Skip to main content
Top

2014 | OriginalPaper | Chapter

4. Hydrolytically Sensitive Fiber-Forming Bioresorbable Polymers

Authors : Chirag R. Gajjar, Martin W. King

Published in: Resorbable Fiber-Forming Polymers for Biotextile Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There are many different resorbable polymer systems based on different degradation mechanisms, and having a range of physical and mechanical properties. This chapter covers those polymers that are fiber forming and hydrolytically sensitive. Mechanical properties, resorption profile, and medical applications for these polymers have been discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Pişkin, Biodegradable polymers as biomaterials. J. Biomater. Sci. Polym. Ed. 6(9), 775–795 (1995)CrossRef E. Pişkin, Biodegradable polymers as biomaterials. J. Biomater. Sci. Polym. Ed. 6(9), 775–795 (1995)CrossRef
2.
go back to reference C.C. Chu, Biodegradable Polymeric Biomaterials: An Updated Overview, in Biomedical Engineering Handbook, 2nd edn., ed. by J.D. Bronzino (CRC Press, Boca Raton, Florida, 2000), pp. 1–22 C.C. Chu, Biodegradable Polymeric Biomaterials: An Updated Overview, in Biomedical Engineering Handbook, 2nd edn., ed. by J.D. Bronzino (CRC Press, Boca Raton, Florida, 2000), pp. 1–22
3.
go back to reference B. Saad, P. Neuenschwander, G. Uhlschmid, U. Suter, New versatile, elastomeric, degradable polymeric materials for medicine. Int. J. Biol. Macromol. 25(1–3), 293–301 (1999)CrossRef B. Saad, P. Neuenschwander, G. Uhlschmid, U. Suter, New versatile, elastomeric, degradable polymeric materials for medicine. Int. J. Biol. Macromol. 25(1–3), 293–301 (1999)CrossRef
4.
go back to reference R. Yoda, Elastomers for biomedical applications. J. Biomater. Sci. Polym. Ed. 9(6), 561–626 (1998)CrossRef R. Yoda, Elastomers for biomedical applications. J. Biomater. Sci. Polym. Ed. 9(6), 561–626 (1998)CrossRef
5.
go back to reference R.M. Ginde, R.K. Gupta, In vitro chemical degradation of poly(glycolic acid) pellets and fibers. J. Appl. Polym. Sci. 33(7), 2411–2429 (1987)CrossRef R.M. Ginde, R.K. Gupta, In vitro chemical degradation of poly(glycolic acid) pellets and fibers. J. Appl. Polym. Sci. 33(7), 2411–2429 (1987)CrossRef
6.
go back to reference C.K.S. Pillai, C.P. Sharma, Review Paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J. Biomater. Appl. 25(4), 291–366 (2010)CrossRef C.K.S. Pillai, C.P. Sharma, Review Paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J. Biomater. Appl. 25(4), 291–366 (2010)CrossRef
7.
go back to reference P.B. Maurus, C.C. Kaeding, Bioabsorbable implant material review. Operative Tech. Sports Med. 12(3), 158–160 (2004)CrossRef P.B. Maurus, C.C. Kaeding, Bioabsorbable implant material review. Operative Tech. Sports Med. 12(3), 158–160 (2004)CrossRef
8.
go back to reference B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical applications of biodegradable polymers. J. Polym. Sci., Part B Polym. Phys. 49(12), 832–864 (2011)CrossRef B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical applications of biodegradable polymers. J. Polym. Sci., Part B Polym. Phys. 49(12), 832–864 (2011)CrossRef
9.
go back to reference G.E. Luckachan, C.K.S. Pillai, Biodegradable polymers: a review on recent trends and emerging perspectives. J. Polym. Environ. 19, 637–676 (2011)CrossRef G.E. Luckachan, C.K.S. Pillai, Biodegradable polymers: a review on recent trends and emerging perspectives. J. Polym. Environ. 19, 637–676 (2011)CrossRef
10.
