Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 3/2014

01-09-2014 | Original Paper

Hydrophobicity and drag reduction properties of surfaces coated with silica aerogels and xerogels

Authors: Justin E. Rodriguez, Ann M. Anderson, Mary K. Carroll

Published in: Journal of Sol-Gel Science and Technology | Issue 3/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Superhydrophobic surfaces have application in self-cleaning, anti-fouling and drag reduction. Most superhydrophobic surfaces are constructed using complex fabrication methods. An alternative method is to use sol–gel methods to make hydrophobic aerogel and xerogel surfaces. In this work, hydrophobic silica aerogels and xerogels were made from the silica precursors tetramethoxysilane (TMOS) and methyltrimethoxysilane (MTMS) in volume ratios MTMS/TMOS of 0–75 % using a base-catalyzed recipe. Overall hydrophobicity was assessed using contact angle measurements on surfaces prepared from crushed aerogel and xerogel powders. The surfaces made from aerogels were super-hydrophobic (with contact angles of 167°–170°) for all levels of MTMS (10–75 %). Of the xerogel-coated surfaces, those made with 50 % MTMS were hydrophobic and with 75 % MTMS were superhydrophobic. Chemical hydrophobicity was assessed using Fourier transform infrared spectroscopy, which showed evidence of Si–CH3 and Si–C bonds in the aerogels and xerogels made with MTMS. Morphological hydrophobicity was assessed using SEM imaging and gas adsorption. The drag characteristics of the aerogel- and xerogel-coated surfaces were measured using a rotational viscometer. Under laminar flow conditions all of the hydrophobic aerogel-coated surfaces (10–75 % MTMS) were capable of capturing an air bubble, thereby reducing the drag on a horizontal rotating surface by 20–30 %. Of the xerogel-coated surfaces, only the one made from 75 % MTMS could capture a bubble, which led to 27 % drag reduction. These results imply that morphological differences between silica aerogels and xerogels, rather than any differences in their chemical hydrophobicity, give rise to the observed differences in hydrophobicity and drag reduction for the sol–gel-coated surfaces.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li XM, Reinhoudt D, Crego-Calama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368CrossRef Li XM, Reinhoudt D, Crego-Calama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36:1350–1368CrossRef
2.
go back to reference Jeong A-Y, Koo S-M, Kim D-P (2000) Characterization of hydrophobic SiO2 powders prepared by surface modification on wet gel. J Solgel Sci Technol 19:483–487CrossRef Jeong A-Y, Koo S-M, Kim D-P (2000) Characterization of hydrophobic SiO2 powders prepared by surface modification on wet gel. J Solgel Sci Technol 19:483–487CrossRef
3.
go back to reference Aegerter MA, Almeida R, Soutar A, Tadanaga K, Yang H, Watanabe T (2008) Coatings made by sol-gel and chemical nanotechnology. J Solgel Sci Technol 47:203–236CrossRef Aegerter MA, Almeida R, Soutar A, Tadanaga K, Yang H, Watanabe T (2008) Coatings made by sol-gel and chemical nanotechnology. J Solgel Sci Technol 47:203–236CrossRef
4.
go back to reference Rothstein JP (2011) Slip on superhydrophobic surfaces. Ann Rev Fluid Mech 42:89–109CrossRef Rothstein JP (2011) Slip on superhydrophobic surfaces. Ann Rev Fluid Mech 42:89–109CrossRef
5.
go back to reference Samaha MA, Tafresuperhydrophobici HV, Gad-el-Hak M (2011) Superhydrophobic surfaces: from the lotus leaf to the submarine. Comptes Rendus Mécanique 340:18–34CrossRef Samaha MA, Tafresuperhydrophobici HV, Gad-el-Hak M (2011) Superhydrophobic surfaces: from the lotus leaf to the submarine. Comptes Rendus Mécanique 340:18–34CrossRef
6.
go back to reference Voronov RS, Papavassiliou DV, Lee LL (2008) Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle. Ind Eng Chem Res 47:2455–2477CrossRef Voronov RS, Papavassiliou DV, Lee LL (2008) Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle. Ind Eng Chem Res 47:2455–2477CrossRef
