Skip to main content
Top

2020 | OriginalPaper | Chapter

14. Hydrosilyl-Functional Polysiloxanes: Synthesis, Reactions and Applications

Author : Jerzy J. Chruściel

Published in: Reactive and Functional Polymers Volume One

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A comprehensive review on preparation methods of linear, branched, star and dendritic poly(hydrosiloxane)s (PHS), mainly poly(methylhydrosiloxanes) (PMHS) and Si-H functional silsesquioxanes (spherosilicates) is presented in this chapter. The most important applications of PMHS in technology of silicones, modifications of different polymers and in materials science were reviewed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agaskar, P. A., Day, V. W., & Klemperer, W. G. (1987). A new route to trimethylsilylated spherosilicates. Synthesis and structure of [Si12O18](OSiMe3)12, D3h-[Si14O21](OSiMe3)14, and C2v-[Si14O21](OSiMe3)14. Journal of the American Chemical Society, 109(18), 5554–5556. https://doi.org/10.1021/ja00252a058.CrossRef Agaskar, P. A., Day, V. W., & Klemperer, W. G. (1987). A new route to trimethylsilylated spherosilicates. Synthesis and structure of [Si12O18](OSiMe3)12, D3h-[Si14O21](OSiMe3)14, and C2v-[Si14O21](OSiMe3)14. Journal of the American Chemical Society, 109(18), 5554–5556. https://​doi.​org/​10.​1021/​ja00252a058.CrossRef
go back to reference Andre, S., Guida-Pietrasanta, F., Rousseau, A., & Boutevin, B. (2001). Novel synthesis of polyimide-polyhybridsiloxane block copolymers via polyhydrosilylation: Characterization and physical properties. Journal of Polymer Science Part A: Polymer Chemistry, 39(14), 2414–2425. https://doi.org/10.1002/pola.1218.CrossRef Andre, S., Guida-Pietrasanta, F., Rousseau, A., & Boutevin, B. (2001). Novel synthesis of polyimide-polyhybridsiloxane block copolymers via polyhydrosilylation: Characterization and physical properties. Journal of Polymer Science Part A: Polymer Chemistry, 39(14), 2414–2425. https://​doi.​org/​10.​1002/​pola.​1218.CrossRef
go back to reference Andrianov, K. A., Abhazova, I. I., Khananashvili, L. M., Bogratishvili, G. D., Dogsopulc, T. P., & Chagelishvili, V. A. (1971b). Zhurn. Obshch. Khim. 41, 606. Andrianov, K. A., Abhazova, I. I., Khananashvili, L. M., Bogratishvili, G. D., Dogsopulc, T. P., & Chagelishvili, V. A. (1971b). Zhurn. Obshch. Khim. 41, 606.
go back to reference Andrianov, K. A., Gavrikova, L. A., & Rodionova, E. F. (1971a). Vysokomol. Soed., 13A, 937–940. Andrianov, K. A., Gavrikova, L. A., & Rodionova, E. F. (1971a). Vysokomol. Soed., 13A, 937–940.
go back to reference Andrianov, K. A., Kochetkova, A. S., & Khananashvili, L. M. (1968a). Copolymerization of methylvinylsiloxane oligomers with methylhydridosiloxanes. Zhurnal Obshchei Khimii, 38(1), 175–178. Andrianov, K. A., Kochetkova, A. S., & Khananashvili, L. M. (1968a). Copolymerization of methylvinylsiloxane oligomers with methylhydridosiloxanes. Zhurnal Obshchei Khimii, 38(1), 175–178.
go back to reference Andrianov, K. A., Nogaideli, A. J., Khananashvili, L. M., & Nakaidze, L. D. (1968b). Izv. Akad. Nauk SSSR, 2146. Andrianov, K. A., Nogaideli, A. J., Khananashvili, L. M., & Nakaidze, L. D. (1968b). Izv. Akad. Nauk SSSR, 2146.
go back to reference Andrianov, K. A., Astakhin, V. V., Pyzhov, V. K. (1962). Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 2243. Andrianov, K. A., Astakhin, V. V., Pyzhov, V. K. (1962). Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 2243.
