Skip to main content
Top

2021 | OriginalPaper | Chapter

Hydrogen Storage Techniques for Stationary and Mobile Applications: A Review

Authors : Aasim Akif Dafedar, Shivam Sudarshan Verma, Aman Yadav

Published in: Recent Advances in Sustainable Technologies

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the rapid increase of global warming and CO2 emissions from conventional fuels, the world is seeking an international commitment from all-dominating countries for an emission cut down of about 55–60% till 2050. Molecular hydrogen is the most-favored chemical fuel alternative for both stationary and mobile applications. Hydrogen is the most efficient energy carrier known to us with the highest heating value per mass, i.e., 120–142 MJ/kg of all chemical fuels. Hydrogen also has the highest gross calorific value being 141.7 MJ/kg significantly higher than petrol 46.4 MJ/kg and diesel 45.6 MJ/kg for 0 °C at 1 bar. The production of hydrogen gas is a challenge itself. Water being the only by-product of the energy generation and zero emissions, hydrogen is regenerative and eco friendly. Gravimetric density and volumetric density are crucial for stationary and mobile applications. In this paper, the storage methods reviewed were high-pressure cylinder (upto 800 bars) using different metals and lightweight composite materials, storage of hydrogen in a liquid state using cryogenic tanks at 21 K, storage of hydrogen using the metal–organic framework and solid materials, chemical storage using covalent and ionic compounds, storage using selective few metals which possess property to absorb hydrogen excessively in large amount, storage that uses nanostructured based metal hydrides and absorption of hydrogen using carbon-based materials like Graphene. Hydrogen can also be stored indirectly in reactive metals using metal hydrides and chemisorptive techniques in Li, Na, Al, or Zn and other alkali elements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, IPCC (2013) Summary for policymakers. In: Climate change 2013. Cambridge University Press, Cambridge Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, IPCC (2013) Summary for policymakers. In: Climate change 2013. Cambridge University Press, Cambridge
2.
go back to reference Argonne National Laboratory (2009) Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications. U.S. Department of Energy, Oak Ridge Argonne National Laboratory (2009) Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications. U.S. Department of Energy, Oak Ridge
3.
go back to reference Singer S, Denruyter J-P, Yener D (2017) The energy report: 100% renewable energy by 2050. In: Towards 100% renewable energy. Springer, Cham Singer S, Denruyter J-P, Yener D (2017) The energy report: 100% renewable energy by 2050. In: Towards 100% renewable energy. Springer, Cham
4.
go back to reference Saito S (2010) Role of nuclear energy to a future society of shortage of energy resources and global warming. J Nucl Mater 398:1–9CrossRef Saito S (2010) Role of nuclear energy to a future society of shortage of energy resources and global warming. J Nucl Mater 398:1–9CrossRef
5.
go back to reference SAE International (2015) SAE J2600 compressed hydrogen surface vehicle fueling connection devices SAE International (2015) SAE J2600 compressed hydrogen surface vehicle fueling connection devices
6.
go back to reference Hua T, Ahluwalia R, Peng J-K, Kromer M, Lasher S, McKenney K, Law K, Sinha J (2010) Technical assessment of compressed hydrogen storage tank systems for automotive applications. Office of Scientific and Technical Information (OSTI), Oak Ridge Hua T, Ahluwalia R, Peng J-K, Kromer M, Lasher S, McKenney K, Law K, Sinha J (2010) Technical assessment of compressed hydrogen storage tank systems for automotive applications. Office of Scientific and Technical Information (OSTI), Oak Ridge
7.
go back to reference Mazloomi K, Gomes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sustain Energy Rev 16:3024–3033CrossRef Mazloomi K, Gomes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sustain Energy Rev 16:3024–3033CrossRef
8.
go back to reference Mizuno M, Ogami N, Negishi Y, Katahira N (2005) High pressure hydrogen tank for FCHV. JSAE Paper No. 84-05, pp 13–16 Mizuno M, Ogami N, Negishi Y, Katahira N (2005) High pressure hydrogen tank for FCHV. JSAE Paper No. 84-05, pp 13–16
11.