7.
go back to reference Ou J, Perot B, Rothstein JP (2004) Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids 16:4635–4643CrossRef Ou J, Perot B, Rothstein JP (2004) Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids 16:4635–4643CrossRef
8.
go back to reference Daniello RJ, Waterhouse NE, Rothstein JP (2009) Drag reduction in turbulent flows over superhydrophobic surfaces. Phys Fluids. doi:10.1063/1.3207885 Daniello RJ, Waterhouse NE, Rothstein JP (2009) Drag reduction in turbulent flows over superhydrophobic surfaces. Phys Fluids. doi:10.​1063/​1.​3207885
9.
go back to reference Ogata S, Shimizu K (2011) Drag reduction by hydrophobic microstructures. J Environ Eng 6:291–301CrossRef Ogata S, Shimizu K (2011) Drag reduction by hydrophobic microstructures. J Environ Eng 6:291–301CrossRef
10.
go back to reference Watanabe K, Ogata S, Hirose A, Kimura A (2007) Flow characteristics of the drag reducing solid wall. J Environ Eng 2:108–114CrossRef Watanabe K, Ogata S, Hirose A, Kimura A (2007) Flow characteristics of the drag reducing solid wall. J Environ Eng 2:108–114CrossRef
11.
go back to reference Gogte S, Vorobieff P, Truesdell R, Mammoli A, van Swol F, Shah P, Brinker CJ (2005) Effective slip on textured superhydrophobic surfaces. Phys Fluids. doi:10.1063/1.1896405 Gogte S, Vorobieff P, Truesdell R, Mammoli A, van Swol F, Shah P, Brinker CJ (2005) Effective slip on textured superhydrophobic surfaces. Phys Fluids. doi:10.​1063/​1.​1896405
12.
go back to reference Henoch C, Krupenkin TN, Kolodner P, Taylor JA, Hodes MS, Lyons AM, Peguero C, Breuer KS (2006) Turbulent drag reduction using superhydrophobic surfaces. In: Proceedings of the 3rd AIAA flow control conference AIAA2006-3192 Henoch C, Krupenkin TN, Kolodner P, Taylor JA, Hodes MS, Lyons AM, Peguero C, Breuer KS (2006) Turbulent drag reduction using superhydrophobic surfaces. In: Proceedings of the 3rd AIAA flow control conference AIAA2006-3192
13.
go back to reference Aljallis E, Sarshar MA, Datla R, Hunter S, Simpson J, Sikka V, Jones A, Choi CH (2011) Measurement of hydrodynamic frictional drag on superhydrophobic flat plates in high reynolds number flows. In: Proceedings of the ASME 2011 IMECE, Denver, CO IMECE-63272 Aljallis E, Sarshar MA, Datla R, Hunter S, Simpson J, Sikka V, Jones A, Choi CH (2011) Measurement of hydrodynamic frictional drag on superhydrophobic flat plates in high reynolds number flows. In: Proceedings of the ASME 2011 IMECE, Denver, CO IMECE-63272
14.
go back to reference Lee C, Kim CJ (2009) Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir 25:12812–12818CrossRef Lee C, Kim CJ (2009) Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir 25:12812–12818CrossRef
15.
go back to reference Anderson AM, Carroll MK (2011) Hydrophobic Silica Aerogels: Review of Synthesis, Properties and Applications. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York Anderson AM, Carroll MK (2011) Hydrophobic Silica Aerogels: Review of Synthesis, Properties and Applications. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York
16.
go back to reference Rao AV, Pajonk G, Nadargi DY, Koebel MM (2011) Superhydrophobic and Flexible Aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York Rao AV, Pajonk G, Nadargi DY, Koebel MM (2011) Superhydrophobic and Flexible Aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York
17.
go back to reference Samaha MA, Tafreshi HV, Gad-el-Hak M (2012) Effects of hydrostatic pressure on the drag reduction of submerged aerogel-particle coatings. Colloids Surf A Physicochem Eng Asp 399:62–70CrossRef Samaha MA, Tafreshi HV, Gad-el-Hak M (2012) Effects of hydrostatic pressure on the drag reduction of submerged aerogel-particle coatings. Colloids Surf A Physicochem Eng Asp 399:62–70CrossRef
18.
