Paper 3213, ICAPP03. Dewson, S. J, & Thonon, B. (2003). The development of high efficiency heat exchangers for helium gas cooled reactors. Paper 3213, ICAPP03.
29.
go back to reference Diehl, H., & Bodman, E. (1990). Alloy 800 specifications in compliance with component requirements. Journal of Nuclear Materials, 171, 63–70.CrossRef Diehl, H., & Bodman, E. (1990). Alloy 800 specifications in compliance with component requirements. Journal of Nuclear Materials, 171, 63–70.CrossRef
30.
go back to reference Crandall, S. H., Dahl, N. C., & Lardner, T. J. (1972). An introduction to the mechanics of solids (2nd ed.). New York: McGraw-Hill Book Company.MATH Crandall, S. H., Dahl, N. C., & Lardner, T. J. (1972). An introduction to the mechanics of solids (2nd ed.). New York: McGraw-Hill Book Company.MATH
31.
go back to reference Dostal, V., Driscoll, M. J., & Hejzlar, P. (2004). A supercritical carbon dioxide cycle for next generation nuclear reactors. MIT-ANP-TR-100, March 2004. Dostal, V., Driscoll, M. J., & Hejzlar, P. (2004). A supercritical carbon dioxide cycle for next generation nuclear reactors. MIT-ANP-TR-100, March 2004.
32.
go back to reference Krieth, F. (1964). Principles of heat transfer. Scranton, PA: International Textbook Company. Krieth, F. (1964). Principles of heat transfer. Scranton, PA: International Textbook Company.
33.
go back to reference INEEL. (2003a). RELAP5-3D code manual volume 4: Models and correlations. INEEL-98-00834, Revision 2.2, October 2003. INEEL. (2003a). RELAP5-3D code manual volume 4: Models and correlations. INEEL-98-00834, Revision 2.2, October 2003.
34.
go back to reference Kayes, W. M., & Crawford, M. E. (1980). Convective heat and mass transfer (2nd ed.). New York: McGraw-Hill Book Company. Kayes, W. M., & Crawford, M. E. (1980). Convective heat and mass transfer (2nd ed.). New York: McGraw-Hill Book Company.
35.
go back to reference Zohuri, B., & McDaniel, P. J. (2014). Thermodynamics in nuclear power plant systems. Heidelberg: Springer. Zohuri, B., & McDaniel, P. J. (2014). Thermodynamics in nuclear power plant systems. Heidelberg: Springer.
36.
go back to reference Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (1960). Transport phenomena. New York: Wiley. Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (1960). Transport phenomena. New York: Wiley.
37.
go back to reference Glasstone, S., & Sesonske, A. (1967). Nuclear reactor engineering. Princeton, NJ: D. Van Nostrand Company, Inc. Glasstone, S., & Sesonske, A. (1967). Nuclear reactor engineering. Princeton, NJ: D. Van Nostrand Company, Inc.
38.
go back to reference Mizia, R. E. (2008). Next generation nuclear plant intermediate heat exchanger acquisition strategy. INL/EXT-08-14054, April 2008. Mizia, R. E. (2008). Next generation nuclear plant intermediate heat exchanger acquisition strategy. INL/EXT-08-14054, April 2008.
39.
go back to reference Copinger, D. A., & Moses, D. L. (2003). Fort Saint Vrain gas cooled reactor operational experience. Oak Ridge National Laboratory, NUREG/CR-6839 ORNL/TM-2003/223. Copinger, D. A., & Moses, D. L. (2003). Fort Saint Vrain gas cooled reactor operational experience. Oak Ridge National Laboratory, NUREG/CR-6839 ORNL/TM-2003/223.
40.
go back to reference Sabharwall, P., Kim, E. S., McKellar, M., Anderson, N., & Patterson, M. (2011). Process heat exchanger options for the advanced high temperature reactor. Report INL/EXT-11-21584 Revision 1, Idaho National Laboratory, June 2011. Sabharwall, P., Kim, E. S., McKellar, M., Anderson, N., & Patterson, M. (2011). Process heat exchanger options for the advanced high temperature reactor. Report INL/EXT-11-21584 Revision 1, Idaho National Laboratory, June 2011.
41.
go back to reference Sabharwall, P., & Kim, E. S. (2011). Fluoride high temperature reactor integration with industrial process applications. Idaho National Laboratory, TEV-1160. Sabharwall, P., & Kim, E. S. (2011). Fluoride high temperature reactor integration with industrial process applications. Idaho National Laboratory, TEV-1160.
42.
go back to reference General Atomics. (1996). Gas turbine-modular helium reactor (GT-MHR) conceptual design description report. GA Project No. 7658, 910720 Revision 1, July 1996. General Atomics. (1996). Gas turbine-modular helium reactor (GT-MHR) conceptual design description report. GA Project No. 7658, 910720 Revision 1, July 1996.
Metadata
Title
Hydrogen Production Plant
Author
Bahman Zohuri
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-29838-2_3