go back to reference Millange F, Serre C, Guillou N, Ferey G, Walton RI (2008) Structural effects of solvents on the breathing of metal–organic frameworks: an in situ diffraction study. Angew Chem Int Ed 47:4100 Millange F, Serre C, Guillou N, Ferey G, Walton RI (2008) Structural effects of solvents on the breathing of metal–organic frameworks: an in situ diffraction study. Angew Chem Int Ed 47:4100
12.
go back to reference He Y, Chen F, Li B, Qian G, Zhou W, Chen B (2018) Porous metal-organic frameworks for fuel storage. Coord Chem Rev 373:167–198CrossRef He Y, Chen F, Li B, Qian G, Zhou W, Chen B (2018) Porous metal-organic frameworks for fuel storage. Coord Chem Rev 373:167–198CrossRef
13.
go back to reference Yan Y, Yang S, Blake AJ, Lewis W, Poirier E, Barnett SA, Champness NR, Schröder M (2011) A mesoporous metal-organic framework constructed from a nanosized C 3-symmetric linker and [Cu 24 (isophthalate) 24] cuboctahedra. Chem Commun 47:9995 Yan Y, Yang S, Blake AJ, Lewis W, Poirier E, Barnett SA, Champness NR, Schröder M (2011) A mesoporous metal-organic framework constructed from a nanosized C 3-symmetric linker and [Cu 24 (isophthalate) 24] cuboctahedra. Chem Commun 47:9995
14.
go back to reference Yuan D, Zhao D, Sun D, Zhou H-C (2010) An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Ed 49:5357 Yuan D, Zhao D, Sun D, Zhou H-C (2010) An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Ed 49:5357
15.
go back to reference Suh MP, Park HJ, Prasad TK, Lim D-W (2012) Hydrogen storage in metal–organic frameworks. Chem Rev 112:782–835 Suh MP, Park HJ, Prasad TK, Lim D-W (2012) Hydrogen storage in metal–organic frameworks. Chem Rev 112:782–835
16.
go back to reference Chen B, Eddaoudi M, Hyde ST, O’Keeffe M, Yaghi OM (2001) Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291:1021CrossRef Chen B, Eddaoudi M, Hyde ST, O’Keeffe M, Yaghi OM (2001) Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291:1021CrossRef
17.
go back to reference Züttel A, Borgschulte A, Schlapbach L (2011) Hydrogen as a future energy carrier. Wiley, Hoboken, p 441 Züttel A, Borgschulte A, Schlapbach L (2011) Hydrogen as a future energy carrier. Wiley, Hoboken, p 441
18.
go back to reference Saha D, Wei Z, Deng S (2008) Equilibrium, kinetics and enthalpy of hydrogen adsorption in MOF-177. Int J Hydrogen Energy 33:7479–7488CrossRef Saha D, Wei Z, Deng S (2008) Equilibrium, kinetics and enthalpy of hydrogen adsorption in MOF-177. Int J Hydrogen Energy 33:7479–7488CrossRef
19.
go back to reference Choi J-S, Son W-J, Kim J, Ahn W-S (2008) Metal-organic framework MOF-5 prepared by microwave heating: factors to be considered. Microporous Mesoporous Mater 116:727–731CrossRef Choi J-S, Son W-J, Kim J, Ahn W-S (2008) Metal-organic framework MOF-5 prepared by microwave heating: factors to be considered. Microporous Mesoporous Mater 116:727–731CrossRef
20.
go back to reference Mehtab T, Yasin G, Arif M, Shakeel M, Korai RM, Nadeem M, Muhammad N, Lu X (2019) Metal-organic frameworks for energy storage devices: batteries and supercapacitors. J Energy Storage 21:632–646 Mehtab T, Yasin G, Arif M, Shakeel M, Korai RM, Nadeem M, Muhammad N, Lu X (2019) Metal-organic frameworks for energy storage devices: batteries and supercapacitors. J Energy Storage 21:632–646
21.
go back to reference Sakintuna B, Lamari-Darkrimb F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy 32:1121 Sakintuna B, Lamari-Darkrimb F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy 32:1121
22.