go back to reference Antić, V. V., AntiĆ, M. P., Govedarica, M. N., & Dvornić, P. R. (2007). Kinetics and mechanism of the formation of poly[(1,1,3,3-tetramethyldisiloxanyl)ethylene] and poly(methyldecylsiloxane) by hydrosilylation. Journal of Polymer Science Part A: Polymer Chemistry, 45(11), 2246–2258. https://doi.org/10.1002/pola.21992.CrossRef Antić, V. V., AntiĆ, M. P., Govedarica, M. N., & Dvornić, P. R. (2007). Kinetics and mechanism of the formation of poly[(1,1,3,3-tetramethyldisiloxanyl)ethylene] and poly(methyldecylsiloxane) by hydrosilylation. Journal of Polymer Science Part A: Polymer Chemistry, 45(11), 2246–2258. https://​doi.​org/​10.​1002/​pola.​21992.CrossRef
go back to reference Arkles, B. (1983). Look what you can make out of silicones. ChemTech, 13(9), 542–555. Available in: https://www.researchgate.net/publication/272480980 Arkles, B. (1983). Look what you can make out of silicones. ChemTech, 13(9), 542–555. Available in: https://​www.​researchgate.​net/​publication/​272480980
go back to reference Ba, C.-Y., Shen, Z.-R., Gu, H.-W., Guo, G.-Q., Xie, P., Zhang, R.-B., Zhu, C.-F., Wan, L.-J., Li, F.-Y., & Huang, C. H. (2003). A triphenylene-containing side chain liquid crystalline ladder-like polysiloxane and its highly ordered superstructure. Liquid Crystals, 30(3), 391–397. https://doi.org/10.1080/0267829031000089924.CrossRef Ba, C.-Y., Shen, Z.-R., Gu, H.-W., Guo, G.-Q., Xie, P., Zhang, R.-B., Zhu, C.-F., Wan, L.-J., Li, F.-Y., & Huang, C. H. (2003). A triphenylene-containing side chain liquid crystalline ladder-like polysiloxane and its highly ordered superstructure. Liquid Crystals, 30(3), 391–397. https://​doi.​org/​10.​1080/​0267829031000089​924.CrossRef
go back to reference Baumann, T. F., Jones, T. V., Wilson, T., Saab, A. P., & Maxwell, R. S. (2009). Synthesis and characterization of novel PDMS nanocomposites using POSS derivatives as cross-linking filler. Journal of Polymer Science Part A: Polymer Chemistry, 47(10), 2589–2596. https://doi.org/10.1002/pola.23344.CrossRef Baumann, T. F., Jones, T. V., Wilson, T., Saab, A. P., & Maxwell, R. S. (2009). Synthesis and characterization of novel PDMS nanocomposites using POSS derivatives as cross-linking filler. Journal of Polymer Science Part A: Polymer Chemistry, 47(10), 2589–2596. https://​doi.​org/​10.​1002/​pola.​23344.CrossRef
go back to reference Bażant, V., Rathouský, B., & Chvalovský V. (1965) Encyclopedia “Organosilicon compounds”, vol. 1, Chemistry of Organosilicon Compounds, Publ. House of the Czechoslov. Acad. of Sci., Prague. Bażant, V., Rathouský, B., & Chvalovský V. (1965) Encyclopedia “Organosilicon compounds”, vol. 1, Chemistry of Organosilicon Compounds, Publ. House of the Czechoslov. Acad. of Sci., Prague.
go back to reference Białecka-Florjańczyk, E., Sołtysiak, J., & Stańczyk, W. (1995). The influence of the length of a flexible connector on the mesomorphic properties of oligo (cyclosiloxanes). Polimery, 40(5), 461–468.CrossRef Białecka-Florjańczyk, E., Sołtysiak, J., & Stańczyk, W. (1995). The influence of the length of a flexible connector on the mesomorphic properties of oligo (cyclosiloxanes). Polimery, 40(5), 461–468.CrossRef
go back to reference Bik, J., Rzymski, W. M., & Chruściel, J. (2003). Modification of hydrogenated styrene-butadiene rubber with polymethylhydrogensiloxane. Elastomery, 7(6), 9–16. Bik, J., Rzymski, W. M., & Chruściel, J. (2003). Modification of hydrogenated styrene-butadiene rubber with polymethylhydrogensiloxane. Elastomery, 7(6), 9–16.
go back to reference Boileau, S., Bouteiller, L., Khalifa, R. B., Liang, Y., & Teyssie D. (1998). Polym. Prepr., 39(1), 457–458. Boileau, S., Bouteiller, L., Khalifa, R. B., Liang, Y., & Teyssie D. (1998). Polym. Prepr., 39(1), 457–458.
go back to reference Borisov, S. N., Sviridova, N. G., & Orlova, W. S. (1966). Reaction of silanols with hydrosilanes. Journal of General Chemistry USSR, 36(4), 687. Borisov, S. N., Sviridova, N. G., & Orlova, W. S. (1966). Reaction of silanols with hydrosilanes. Journal of General Chemistry USSR, 36(4), 687.
go back to reference Boudjouk, P., Thomas, J., Choi, S. B., & Ready, T. E. (2009). US Pat. 754,472. Boudjouk, P., Thomas, J., Choi, S. B., & Ready, T. E. (2009). US Pat. 754,472.
go back to reference Brook, M. A. (2000). Silicon in organic, organometallic and polymer chemistry. New York-Chichester-Weinheim-Brisbane-Singapor-Toronto: J. Wiley & Sons. Brook, M. A. (2000). Silicon in organic, organometallic and polymer chemistry. New York-Chichester-Weinheim-Brisbane-Singapor-Toronto: J. Wiley & Sons.
go back to reference Budkevitsch, G. B., Siliniakova, I. B., & Nejmark, I. J. (1966). Koloid Zhurn., 28, 21–26. Budkevitsch, G. B., Siliniakova, I. B., & Nejmark, I. J. (1966). Koloid Zhurn., 28, 21–26.