go back to reference H.R. Kricheldorf, Syntheses and application of polylactides. Chemosphere 43(1), 49–54 (2001)CrossRef H.R. Kricheldorf, Syntheses and application of polylactides. Chemosphere 43(1), 49–54 (2001)CrossRef
11.
go back to reference J.A. Cooper, H.H. Lu, F.K. Ko, J.W. Freeman, C.T. Laurencin, Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26(13), 1523–1532 (2005)CrossRef J.A. Cooper, H.H. Lu, F.K. Ko, J.W. Freeman, C.T. Laurencin, Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26(13), 1523–1532 (2005)CrossRef
12.
go back to reference H.H. Lu, J.A. Cooper Jr, S. Manuel, J.W. Freeman, M.A. Attawia, F.K. Ko, C.T. Laurencin, Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 26(23), 4805–4816 (2005)CrossRef H.H. Lu, J.A. Cooper Jr, S. Manuel, J.W. Freeman, M.A. Attawia, F.K. Ko, C.T. Laurencin, Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 26(23), 4805–4816 (2005)CrossRef
13.
go back to reference M. Zilberman, K.D. Nelson, R.C. Eberhart, Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents. J. Biomed. Mater. Res. Part B Appl. Biomater. 74(2), 792–799 (2005)CrossRef M. Zilberman, K.D. Nelson, R.C. Eberhart, Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents. J. Biomed. Mater. Res. Part B Appl. Biomater. 74(2), 792–799 (2005)CrossRef
14.
go back to reference J.C. Middleton, A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23), 2335–2346 (2000)CrossRef J.C. Middleton, A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23), 2335–2346 (2000)CrossRef
15.
go back to reference J.E. Bergsma, F.R. Rozema, R.R.M. Bos, G. Boering, W.C. de Bruijn, A.J. Pennings, In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polylactide particles. Biomaterials 16(4), 267–274 (1995)CrossRef J.E. Bergsma, F.R. Rozema, R.R.M. Bos, G. Boering, W.C. de Bruijn, A.J. Pennings, In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polylactide particles. Biomaterials 16(4), 267–274 (1995)CrossRef
16.
go back to reference C.C. Chu, Biodegradable polymeric biomaterials: an updated overview, in Biomaterials: Principles and Applications, ed. by J.B. Park, J.D. Bronzino (CRC Press, Florida, 2003), pp. 95–115 C.C. Chu, Biodegradable polymeric biomaterials: an updated overview, in Biomaterials: Principles and Applications, ed. by J.B. Park, J.D. Bronzino (CRC Press, Florida, 2003), pp. 95–115
17.
go back to reference W. Amass, A. Amass, B. Tighe, A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int. 47(2), 89–144 (1998)CrossRef W. Amass, A. Amass, B. Tighe, A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int. 47(2), 89–144 (1998)CrossRef
18.
go back to reference L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32(8–9), 762–798 (2007)CrossRef L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32(8–9), 762–798 (2007)CrossRef
19.
go back to reference S. Li, S. McCarthy, Further investigations on the hydrolytic degradation of poly (DL-lactide). Biomaterials 20(1), 35–44 (1999)CrossRef S. Li, S. McCarthy, Further investigations on the hydrolytic degradation of poly (DL-lactide). Biomaterials 20(1), 35–44 (1999)CrossRef
20.
go back to reference D.K. Gilding, A.M. Reed, Biodegradable polymers for use in surgery—polyglycolic/poly(lactic acid) homo- and copolymers: 1. Polymer 20(12), 1459–1464 (1979)CrossRef D.K. Gilding, A.M. Reed, Biodegradable polymers for use in surgery—polyglycolic/poly(lactic acid) homo- and copolymers: 1. Polymer 20(12), 1459–1464 (1979)CrossRef
21.
go back to reference A.M. Reed, D.K. Gilding, Biodegradable polymers for use in surgery—poly(glycolic)/poly(Iactic acid) homo and copolymers: 2. In vitro degradation. Polymer 22(4), 494–498 (1981)CrossRef A.M. Reed, D.K. Gilding, Biodegradable polymers for use in surgery—poly(glycolic)/poly(Iactic acid) homo and copolymers: 2. In vitro degradation. Polymer 22(4), 494–498 (1981)CrossRef
22.