go back to reference Vitillo JG, Regli L, Chavan S, Ricchiardi G, Spoto G, Dietzel PDC, Bordiga S, Zecchina A (2008) Role of exposed metal sites in hydrogen storage in MOFs. J Am Chem Soc 130:8386–8396CrossRef Vitillo JG, Regli L, Chavan S, Ricchiardi G, Spoto G, Dietzel PDC, Bordiga S, Zecchina A (2008) Role of exposed metal sites in hydrogen storage in MOFs. J Am Chem Soc 130:8386–8396CrossRef
23.
go back to reference Li ZP, Liu BH, Arai K, Suda S (2003) A fuel cell development for using borohydrides as the fuel. J Electrochem Soc 150:A868–A872CrossRef Li ZP, Liu BH, Arai K, Suda S (2003) A fuel cell development for using borohydrides as the fuel. J Electrochem Soc 150:A868–A872CrossRef
24.
go back to reference Zhou L (2005) Progress and problems in hydrogen storage methods. Renew Sustain Energy Rev 9:395–408CrossRef Zhou L (2005) Progress and problems in hydrogen storage methods. Renew Sustain Energy Rev 9:395–408CrossRef
25.
go back to reference Schlapbach L, Züttel A (2002) Hydrogen-storage materials for mobile applications. Nature 414:353CrossRef Schlapbach L, Züttel A (2002) Hydrogen-storage materials for mobile applications. Nature 414:353CrossRef
26.
go back to reference Züttel A, Wenger P, Rensch S, Sudan P, Mauron P, Emmenegger C (2003) LiBH4 hydrogen storage and distribution systems. J Power Sources 5194:1–7 Züttel A, Wenger P, Rensch S, Sudan P, Mauron P, Emmenegger C (2003) LiBH4 hydrogen storage and distribution systems. J Power Sources 5194:1–7
27.
go back to reference Kapelewski MT, Runčevski T, Tarver JD, Jiang HZH, Hurst KE, Parilla PA, Ayala A, Gennett T, FitzGerald SA, Brown CM, Long JR (2018) Chemistry of materials. Chem Mater 30:8179−8189 Kapelewski MT, Runčevski T, Tarver JD, Jiang HZH, Hurst KE, Parilla PA, Ayala A, Gennett T, FitzGerald SA, Brown CM, Long JR (2018) Chemistry of materials. Chem Mater 30:8179−8189
28.
go back to reference Klaus Y (1998) Complex transition metal hydrides. CHIMIA Int J Chem 52:613–619 Klaus Y (1998) Complex transition metal hydrides. CHIMIA Int J Chem 52:613–619
30.
go back to reference Züttel A, Sudan P, Mauron P, Kyiobaiashi T, Emmenegger C, Schlapbach L (2002) Hydrogen storage in carbon nanostructures. Int J Hydrogen Energy 27:203–212CrossRef Züttel A, Sudan P, Mauron P, Kyiobaiashi T, Emmenegger C, Schlapbach L (2002) Hydrogen storage in carbon nanostructures. Int J Hydrogen Energy 27:203–212CrossRef
31.
go back to reference Sljivancanin Z, Rauls E, Hornekaer L, Xu W, Besenbacher F, Hammer B (2009) Extended atomic hydrogen dimer configurations on the graphite(0001) surface. J Chem Phys 131:084706CrossRef Sljivancanin Z, Rauls E, Hornekaer L, Xu W, Besenbacher F, Hammer B (2009) Extended atomic hydrogen dimer configurations on the graphite(0001) surface. J Chem Phys 131:084706CrossRef
32.
go back to reference Ataca C, Aktürk E, Ciraci S, Ustunel H (2008) High-capacity hydrogen storage by metallized graphene. Appl Phys Lett 93:043123 Ataca C, Aktürk E, Ciraci S, Ustunel H (2008) High-capacity hydrogen storage by metallized graphene. Appl Phys Lett 93:043123
33.
go back to reference Tozzini V, Pellegrini V (2013) Prospects for hydrogen storage in graphene. Phys Chem Chem Phys 15:80 Tozzini V, Pellegrini V (2013) Prospects for hydrogen storage in graphene. Phys Chem Chem Phys 15:80
34.