go back to reference Caminade, A. M., & Majoral, J. P. (1995). Main group elements-based dendrimers. Main Group Chemistry News, 3, 14–24. Caminade, A. M., & Majoral, J. P. (1995). Main group elements-based dendrimers. Main Group Chemistry News, 3, 14–24.
go back to reference Chakraborty, R., Thatte, M., Soucek, M. D. (2008). Polymer Materials Science and Engineering, 98, 852. Chakraborty, R., Thatte, M., Soucek, M. D. (2008). Polymer Materials Science and Engineering, 98, 852.
go back to reference Chang, P. S., Hughes, T. S., Zhang, Y., Webster, J. R., Poczynok, G. R. D., & Buese, M. A. (1993). Synthesis and characterization of oligocyclosiloxanes via the hydrosilation of vinylsilanes and vinylsiloxanes with heptamethylcyclotetrasiloxane. Journal of Polymer Science Part A: Polymer Chemistry, 31(4), 891–900. https://doi.org/10.1002/pola.1993.080310407.CrossRef Chang, P. S., Hughes, T. S., Zhang, Y., Webster, J. R., Poczynok, G. R. D., & Buese, M. A. (1993). Synthesis and characterization of oligocyclosiloxanes via the hydrosilation of vinylsilanes and vinylsiloxanes with heptamethylcyclotetrasiloxane. Journal of Polymer Science Part A: Polymer Chemistry, 31(4), 891–900. https://​doi.​org/​10.​1002/​pola.​1993.​080310407.CrossRef
go back to reference Chauhan, B. P. S., Balagam, B., Raghunath, M., Sarkar, A., & Cinar, E. (2008). Polym. Prepr. 49, 897–898. Chauhan, B. P. S., Balagam, B., Raghunath, M., Sarkar, A., & Cinar, E. (2008). Polym. Prepr. 49, 897–898.
go back to reference Chauhan, B. P., Rathore, J. S., & Glloxhani, N. (2005). First example of ‘palladium-nanoparticle’-catalyzed selective alcoholysis of polyhydrosiloxane: A new approach to macromolecular grafting. Applied Organometallic Chemistry, 19(4), 542–550. https://doi.org/10.1002/aoc.867.CrossRef Chauhan, B. P., Rathore, J. S., & Glloxhani, N. (2005). First example of ‘palladium-nanoparticle’-catalyzed selective alcoholysis of polyhydrosiloxane: A new approach to macromolecular grafting. Applied Organometallic Chemistry, 19(4), 542–550. https://​doi.​org/​10.​1002/​aoc.​867.CrossRef
go back to reference Chekina, N. A., Pavlyuchenko, V. N., Danilichev, V. F., Ushakov, N. A., Novikov, S. A., & Ivanchev, S. S. (2006). A new polymeric silicone hydrogel for medical applications: Synthesis and properties. Polymers for Advanced Technologies, 17(11–12), 872–877. https://doi.org/10.1002/pat.820.CrossRef Chekina, N. A., Pavlyuchenko, V. N., Danilichev, V. F., Ushakov, N. A., Novikov, S. A., & Ivanchev, S. S. (2006). A new polymeric silicone hydrogel for medical applications: Synthesis and properties. Polymers for Advanced Technologies, 17(11–12), 872–877. https://​doi.​org/​10.​1002/​pat.​820.CrossRef
go back to reference Chen, S. Z., Liu, J. F., Chen, H. J., & Huang, F. S. (2006). Study of nanoimprint pattern transfer on hydrogen silsesquioxane. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 24(4), 1934–1940. https://doi.org/10.1116/1.2221314.CrossRef Chen, S. Z., Liu, J. F., Chen, H. J., & Huang, F. S. (2006). Study of nanoimprint pattern transfer on hydrogen silsesquioxane. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 24(4), 1934–1940. https://​doi.​org/​10.​1116/​1.​2221314.CrossRef
go back to reference Choi, S., Jin, N., Kumar, V., Adesida, I., & Shannon, M. (2007). Effects of developer temperature on electron-beam-exposed hydrogen silsesquioxane resist for ultradense silicon nanowire fabrication. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 25(6), 2085–2088. https://doi.org/10.1116/1.2794315.CrossRef Choi, S., Jin, N., Kumar, V., Adesida, I., & Shannon, M. (2007). Effects of developer temperature on electron-beam-exposed hydrogen silsesquioxane resist for ultradense silicon nanowire fabrication. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 25(6), 2085–2088. https://​doi.​org/​10.​1116/​1.​2794315.CrossRef
go back to reference Chojnowski, J., Kurjata, J., Fortuniak, W., Rubinsztajn, S., & Trzebicka, B. (2012). Hydride transfer ring-opening polymerization of a cyclic oligomethylhydrosiloxane. Route to a polymer of closed multicyclic structure. Macromolecules, 45(6), 2654–2661. https://doi.org/10.1021/ma202687u.CrossRef Chojnowski, J., Kurjata, J., Fortuniak, W., Rubinsztajn, S., & Trzebicka, B. (2012). Hydride transfer ring-opening polymerization of a cyclic oligomethylhydrosiloxane. Route to a polymer of closed multicyclic structure. Macromolecules, 45(6), 2654–2661. https://​doi.​org/​10.​1021/​ma202687u.CrossRef