go back to reference Anderson AM, Carroll MK, Green EC, Melville JT, Bono MS (2010) Hydrophobic silica aerogels prepared via rapid supercritical extraction. J Solgel Sci Technol 53:199–207CrossRef Anderson AM, Carroll MK, Green EC, Melville JT, Bono MS (2010) Hydrophobic silica aerogels prepared via rapid supercritical extraction. J Solgel Sci Technol 53:199–207CrossRef
19.
go back to reference Rao AV, Haranath D (1999) Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels. Microporous Mesoporous Mater 30(2–3):267–273 Rao AV, Haranath D (1999) Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels. Microporous Mesoporous Mater 30(2–3):267–273
20.
go back to reference Gauthier BM, Bakrania SD, Anderson AM, Carroll MK (2004) A fast supercritical extraction technique for aerogel fabrication. J Non Cryst Solids 350:238–243CrossRef Gauthier BM, Bakrania SD, Anderson AM, Carroll MK (2004) A fast supercritical extraction technique for aerogel fabrication. J Non Cryst Solids 350:238–243CrossRef
21.
go back to reference Carroll, MK, Anderson, AM, Gorka, CA (2014) Preparing silica aerogel monoliths via a rapid supercritical extraction method. J Vis Exp. doi:10.3791/51421 Carroll, MK, Anderson, AM, Gorka, CA (2014) Preparing silica aerogel monoliths via a rapid supercritical extraction method. J Vis Exp. doi:10.​3791/​51421
22.
go back to reference Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRef Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRef
23.
go back to reference Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380CrossRef Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380CrossRef
24.
go back to reference Reichenauer G, Scherer G (2000) Nitrogen adsorption in compliant materials. J Non Cryst Solids 277:162–172CrossRef Reichenauer G, Scherer G (2000) Nitrogen adsorption in compliant materials. J Non Cryst Solids 277:162–172CrossRef
25.
go back to reference Fidalgo A, Ciriminna R, Ilharco LM, Pagliaro M (2005) Role of the alkyl-alkoxide precursor on the structure and catalytic properties of hybrid sol–gel catalysts. Chem Mater 17:6686–6694CrossRef Fidalgo A, Ciriminna R, Ilharco LM, Pagliaro M (2005) Role of the alkyl-alkoxide precursor on the structure and catalytic properties of hybrid sol–gel catalysts. Chem Mater 17:6686–6694CrossRef
26.
go back to reference Štandeker S, Novak Z, Knez Z (2007) Adsorption of toxic organic compounds from water with hydrophobic silica aerogels. J Colloid Interface Sci 310:362–368CrossRef Štandeker S, Novak Z, Knez Z (2007) Adsorption of toxic organic compounds from water with hydrophobic silica aerogels. J Colloid Interface Sci 310:362–368CrossRef
27.
go back to reference Martín L, Ossó JO, Ricart S, Roig A, García O, Sastre R (2008) Organo-modified silica aerogels and implications for material hydrophobicity and mechanical properties. J Mater Chem 18:207–213CrossRef Martín L, Ossó JO, Ricart S, Roig A, García O, Sastre R (2008) Organo-modified silica aerogels and implications for material hydrophobicity and mechanical properties. J Mater Chem 18:207–213CrossRef
28.
go back to reference Bhagat SD, Oh CS, Kim YH, Ahn YS, Yeo JG (2007) Methyltrimethoxysilane based monolithic silica aerogels via ambient pressure drying. Microporous Mesoporous Mater 100:350–355CrossRef Bhagat SD, Oh CS, Kim YH, Ahn YS, Yeo JG (2007) Methyltrimethoxysilane based monolithic silica aerogels via ambient pressure drying. Microporous Mesoporous Mater 100:350–355CrossRef
Metadata
Title
Hydrophobicity and drag reduction properties of surfaces coated with silica aerogels and xerogels
Authors
Justin E. Rodriguez
Ann M. Anderson
Mary K. Carroll
Publication date
01-09-2014
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 3/2014
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-014-3388-3

Other articles of this Issue 3/2014

Journal of Sol-Gel Science and Technology 3/2014 Go to the issue

Premium Partners