go back to reference X.L. Lu, Z.J. Sun, W. Cai, Z.Y. Gao, Study on the shape memory effects of poly(L-lactide-co-epsilon-caprolactone) biodegradable polymers. J. Mater. Sci. Mater. Med. 19(1), 395–399 (2008)CrossRef X.L. Lu, Z.J. Sun, W. Cai, Z.Y. Gao, Study on the shape memory effects of poly(L-lactide-co-epsilon-caprolactone) biodegradable polymers. J. Mater. Sci. Mater. Med. 19(1), 395–399 (2008)CrossRef
23.
go back to reference W.L. Lee, P. Yu, M. Hong, E. Widjaja, S.C.J. Loo, Designing multilayered particulate systems for tunable drug release profiles. Acta Biomater. 8, 2271–2278 (2012)CrossRef W.L. Lee, P. Yu, M. Hong, E. Widjaja, S.C.J. Loo, Designing multilayered particulate systems for tunable drug release profiles. Acta Biomater. 8, 2271–2278 (2012)CrossRef
24.
go back to reference R.C. Mundargi, S. Srirangarajan, S.A. Agnihotri, S.A. Patil, S. Ravindra, S.B. Setty, T.M. Aminabhavi, Development and evaluation of novel biodegradable microspheres based on poly(d, l-lactide-co-glycolide) and poly(epsilon-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: in vitro and in vivo studies. J Control Release 119(1), 59–68 (2007)CrossRef R.C. Mundargi, S. Srirangarajan, S.A. Agnihotri, S.A. Patil, S. Ravindra, S.B. Setty, T.M. Aminabhavi, Development and evaluation of novel biodegradable microspheres based on poly(d, l-lactide-co-glycolide) and poly(epsilon-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: in vitro and in vivo studies. J Control Release 119(1), 59–68 (2007)CrossRef
25.
go back to reference R.S. Bezwada, D.D. Jamiolkowski, I.Y. Lee, V. Agarwal, J. Persivale, S. Trenka-Benthin, M. Erneta, J. Suryadevara, A. Yang, S. Liu, Monocryl suture, a new ultra-pliable absorbable monofilament suture. Biomaterials 16(15), 1141–1148 (1995)CrossRef R.S. Bezwada, D.D. Jamiolkowski, I.Y. Lee, V. Agarwal, J. Persivale, S. Trenka-Benthin, M. Erneta, J. Suryadevara, A. Yang, S. Liu, Monocryl suture, a new ultra-pliable absorbable monofilament suture. Biomaterials 16(15), 1141–1148 (1995)CrossRef
26.
go back to reference J.-T. Hong, N.-S. Cho, H.-S. Yoon, T.-H. Kim, D.-H. Lee, W.-G. Kim, Preparation and characterization of biodegradable poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers. J. Polym. Sci. Part A Polym. Chem. 43(13), 2790–2799 (2005)CrossRef J.-T. Hong, N.-S. Cho, H.-S. Yoon, T.-H. Kim, D.-H. Lee, W.-G. Kim, Preparation and characterization of biodegradable poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers. J. Polym. Sci. Part A Polym. Chem. 43(13), 2790–2799 (2005)CrossRef
27.
go back to reference K. Tomihata, M. Suzuki, N. Tomita, Handling characteristics of poly(L-lactide-co-epsilon-caprolactone) monofilament suture. Biomed. Mater. Eng. 15(5), 381–391 (2005) K. Tomihata, M. Suzuki, N. Tomita, Handling characteristics of poly(L-lactide-co-epsilon-caprolactone) monofilament suture. Biomed. Mater. Eng. 15(5), 381–391 (2005)
28.
go back to reference A. Steinbüchel, T. Lütke-Eversloh, Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16(2), 81–96 (2003)CrossRef A. Steinbüchel, T. Lütke-Eversloh, Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16(2), 81–96 (2003)CrossRef
29.