go back to reference Chojnowski, J., Rubinsztajn, S., Cella, J. A., Fortuniak, W., Cypryk, M., Kurjata, J., & Kaźmierski, K. (2005). Mechanism of the B(C6F5)3-catalyzed reaction of silyl hydrides with alkoxysilanes. Kinetic and spectroscopic studies. Organometallics, 24(25), 6077–6084. https://doi.org/10.1021/om050563p.CrossRef Chojnowski, J., Rubinsztajn, S., Cella, J. A., Fortuniak, W., Cypryk, M., Kurjata, J., & Kaźmierski, K. (2005). Mechanism of the B(C6F5)3-catalyzed reaction of silyl hydrides with alkoxysilanes. Kinetic and spectroscopic studies. Organometallics, 24(25), 6077–6084. https://​doi.​org/​10.​1021/​om050563p.CrossRef
go back to reference Chojnowski, J., Rubinsztajn, S., Fortuniak, W., & Kurjata, J. (2007). Oligomer and polymer formation in hexamethylcyclotrisiloxane (D3)-hydrosilane systems under catalysis by tris(pentafluorophenyl) borane. Journal of Inorganic and Organometallic Polymers and Materials, 17(1), 173–187. https://doi.org/10.1007/s10904-006-9083-2.CrossRef Chojnowski, J., Rubinsztajn, S., Fortuniak, W., & Kurjata, J. (2007). Oligomer and polymer formation in hexamethylcyclotrisiloxane (D3)-hydrosilane systems under catalysis by tris(pentafluorophenyl) borane. Journal of Inorganic and Organometallic Polymers and Materials, 17(1), 173–187. https://​doi.​org/​10.​1007/​s10904-006-9083-2.CrossRef
go back to reference Chojnowski, J., Rubinsztajn, S., Fortuniak, W., & Kurjata, J. (2008). Synthesis of highly branched alkoxysiloxane-dimethylsiloxane copolymers by nonhydrolytic dehydrocarbon polycondensation catalyzed by tris(pentafluorophenyl) borane. Macromolecules, 41(20), 7352–7358. https://doi.org/10.1021/ma801130y.CrossRef Chojnowski, J., Rubinsztajn, S., Fortuniak, W., & Kurjata, J. (2008). Synthesis of highly branched alkoxysiloxane-dimethylsiloxane copolymers by nonhydrolytic dehydrocarbon polycondensation catalyzed by tris(pentafluorophenyl) borane. Macromolecules, 41(20), 7352–7358. https://​doi.​org/​10.​1021/​ma801130y.CrossRef
go back to reference Chrusciel, J. (1997). Effect of addition of LiCl on reaction rates in dehydrocoupling of hydrosilanes with hydroxyl containing nucleophiles, in DMF catalyzed by ZnCl2. Polish Journal of Chemistry, 71(7), 977–985. Chrusciel, J. (1997). Effect of addition of LiCl on reaction rates in dehydrocoupling of hydrosilanes with hydroxyl containing nucleophiles, in DMF catalyzed by ZnCl2. Polish Journal of Chemistry, 71(7), 977–985.
go back to reference Chruściel, J. (2019). Unpublished results. Chruściel, J. (2019). Unpublished results.
go back to reference Chruściel, J. J. (2004b). The solvent effects on kinetics and mechanism of zinc or cadmium halide catalyzed reactions of hydrosilanes with hydroxylic reagents. Collection of Czechoslovak Chemical Communications, 69(12), 2281–2296. https://doi.org/10.1135/cccc20042281. Chruściel, J. J. (2004b). The solvent effects on kinetics and mechanism of zinc or cadmium halide catalyzed reactions of hydrosilanes with hydroxylic reagents. Collection of Czechoslovak Chemical Communications, 69(12), 2281–2296. https://​doi.​org/​10.​1135/​cccc20042281.
go back to reference Chruściel, J. J., & Leśniak, E. (2012). Modification of thermoplastics with reactive silanes and siloxanes. In A. Z. El-Sonbati (Ed.), Thermoplastic elastomers (pp. 155–192). IntechOpen. https://doi.org/10.5772/34694. Chruściel, J. J., & Leśniak, E. (2012). Modification of thermoplastics with reactive silanes and siloxanes. In A. Z. El-Sonbati (Ed.), Thermoplastic elastomers (pp. 155–192). IntechOpen. https://​doi.​org/​10.​5772/​34694.
go back to reference Chruściel, J., & Fejdyś M. (2012) The method of producing flame-retardant and self-extinguishing polyurethane foams modified with silicones. Pat. PL 211853. Chruściel, J., & Fejdyś M. (2012) The method of producing flame-retardant and self-extinguishing polyurethane foams modified with silicones. Pat. PL 211853.