go back to reference Fakioğlu E, Yürüm Y, Nejat Veziroğlu T (2004) A review of hydrogen storage systems based on boron and its compounds. Int J Hydrogen Energy 29:1371–1376 Fakioğlu E, Yürüm Y, Nejat Veziroğlu T (2004) A review of hydrogen storage systems based on boron and its compounds. Int J Hydrogen Energy 29:1371–1376
35.
go back to reference Durbin D, Malardier-Jugroot C (2013) Review of hydrogen storage techniques for on board vehicle applications. Int J Hydrogen Energy 38:14595–14617CrossRef Durbin D, Malardier-Jugroot C (2013) Review of hydrogen storage techniques for on board vehicle applications. Int J Hydrogen Energy 38:14595–14617CrossRef
36.
go back to reference Thomas C (2009) Fuel cell and battery electric vehicles compared. Int J Hydrogen Energy 34:6005–6020CrossRef Thomas C (2009) Fuel cell and battery electric vehicles compared. Int J Hydrogen Energy 34:6005–6020CrossRef
37.
go back to reference Momen G, Hermosilla G, Michau A, Pons M, Firdaous M, Marty P, Hassouni K (2009) Experimental and numerical investigation of the thermal effects during hydrogen charging in packed bed storage tank. Int J Heat Mass Transf 52:1495–1503CrossRef Momen G, Hermosilla G, Michau A, Pons M, Firdaous M, Marty P, Hassouni K (2009) Experimental and numerical investigation of the thermal effects during hydrogen charging in packed bed storage tank. Int J Heat Mass Transf 52:1495–1503CrossRef
38.
go back to reference Amos WA (1998) Costs of storing and transporting hydrogen. National Technical Information Service (NTIS), Springfield Amos WA (1998) Costs of storing and transporting hydrogen. National Technical Information Service (NTIS), Springfield
39.
go back to reference Ahluwalia R, Peng J, Roh H, Hua T, Houchins C, James B (2018) Supercritical cryo-compressed hydrogen storage for fuel cell electric buses. Int J Hydrogen Energy 43:10215–10231CrossRef Ahluwalia R, Peng J, Roh H, Hua T, Houchins C, James B (2018) Supercritical cryo-compressed hydrogen storage for fuel cell electric buses. Int J Hydrogen Energy 43:10215–10231CrossRef
41.
go back to reference Ma Y, Xia Y, Zhao M, Wang R, Mei L (2001) Effective hydrogen storage in single-wall carbon nanotubes. Phys Rev B 63:115422/1–115422/6 Ma Y, Xia Y, Zhao M, Wang R, Mei L (2001) Effective hydrogen storage in single-wall carbon nanotubes. Phys Rev B 63:115422/1–115422/6
42.
go back to reference Teichmann D, Arlt W, Wasserscheid P, Freymann R (2011) A future energy supply based on liquid organic hydrogen carriers (LOHC). Energy Environ Sci 4:2767–2773CrossRef Teichmann D, Arlt W, Wasserscheid P, Freymann R (2011) A future energy supply based on liquid organic hydrogen carriers (LOHC). Energy Environ Sci 4:2767–2773CrossRef
43.
go back to reference Sun T, Xiao F, Tang R, Wang Y, Dong H, Li Z, Wang H, Liuzhang O, Zhu M (2014) Hydrogen storageperformance of nano Ni decorated LiBH4 on activated carbon prepared through the organic solvent. J Alloy Compd 612:287–292CrossRef Sun T, Xiao F, Tang R, Wang Y, Dong H, Li Z, Wang H, Liuzhang O, Zhu M (2014) Hydrogen storageperformance of nano Ni decorated LiBH4 on activated carbon prepared through the organic solvent. J Alloy Compd 612:287–292CrossRef
44.
go back to reference Ming Y, Purewal J, Yang J, Xu C, Veenstra M, Gaab M, Müller U, Siegel DJ (2016) Stability of MOF-5 in a hydrogen gas environment containing fueling station impurities. Int J Hydrogen Energy 41:9374–9382CrossRef Ming Y, Purewal J, Yang J, Xu C, Veenstra M, Gaab M, Müller U, Siegel DJ (2016) Stability of MOF-5 in a hydrogen gas environment containing fueling station impurities. Int J Hydrogen Energy 41:9374–9382CrossRef
45.