go back to reference S.F. Williams, D.P. Martin, Applications of PHAs in medicine and pharmacy, in Biopolymers for Medical and Pharmaceutical Applications, vol. 1, ed. by A. Steinbüchel, R.H. Marchessault (Wiley-VCH, New Jersey, 2005), pp. 89–125 S.F. Williams, D.P. Martin, Applications of PHAs in medicine and pharmacy, in Biopolymers for Medical and Pharmaceutical Applications, vol. 1, ed. by A. Steinbüchel, R.H. Marchessault (Wiley-VCH, New Jersey, 2005), pp. 89–125
30.
go back to reference S.P. Valappil, S.K. Misra, A.R. Boccaccini, I. Roy, Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses. Expert Rev. Med. Devices 3(6), 853–868 (2006)CrossRef S.P. Valappil, S.K. Misra, A.R. Boccaccini, I. Roy, Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses. Expert Rev. Med. Devices 3(6), 853–868 (2006)CrossRef
31.
go back to reference E.I. Shishatskaya, T.G. Volova, A.P. Puzyr, O.A. Mogilnaya, S.N. Efremov, Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures. J. Mater. Sci. Mater. Med. 15(6), 719–728 (2004)CrossRef E.I. Shishatskaya, T.G. Volova, A.P. Puzyr, O.A. Mogilnaya, S.N. Efremov, Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures. J. Mater. Sci. Mater. Med. 15(6), 719–728 (2004)CrossRef
32.
go back to reference C. Ljungberg, G. Johansson-Ruden, K.J. Boström, L. Novikov, M. Wiberg, Neuronal survival using a resorbable synthetic conduit as an alternative to primary nerve repair. Microsurgery 19(6), 259–264 (1999)CrossRef C. Ljungberg, G. Johansson-Ruden, K.J. Boström, L. Novikov, M. Wiberg, Neuronal survival using a resorbable synthetic conduit as an alternative to primary nerve repair. Microsurgery 19(6), 259–264 (1999)CrossRef
33.
go back to reference A. Hazari, G. Johansson-Rudén, K. Junemo-Bostrom, C. Ljungberg, G. Terenghi, C. Green, M. Wiberg, A new resorbable wrap-around implant as an alternative nerve repair technique. J Hand Surg Br 24(3), 291–295 (1999)CrossRef A. Hazari, G. Johansson-Rudén, K. Junemo-Bostrom, C. Ljungberg, G. Terenghi, C. Green, M. Wiberg, A new resorbable wrap-around implant as an alternative nerve repair technique. J Hand Surg Br 24(3), 291–295 (1999)CrossRef
34.
go back to reference L.N. Novikov, L.N. Novikova, A. Mosahebi, M. Wiberg, G. Terenghi, J.-O. Kellerth, A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials 23(16), 3369–3376 (2002)CrossRef L.N. Novikov, L.N. Novikova, A. Mosahebi, M. Wiberg, G. Terenghi, J.-O. Kellerth, A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials 23(16), 3369–3376 (2002)CrossRef
35.
go back to reference J.C. Knowles, F.A. Mahmud, G.W. Hastings, Piezoelectric characteristics of a polyhydroxybutyrate-based composite. Clinical Materials 8(1–2), 155–158 (1991)CrossRef J.C. Knowles, F.A. Mahmud, G.W. Hastings, Piezoelectric characteristics of a polyhydroxybutyrate-based composite. Clinical Materials 8(1–2), 155–158 (1991)CrossRef
36.
go back to reference C. Doyle, E.T. Tanner, W. Bonfield, In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials 12(9), 841–847 (1991)CrossRef C. Doyle, E.T. Tanner, W. Bonfield, In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials 12(9), 841–847 (1991)CrossRef
37.
go back to reference D.P. Martin, S.F. Williams, Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem. Eng. J. 16(2), 97–105 (2003)CrossRef D.P. Martin, S.F. Williams, Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem. Eng. J. 16(2), 97–105 (2003)CrossRef
38.
go back to reference K.-K. Yang, X.-L. Wang, Y.-Z. Wang, Poly(p-dioxanone) and its copolymers. J. Macromol. Sci. Polym. Rev. 42(3), 373 (2002)CrossRef K.-K. Yang, X.-L. Wang, Y.-Z. Wang, Poly(p-dioxanone) and its copolymers. J. Macromol. Sci. Polym. Rev. 42(3), 373 (2002)CrossRef
39.