go back to reference Chruściel, J., & Lasocki, Z. (1979). Reduction of α,ω-dichloropoly(dimethylsiloxanes) with lithium aluminium hydride. Polish J. Chem., 53, 1383–1386. Chruściel, J., & Lasocki, Z. (1979). Reduction of α,ω-dichloropoly(dimethylsiloxanes) with lithium aluminium hydride. Polish J. Chem., 53, 1383–1386.
go back to reference Chruściel, J., & Lasocki, Z. (1983a). Dehydrocondensation of organic hydrosilanes with silanols. Part I. Kinetics and mechanism of the reaction in dimethylformamide. Journal of Chemistry, 57(1–3), 113–120. Chruściel, J., & Lasocki, Z. (1983a). Dehydrocondensation of organic hydrosilanes with silanols. Part I. Kinetics and mechanism of the reaction in dimethylformamide. Journal of Chemistry, 57(1–3), 113–120.
go back to reference Chruściel, J., & Lasocki, Z. (1983b). Dehydrocondensation of organic hydrosilanes with silanols. Part II. Effect of siloxane chain length on the reactivity of Si-H end-groups. The substitution effect. Polish Journal of Chemistry, 57(1–3), 121–128. Chruściel, J., & Lasocki, Z. (1983b). Dehydrocondensation of organic hydrosilanes with silanols. Part II. Effect of siloxane chain length on the reactivity of Si-H end-groups. The substitution effect. Polish Journal of Chemistry, 57(1–3), 121–128.
go back to reference Chruściel, J., & Lasocki, Z. (1989). Kinetics and mechanism of the reaction of hydrosilanes wtth hydroxylic reagents in DMF. Hammet reaction constant and kinetic isotope effect. Main Group Metal Chemistry, 12(2), 129–141. Chruściel, J., & Lasocki, Z. (1989). Kinetics and mechanism of the reaction of hydrosilanes wtth hydroxylic reagents in DMF. Hammet reaction constant and kinetic isotope effect. Main Group Metal Chemistry, 12(2), 129–141.
go back to reference Chruściel, J., Fejdyś, M., & Michalska, Z. (2011a). New liquid branched hybrid polyborosiloxanes and the method of their preparation. Pat. PL 210971. Chruściel, J., Fejdyś, M., & Michalska, Z. (2011a). New liquid branched hybrid polyborosiloxanes and the method of their preparation. Pat. PL 210971.
go back to reference Chruściel, J., Fejdyś-Kaczmarek, M., & Michalska, Z. (2009). New functional organic polyborosiloxanes and the method of their production. Pat. PL 203698. Chruściel, J., Fejdyś-Kaczmarek, M., & Michalska, Z. (2009). New functional organic polyborosiloxanes and the method of their production. Pat. PL 203698.
go back to reference Chruściel, J., Fejdyś-Kaczmarek, M., & Michalska, Z. (2011b). Pat. PL 210677. Chruściel, J., Fejdyś-Kaczmarek, M., & Michalska, Z. (2011b). Pat. PL 210677.
go back to reference Chruściel, J., Fejdyś-Kaczmarek, M., & Michalska, Z. (2011c). Pat. PL 210684. Chruściel, J., Fejdyś-Kaczmarek, M., & Michalska, Z. (2011c). Pat. PL 210684.
go back to reference Chruściel, J., Kulpiński, J., & Romanowski, Z. (1997). Synthesis of some block polymethylhydrosiloxanes. International Polymer Seminar, Gliwice, 26.06.1997., Proceedings, 65–68. Chruściel, J., Kulpiński, J., & Romanowski, Z. (1997). Synthesis of some block polymethylhydrosiloxanes. International Polymer Seminar, Gliwice, 26.06.1997., Proceedings, 65–68.
go back to reference Chruściel, J., Kulpiński, J., & Romanowski, Z. (1999). New Block Polymethylhydrosiloxanes. Zeszyty Naukowe Politechniki Śląskiej, Seria: Chemia, 140, 109–114. Chruściel, J., Kulpiński, J., & Romanowski, Z. (1999). New Block Polymethylhydrosiloxanes. Zeszyty Naukowe Politechniki Śląskiej, Seria: Chemia, 140, 109–114.
go back to reference Chruściel, J., Leśniak, E., & Fejdyś, M. (2011d). The method of producing flexible, self-extinguishing silicone foams. Pat. PL 210657. Chruściel, J., Leśniak, E., & Fejdyś, M. (2011d). The method of producing flexible, self-extinguishing silicone foams. Pat. PL 210657.
go back to reference Ciolino, A. E., Pieroni, O. I., Vuano, B. M., Villar, M. A., & Valles, E. M. (2004). Synthesis of polybutadiene-graft-poly(dimethylsiloxane) and polyethylene-graft-poly(dimethylsiloxane) copolymers with hydrosilylation reactions. Journal of Polymer Science Part A: Polymer Chemistry, 42(12), 2920–2930. https://doi.org/10.1002/pola.20032.CrossRef Ciolino, A. E., Pieroni, O. I., Vuano, B. M., Villar, M. A., & Valles, E. M. (2004). Synthesis of polybutadiene-graft-poly(dimethylsiloxane) and polyethylene-graft-poly(dimethylsiloxane) copolymers with hydrosilylation reactions. Journal of Polymer Science Part A: Polymer Chemistry, 42(12), 2920–2930. https://​doi.​org/​10.​1002/​pola.​20032.CrossRef
go back to reference Colvin, E. W. (1981). Silicon in organic synthesis (p. 4). Butterworth. Colvin, E. W. (1981). Silicon in organic synthesis (p. 4). Butterworth.