go back to reference Meng Z, Lu R, Rao D, Kan E, Xiao C, Deng K (2013) Catenated metal-organic frameworks: promising hydrogen purification materials and high hydrogen storage medium with further lithium doping. Int J Hydrogen Energy 38:9811–9818CrossRef Meng Z, Lu R, Rao D, Kan E, Xiao C, Deng K (2013) Catenated metal-organic frameworks: promising hydrogen purification materials and high hydrogen storage medium with further lithium doping. Int J Hydrogen Energy 38:9811–9818CrossRef
46.
go back to reference Gadzikwa T, Farha OK, Mulfort KL, Hupp JT, Nguyen ST (2009) A Zn-based, pillared paddlewheel MOF containing free carboxylic acids via covalent post-synthesis elaboration. Chem Commun 45:3720CrossRef Gadzikwa T, Farha OK, Mulfort KL, Hupp JT, Nguyen ST (2009) A Zn-based, pillared paddlewheel MOF containing free carboxylic acids via covalent post-synthesis elaboration. Chem Commun 45:3720CrossRef
47.
go back to reference Chen B, Ockwig NW, Millward AR, Contreras DS, Yaghi OM (2005) High H2 adsorption in a microporous metal–organic framework with open metal sites. Angew Chem Int Ed 44:4745 Chen B, Ockwig NW, Millward AR, Contreras DS, Yaghi OM (2005) High H2 adsorption in a microporous metal–organic framework with open metal sites. Angew Chem Int Ed 44:4745
48.
go back to reference Arellano JA, Molina LM, Rubio A, López MJ, Alonso JA (2002) Interaction of molecular and atomic hydrogen with (5,5) and (6,6) single-wall carbon nanotubes. J Chem Phys 117:2281 Arellano JA, Molina LM, Rubio A, López MJ, Alonso JA (2002) Interaction of molecular and atomic hydrogen with (5,5) and (6,6) single-wall carbon nanotubes. J Chem Phys 117:2281
49.
go back to reference Yang SH, Lin X, Dailly A, Blake AJ, Hubberstey P, Champness NR, Schröder M (2009) Enhancement of H2 adsorption in coordination framework materials by use of ligand curvature. Chem Eur J 15:4829 Yang SH, Lin X, Dailly A, Blake AJ, Hubberstey P, Champness NR, Schröder M (2009) Enhancement of H2 adsorption in coordination framework materials by use of ligand curvature. Chem Eur J 15:4829
50.
go back to reference Sumida K, Brown CM, Herm ZR, Chavan S, Bordiga S, Long JR (2011) Hydrogen storage properties and neutron scattering studies of Mg 2 (dobdc)—a metal–organic framework with open Mg 2+ adsorption sites. Chem Commun 47:1157CrossRef Sumida K, Brown CM, Herm ZR, Chavan S, Bordiga S, Long JR (2011) Hydrogen storage properties and neutron scattering studies of Mg 2 (dobdc)—a metal–organic framework with open Mg 2+ adsorption sites. Chem Commun 47:1157CrossRef
51.
go back to reference Kim TK, Suh MP (2011) Selective CO2 adsorption in a flexible non-interpenetrated metal–organic framework. Chem Commun 47:4258CrossRef Kim TK, Suh MP (2011) Selective CO2 adsorption in a flexible non-interpenetrated metal–organic framework. Chem Commun 47:4258CrossRef
52.
go back to reference Mavrandonakis A, Klopper WJ (2008) First-principles study of single and multiple dihydrogen interaction with lithium containing benzene molecules. Phys Chem C 112:11580CrossRef Mavrandonakis A, Klopper WJ (2008) First-principles study of single and multiple dihydrogen interaction with lithium containing benzene molecules. Phys Chem C 112:11580CrossRef
Metadata
Title
Hydrogen Storage Techniques for Stationary and Mobile Applications: A Review
Authors
Aasim Akif Dafedar
Shivam Sudarshan Verma
Aman Yadav
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-0976-3_4

Premium Partner