go back to reference H.L. Lin, C.C. Chu, D. Grubb, Hydrolytic degradation and morphologic study of poly-p-dioxanone. J. Biomed. Mater. Res. 27(2), 153–166 (1993)CrossRef H.L. Lin, C.C. Chu, D. Grubb, Hydrolytic degradation and morphologic study of poly-p-dioxanone. J. Biomed. Mater. Res. 27(2), 153–166 (1993)CrossRef
40.
go back to reference S.W. Shalaby, Biomedical Polymers: Designed-To-Degrade Systems (Hanser Publishers, Munich, 1994) S.W. Shalaby, Biomedical Polymers: Designed-To-Degrade Systems (Hanser Publishers, Munich, 1994)
41.
go back to reference R.S. Bezwada, S.W. Shalaby, H. Newman, A. Kafrawy, Bioabsorbable copolymers of p-dioxanone and lactide for surgical devices. Trans. Soc. Biomater. XIII, 194 (1990) R.S. Bezwada, S.W. Shalaby, H. Newman, A. Kafrawy, Bioabsorbable copolymers of p-dioxanone and lactide for surgical devices. Trans. Soc. Biomater. XIII, 194 (1990)
42.
go back to reference J. Kennedy, D. S. Kaplan, R. R. Muth, Absorbable composition. 522552006-Jul-(1993) J. Kennedy, D. S. Kaplan, R. R. Muth, Absorbable composition. 522552006-Jul-(1993)
43.
go back to reference K. Gorona, S. Gogolewski, Novel biodegradable polyurethanes for medical applications, in Synthetic Bioabsorbable Polymers for Implants, ed. by C.M. Agrawal, J.E. Parr, S.T. Lin (ASTM special technical publication, UK, 2000), pp. 39–57CrossRef K. Gorona, S. Gogolewski, Novel biodegradable polyurethanes for medical applications, in Synthetic Bioabsorbable Polymers for Implants, ed. by C.M. Agrawal, J.E. Parr, S.T. Lin (ASTM special technical publication, UK, 2000), pp. 39–57CrossRef
44.
go back to reference P. Gunatillake, R. Mayadunne, R. Adhikari, Recent developments in biodegradable synthetic polymers, in Biotechnology Annual Review, vol. 12, ed. by M. Raafat El-Gewely (Elsevier, Amsterdam, 2006), pp. 301–347CrossRef P. Gunatillake, R. Mayadunne, R. Adhikari, Recent developments in biodegradable synthetic polymers, in Biotechnology Annual Review, vol. 12, ed. by M. Raafat El-Gewely (Elsevier, Amsterdam, 2006), pp. 301–347CrossRef
45.
go back to reference R.F. Storey, J.S. Wiggins, A.D. Puckett, Hydrolyzable poly(ester-urethane) networks from L-lysine diisocyanate and D, L-lactide/ϵ-caprolactone homo- and copolyester triols. J. Polym. Sci. Part A Polym. Chem. 32(12), 2345–2363 (2003)CrossRef R.F. Storey, J.S. Wiggins, A.D. Puckett, Hydrolyzable poly(ester-urethane) networks from L-lysine diisocyanate and D, L-lactide/ϵ-caprolactone homo- and copolyester triols. J. Polym. Sci. Part A Polym. Chem. 32(12), 2345–2363 (2003)CrossRef
46.
go back to reference J.Y. Zhang, E.J. Beckman, N.P. Piesco, S. Agarwal, A new peptide-based urethane polymer: synthesis, biodegradation, and potential to support cell growth in vitro. Biomaterials 21(12), 1247–1258 (2000)CrossRef J.Y. Zhang, E.J. Beckman, N.P. Piesco, S. Agarwal, A new peptide-based urethane polymer: synthesis, biodegradation, and potential to support cell growth in vitro. Biomaterials 21(12), 1247–1258 (2000)CrossRef
47.