go back to reference Constantopoulos, K., Clarke, D. J., Markovic, E., Uhrig, D., Clarke, S. R., Matisons, J. G., & Simon, G. (2004). New family of POSS monomers suitable for forming urethane polymerizable nanocomposite coatings. In Abstracts of Papers of the American Chemical Society (Vol. 227, pp. U441–U441). Amer Chemical Soc. Constantopoulos, K., Clarke, D. J., Markovic, E., Uhrig, D., Clarke, S. R., Matisons, J. G., & Simon, G. (2004). New family of POSS monomers suitable for forming urethane polymerizable nanocomposite coatings. In Abstracts of Papers of the American Chemical Society (Vol. 227, pp. U441–U441). Amer Chemical Soc.
go back to reference Cosgrove, T., Prestidge, C. A., & Vincent, B. (1990a). Chemisorption of linear and cyclic polymethylsiloxanes on alumina studied by Fourier-transform infrared spectroscopy. Journal of the Chemical Society, Faraday Transactions, 86(9), 1377–1382. https://doi.org/10.1039/ft9908601377.CrossRef Cosgrove, T., Prestidge, C. A., & Vincent, B. (1990a). Chemisorption of linear and cyclic polymethylsiloxanes on alumina studied by Fourier-transform infrared spectroscopy. Journal of the Chemical Society, Faraday Transactions, 86(9), 1377–1382. https://​doi.​org/​10.​1039/​ft9908601377.CrossRef
go back to reference Costa, R. O. R., Vasconcelos, W. L., Tamaki, R,, & Laine, R. M. (2001). Organic/Inorganic Nanocomposite Star Polymers via Atom Transfer Radical Polymerization of Methyl Methacrylate Using Octafunctional Silsesquioxane Cores. Macromolecules 34(16):5398–5407. https://doi.org/10.1021/ma010814f Costa, R. O. R., Vasconcelos, W. L., Tamaki, R,, & Laine, R. M. (2001). Organic/Inorganic Nanocomposite Star Polymers via Atom Transfer Radical Polymerization of Methyl Methacrylate Using Octafunctional Silsesquioxane Cores. Macromolecules 34(16):5398–5407. https://​doi.​org/​10.​1021/​ma010814f
go back to reference Deforth, T., & Mignani, G. (2001). Pat. WO 74938. Deforth, T., & Mignani, G. (2001). Pat. WO 74938.
go back to reference Deforth, T., & Mignani, G. (2003). US Pat. Appl. 0,139,287. Deforth, T., & Mignani, G. (2003). US Pat. Appl. 0,139,287.
go back to reference Dolgov, O. N., Voronkov, M. G., & Grinblat, N. P. (1975). Kremniyorganicheskie zhidkie kauchuki i materialy na ich osnove. Leningrad. Dolgov, O. N., Voronkov, M. G., & Grinblat, N. P. (1975). Kremniyorganicheskie zhidkie kauchuki i materialy na ich osnove. Leningrad.
go back to reference Doncov, A. A. (1978). Procesy struktirovanija elastomerov, pp. 277–280, Izd. “Khimija”, Moscow. Doncov, A. A. (1978). Procesy struktirovanija elastomerov, pp. 277–280, Izd. “Khimija”, Moscow.
go back to reference Durfee, L. D., & Hilty, T. K. (1993). Platinum-catalyzed preparation of α,ω-disilylalkenes and organosiloxane copolymers. Pat. EP 539065. Durfee, L. D., & Hilty, T. K. (1993). Platinum-catalyzed preparation of α,ω-disilylalkenes and organosiloxane copolymers. Pat. EP 539065.
go back to reference Dvornic, P. R., Gerov, V. V., & Govedarica, M. N. (1994). Polymerization by hydrosilation. 2. Preparation and characterization of high molecular weight poly[(1,1,3,3-tetramethyldisiloxanyl) ethylene] from 1,3-dihydridotetramethyldisiloxane and 1,3-divinyltetramethyldisiloxane. Macromolecules, 27(26), 7575–7580. https://doi.org/10.1021/ma00104a011.CrossRef Dvornic, P. R., Gerov, V. V., & Govedarica, M. N. (1994). Polymerization by hydrosilation. 2. Preparation and characterization of high molecular weight poly[(1,1,3,3-tetramethyldisiloxanyl) ethylene] from 1,3-dihydridotetramethyldisiloxane and 1,3-divinyltetramethyldisiloxane. Macromolecules, 27(26), 7575–7580. https://​doi.​org/​10.​1021/​ma00104a011.CrossRef
go back to reference Eaborn, C. (1960). Organosilicon Compounds. London: Butterworth Sci. Publ. Eaborn, C. (1960). Organosilicon Compounds. London: Butterworth Sci. Publ.
go back to reference Eisenbach, C. D., Baumgartner, M., Gunter, C., Lal, J., & Mark, J. E. (1986). In J. Lal & J. E. Mark (Eds.), Advances in elastomers and rubber elasticity. New York: Plenum. Eisenbach, C. D., Baumgartner, M., Gunter, C., Lal, J., & Mark, J. E. (1986). In J. Lal & J. E. Mark (Eds.), Advances in elastomers and rubber elasticity. New York: Plenum.
go back to reference Foston, M., & Beckham, H. W. (2006). Cyclic poly(dimethylsiloxane) synthesized in high yield from oligomeric α,ω-functionalized linear precursors. Polymer Preprints, 47(2), 1114. Foston, M., & Beckham, H. W. (2006). Cyclic poly(dimethylsiloxane) synthesized in high yield from oligomeric α,ω-functionalized linear precursors. Polymer Preprints, 47(2), 1114.
go back to reference Gallagher, J. I. (1966). Brit. Pat., 1, 042784. Gallagher, J. I. (1966). Brit. Pat., 1, 042784.
go back to reference Ganicz, T., Mizerska, U., Moszner, M., O’Brien, M., Perry, R., & Stańczyk, W. A. (2004). The effectiveness of rhodium(I), (II) and (III) complexes as catalysts in hydrosilylation of model olefin and polyether with triethoxysilane and poly(dimethylsiloxane-co-methylsiloxane). Applied Catalysis A: General, 259(1), 49–55. https://doi.org/10.1016/j.apcata.2003.09.009.CrossRef Ganicz, T., Mizerska, U., Moszner, M., O’Brien, M., Perry, R., & Stańczyk, W. A. (2004). The effectiveness of rhodium(I), (II) and (III) complexes as catalysts in hydrosilylation of model olefin and polyether with triethoxysilane and poly(dimethylsiloxane-co-methylsiloxane). Applied Catalysis A: General, 259(1), 49–55. https://​doi.​org/​10.​1016/​j.​apcata.​2003.​09.​009.CrossRef
go back to reference Giurgiu, D.E., Hamciuc, V., & Pricop, L. (1994). Rom. Pat. RO 105292. Giurgiu, D.E., Hamciuc, V., & Pricop, L. (1994). Rom. Pat. RO 105292.
go back to reference Graczyk, T., & Lasocki, Z. (1978). Bull. Acad. Polon. Sci., Ser. Sci. Chim., 36, 917. Graczyk, T., & Lasocki, Z. (1978). Bull. Acad. Polon. Sci., Ser. Sci. Chim., 36, 917.
go back to reference Graczyk, T., & Lasocki, Z. (1979a). Bull. Acad. Polon. Sci., Ser. Sci. Chim., 37, 181. Graczyk, T., & Lasocki, Z. (1979a). Bull. Acad. Polon. Sci., Ser. Sci. Chim., 37, 181.
go back to reference Graczyk, T., & Lasocki, Z. (1979b). Bull. Acad. Polon. Sci., Ser. Sci. Chim., 37, 185. Graczyk, T., & Lasocki, Z. (1979b). Bull. Acad. Polon. Sci., Ser. Sci. Chim., 37, 185.
go back to reference Greber, V. G., & Jäger, S. (1962). Über oligomere Siliciumverbindungen mit funktionellen Gruppen. 12. Mitt. Über Herstellung von oligomeren siliciumorganischen Diolen und Diaminen und ihre Umsetzungen mit organischen Diisocyanaten. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 57(1), 150–191. https://doi.org/10.1002/macp.1962.020570110.CrossRef Greber, V. G., & Jäger, S. (1962). Über oligomere Siliciumverbindungen mit funktionellen Gruppen. 12. Mitt. Über Herstellung von oligomeren siliciumorganischen Diolen und Diaminen und ihre Umsetzungen mit organischen Diisocyanaten. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 57(1), 150–191. https://​doi.​org/​10.​1002/​macp.​1962.​020570110.CrossRef
go back to reference Greber, V. G., & Metzinger, L. (1960). Über oligomere siliciumverbindungen mit funktionellen gruppen. 2. Mitt. Über die darstellung von polysiloxanhydriden und deren addition an ungesättigte verbindungen. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 39(1), 189–216. https://doi.org/10.1002/macp.1960.020390114.CrossRef Greber, V. G., & Metzinger, L. (1960). Über oligomere siliciumverbindungen mit funktionellen gruppen. 2. Mitt. Über die darstellung von polysiloxanhydriden und deren addition an ungesättigte verbindungen. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 39(1), 189–216. https://​doi.​org/​10.​1002/​macp.​1960.​020390114.CrossRef