go back to reference M. Okada, Chemical syntheses of biodegradable polymers. Prog. Polym. Sci. 27(1), 87–133 (2002)CrossRef M. Okada, Chemical syntheses of biodegradable polymers. Prog. Polym. Sci. 27(1), 87–133 (2002)CrossRef
48.
go back to reference J. Heller, Polyorthoesters, in Handbook of Biodegradable Polymers, ed. by A.J. Domb, J. Kost, D.M. Wiseman (Harwood Academic Publishers, Australia, 1998), pp. 99–118 J. Heller, Polyorthoesters, in Handbook of Biodegradable Polymers, ed. by A.J. Domb, J. Kost, D.M. Wiseman (Harwood Academic Publishers, Australia, 1998), pp. 99–118
49.
go back to reference J. Heller, J. Barr, S. Ng, H.-R. Shen, K. Schwach-Abdellaoui, S. Emmahl, A. Rothen-Weinhold, R. Gurny, Poly(ortho esters)—their development and some recent applications. Eur. J. Pharm. Biopharm. 50(1), 121–128 (2000)CrossRef J. Heller, J. Barr, S. Ng, H.-R. Shen, K. Schwach-Abdellaoui, S. Emmahl, A. Rothen-Weinhold, R. Gurny, Poly(ortho esters)—their development and some recent applications. Eur. J. Pharm. Biopharm. 50(1), 121–128 (2000)CrossRef
50.
go back to reference J. Heller, J. Barr, S.Y. Ng, K.S. Abdellauoi, R. Gurny, Poly(ortho esters): synthesis, characterization, properties and uses. Adv. Drug Deliv. Rev. 54(7), 1015–1039 (2002)CrossRef J. Heller, J. Barr, S.Y. Ng, K.S. Abdellauoi, R. Gurny, Poly(ortho esters): synthesis, characterization, properties and uses. Adv. Drug Deliv. Rev. 54(7), 1015–1039 (2002)CrossRef
51.
go back to reference J. Heller, Development of poly(ortho esters): a historical overview. Biomaterials 11(9), 659–665 (1990)CrossRef J. Heller, Development of poly(ortho esters): a historical overview. Biomaterials 11(9), 659–665 (1990)CrossRef
52.
go back to reference J. Heller, S.Y. Ng, B.K. Fritzinger, K.V. Roskos, Controlled drug release from bioerodible hydrophobic ointments. Biomaterials 11(4), 235–237 (1990)CrossRef J. Heller, S.Y. Ng, B.K. Fritzinger, K.V. Roskos, Controlled drug release from bioerodible hydrophobic ointments. Biomaterials 11(4), 235–237 (1990)CrossRef
53.
go back to reference A. Göpferich, J. Tessmar, Polyanhydride degradation and erosion. Adv. Drug Deliv. Rev. 54(7), 911–931 (2002)CrossRef A. Göpferich, J. Tessmar, Polyanhydride degradation and erosion. Adv. Drug Deliv. Rev. 54(7), 911–931 (2002)CrossRef
54.
go back to reference N. Kumar, R.S. Langer, A.J. Domb, Polyanhydrides: an overview. Adv. Drug Deliv. Rev. 54(7), 889–910 (2002)CrossRef N. Kumar, R.S. Langer, A.J. Domb, Polyanhydrides: an overview. Adv. Drug Deliv. Rev. 54(7), 889–910 (2002)CrossRef
55.
go back to reference H.B. Rosen, J. Chang, G.E. Wnek, R.J. Linhardt, R. Langer, Bioerodible polyanhydrides for controlled drug delivery. Biomaterials 4(2), 131–133 (1983)CrossRef H.B. Rosen, J. Chang, G.E. Wnek, R.J. Linhardt, R. Langer, Bioerodible polyanhydrides for controlled drug delivery. Biomaterials 4(2), 131–133 (1983)CrossRef
56.
go back to reference K.E. Uhrich, A. Gupta, T.T. Thomas, C.T. Laurencin, R. Langer, Synthesis and characterization of degradable poly(anhydride-co-imides). Macromolecules 28(7), 2184–2193 (1995)CrossRef K.E. Uhrich, A. Gupta, T.T. Thomas, C.T. Laurencin, R. Langer, Synthesis and characterization of degradable poly(anhydride-co-imides). Macromolecules 28(7), 2184–2193 (1995)CrossRef
57.
go back to reference M.A. Attawia, K.E. Uhrich, E. Botchwey, M. Fan, R. Langer, C.T. Laurencin, Cytotoxicity testing of poly(anhydride‐co‐imides) for orthopedic applications. J. Biomed. Mater. Res. 29(10), 1233–1240 (1995)CrossRef M.A. Attawia, K.E. Uhrich, E. Botchwey, M. Fan, R. Langer, C.T. Laurencin, Cytotoxicity testing of poly(anhydride‐co‐imides) for orthopedic applications. J. Biomed. Mater. Res. 29(10), 1233–1240 (1995)CrossRef
58.
go back to reference L. Erdmann, B. Macedo, K. Uhrich, Degradable poly(anhydride ester) implants: effects of localized salicylic acid release on bone. Biomaterials 21(24), 2507–2512 (2000)CrossRef L. Erdmann, B. Macedo, K. Uhrich, Degradable poly(anhydride ester) implants: effects of localized salicylic acid release on bone. Biomaterials 21(24), 2507–2512 (2000)CrossRef
59.
go back to reference L. Erdmann, K.E. Uhrich, Synthesis and degradation characteristics of salicylic acid-derived poly(anhydride-esters). Biomaterials 21(19), 1941–1946 (2000)CrossRef L. Erdmann, K.E. Uhrich, Synthesis and degradation characteristics of salicylic acid-derived poly(anhydride-esters). Biomaterials 21(19), 1941–1946 (2000)CrossRef
60.
go back to reference K. Whitaker-Brothers, K. Uhrich, Poly(anhydride-ester) fibers: role of copolymer composition on hydrolytic degradation and mechanical properties. J. Biomed. Mater. Res. Part A 70A(2), 309–318 (2004)CrossRef K. Whitaker-Brothers, K. Uhrich, Poly(anhydride-ester) fibers: role of copolymer composition on hydrolytic degradation and mechanical properties. J. Biomed. Mater. Res. Part A 70A(2), 309–318 (2004)CrossRef
61.
go back to reference S.I. Ertel, J. Kohn, Evaluation of a series of tyrosine-derived polycarbonates as degradable biomaterials. J. Biomed. Mater. Res. 28(8), 919–930 (1994)CrossRef S.I. Ertel, J. Kohn, Evaluation of a series of tyrosine-derived polycarbonates as degradable biomaterials. J. Biomed. Mater. Res. 28(8), 919–930 (1994)CrossRef
62.
go back to reference S.L. Bourke, J. Kohn, Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol). Adv. Drug Deliv. Rev. 55(4), 447–466 (2003)CrossRef S.L. Bourke, J. Kohn, Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol). Adv. Drug Deliv. Rev. 55(4), 447–466 (2003)CrossRef
63.
go back to reference K.A. Hooper, N.D. Macon, J. Kohn, Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation. J. Biomed. Mater. Res. 41(3), 443–454 (1998)CrossRef K.A. Hooper, N.D. Macon, J. Kohn, Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation. J. Biomed. Mater. Res. 41(3), 443–454 (1998)CrossRef
64.
go back to reference V. Tangpasuthadol, S.M. Pendharkar, R.C. Peterson, J. Kohn, Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices. Biomaterials 21(23), 2379–2387 (2000)CrossRef V. Tangpasuthadol, S.M. Pendharkar, R.C. Peterson, J. Kohn, Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices. Biomaterials 21(23), 2379–2387 (2000)CrossRef
65.
go back to reference C. Meechaisue, R. Dubin, P. Supaphol, V.P. Hoven, J. Kohn, Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material. J. Biomater. Sci. Polym. Ed. 17(9), 1039–1056 (2006)CrossRef C. Meechaisue, R. Dubin, P. Supaphol, V.P. Hoven, J. Kohn, Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material. J. Biomater. Sci. Polym. Ed. 17(9), 1039–1056 (2006)CrossRef
66.
go back to reference S.L. Bourke, J. Kohn, M.G. Dunn, Preliminary development of a novel resorbable synthetic polymer fiber scaffold for anterior cruciate ligament reconstruction. Tissue Eng. 10(1–2), 43–52 (2004)CrossRef S.L. Bourke, J. Kohn, M.G. Dunn, Preliminary development of a novel resorbable synthetic polymer fiber scaffold for anterior cruciate ligament reconstruction. Tissue Eng. 10(1–2), 43–52 (2004)CrossRef
67.
go back to reference S. Lakshmi, D. Katti, C. Laurencin, Biodegradable polyphosphazenes for drug delivery applications. Adv. Drug Deliv. Rev. 55(4), 467–482 (2003)CrossRef S. Lakshmi, D. Katti, C. Laurencin, Biodegradable polyphosphazenes for drug delivery applications. Adv. Drug Deliv. Rev. 55(4), 467–482 (2003)CrossRef
68.
go back to reference A. Singh, N.R. Krogman, S. Sethuraman, L.S. Nair, J.L. Sturgeon, P.W. Brown, C.T. Laurencin, H.R. Allcock, Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes. Biomacromolecules 7(3), 914–918 (2006)CrossRef A. Singh, N.R. Krogman, S. Sethuraman, L.S. Nair, J.L. Sturgeon, P.W. Brown, C.T. Laurencin, H.R. Allcock, Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes. Biomacromolecules 7(3), 914–918 (2006)CrossRef
69.
go back to reference M.T. Conconi, S. Lora, S. Baiguera, E. Boscolo, M. Folin, R. Scienza, P. Rebuffat, P.P. Parnigotto, G.G. Nussdorfer, In vitro culture of rat neuromicrovascular endothelial cells on polymeric scaffolds. J. Biomed. Mater. Res. Part A 71A(4), 669–674 (2004)CrossRef M.T. Conconi, S. Lora, S. Baiguera, E. Boscolo, M. Folin, R. Scienza, P. Rebuffat, P.P. Parnigotto, G.G. Nussdorfer, In vitro culture of rat neuromicrovascular endothelial cells on polymeric scaffolds. J. Biomed. Mater. Res. Part A 71A(4), 669–674 (2004)CrossRef
70.
go back to reference L.S. Nair, S. Bhattacharyya, J.D. Bender, Y.E. Greish, P.W. Brown, H.R. Allcock, C.T. Laurencin, Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Biomacromolecules 5(6), 2212–2220 (2004)CrossRef L.S. Nair, S. Bhattacharyya, J.D. Bender, Y.E. Greish, P.W. Brown, H.R. Allcock, C.T. Laurencin, Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Biomacromolecules 5(6), 2212–2220 (2004)CrossRef
71.
go back to reference M.T. Conconi, S. Lora, A.M. Menti, P. Carampin, P.P. Parnigotto, In vitro evaluation of poly[bis(ethyl alanato)phosphazene] as a scaffold for bone tissue engineering. Tissue Eng. 12(4), 811–819 (2006)CrossRef M.T. Conconi, S. Lora, A.M. Menti, P. Carampin, P.P. Parnigotto, In vitro evaluation of poly[bis(ethyl alanato)phosphazene] as a scaffold for bone tissue engineering. Tissue Eng. 12(4), 811–819 (2006)CrossRef
72.
go back to reference Q.-S. Zhang, Y.-H. Yan, S.-P. Li, T. Feng, Synthesis of a novel biodegradable and electroactive polyphosphazene for biomedical application. Biomed. Mater. 4(3), 035008 (2009)CrossRef Q.-S. Zhang, Y.-H. Yan, S.-P. Li, T. Feng, Synthesis of a novel biodegradable and electroactive polyphosphazene for biomedical application. Biomed. Mater. 4(3), 035008 (2009)CrossRef
Metadata
Title
Hydrolytically Sensitive Fiber-Forming Bioresorbable Polymers
Authors
Chirag R. Gajjar
Martin W. King
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-08305-6_4

Premium Partners