go back to reference Grunlan, M. A., Lee, N. S., Mansfeld, F., Kus, E., Finlay, J. A., Callow, J. A., Callow, M. E., & Weber, W. P. (2006). Minimally adhesive polymer surfaces prepared from star oligosiloxanes and star oligofluorosiloxanes. Journal of Polymer Science Part A: Polymer Chemistry, 44(8), 2551–2566. https://doi.org/10.1002/pola.21362.CrossRef Grunlan, M. A., Lee, N. S., Mansfeld, F., Kus, E., Finlay, J. A., Callow, J. A., Callow, M. E., & Weber, W. P. (2006). Minimally adhesive polymer surfaces prepared from star oligosiloxanes and star oligofluorosiloxanes. Journal of Polymer Science Part A: Polymer Chemistry, 44(8), 2551–2566. https://​doi.​org/​10.​1002/​pola.​21362.CrossRef
go back to reference Guo, Y., Mishra, M. K., Wang, F., Jankolovits, J., Kusoglu, A., Weber, A. Z., Van Dyk, A., Beshah, K., Bohling, J. C., Roper, J. A., III, Radke, C. J., & Katz, A. (2018). Hydrophobic inorganic oxide pigments via polymethylhydrosiloxane grafting: Dispersion in aqueous solution at extraordinarily high solids concentrations. Langmuir, 34(39), 11738–11748. https://doi.org/10.1021/acs.langmuir.8b01898.CrossRefPubMed Guo, Y., Mishra, M. K., Wang, F., Jankolovits, J., Kusoglu, A., Weber, A. Z., Van Dyk, A., Beshah, K., Bohling, J. C., Roper, J. A., III, Radke, C. J., & Katz, A. (2018). Hydrophobic inorganic oxide pigments via polymethylhydrosiloxane grafting: Dispersion in aqueous solution at extraordinarily high solids concentrations. Langmuir, 34(39), 11738–11748. https://​doi.​org/​10.​1021/​acs.​langmuir.​8b01898.CrossRefPubMed
go back to reference Hager, R. (1996). XI Intern. Symp. on Organosilicon Chem., Universite Montpellier II, France. Abstracts, LD5. Hager, R. (1996). XI Intern. Symp. on Organosilicon Chem., Universite Montpellier II, France. Abstracts, LD5.
go back to reference Han, J., Chang, X.-Y., Zhu, L.-R., Wang, Y.-M., Meng, J.-B., Lai, S.-W., & Chui, S. S. Y. (2008). Synthesis and liquid crystal properties of a new class of calamitic mesogens based on substituted 2, 5‐diaryl‐1,3,4‐thiadiazole derivatives with wide mesomorphic temperature ranges. Liquid Crystals, 35(12), 1379–1394. https://doi.org/10.1080/02678290802617724. Han, J., Chang, X.-Y., Zhu, L.-R., Wang, Y.-M., Meng, J.-B., Lai, S.-W., & Chui, S. S. Y. (2008). Synthesis and liquid crystal properties of a new class of calamitic mesogens based on substituted 2, 5‐diaryl‐1,3,4‐thiadiazole derivatives with wide mesomorphic temperature ranges. Liquid Crystals, 35(12), 1379–1394. https://​doi.​org/​10.​1080/​0267829080261772​4.
go back to reference Hara, H., Ikeno, M., & Okami, T. (1994). Jap. Pat. 06,107,947. Hara, H., Ikeno, M., & Okami, T. (1994). Jap. Pat. 06,107,947.
go back to reference Hardman, B., & Torkelson, A. (1989). Chapter “Silicones”. In Encyclopedia of polymer science and engineering (Vol. 15, Second ed., pp. 271–289). New York, NY: Wiley. Hardman, B., & Torkelson, A. (1989). Chapter “Silicones”. In Encyclopedia of polymer science and engineering (Vol. 15, Second ed., pp. 271–289). New York, NY: Wiley.
go back to reference Hashimoto, K., Kazumasa, N., Koji, H., Tomoki, I., & Yonezawa, K. (1994a). Jap. Pat. 06,256,640. Hashimoto, K., Kazumasa, N., Koji, H., Tomoki, I., & Yonezawa, K. (1994a). Jap. Pat. 06,256,640.
go back to reference Hashimoto, K., Noda, K., Hiiro, T., Isurugi, M., & Yonezawa, K. (1994b). Jap. Pat. 06,256,634. Hashimoto, K., Noda, K., Hiiro, T., Isurugi, M., & Yonezawa, K. (1994b). Jap. Pat. 06,256,634.
go back to reference Henderson, E. C., Kelly, J. A., & Veinot, J. G. C. (2009) Influence of HSiO Sol−Gel Polymer Structure and Composition on the Size and Luminescent Properties of Silicon Nanocrystals. Chem Mater 21(22):5426–5434. https://doi.org/10.1021/cm902028q Henderson, E. C., Kelly, J. A., & Veinot, J. G. C. (2009) Influence of HSiO Sol−Gel Polymer Structure and Composition on the Size and Luminescent Properties of Silicon Nanocrystals. Chem Mater 21(22):5426–5434. https://​doi.​org/​10.​1021/​cm902028q
go back to reference Hessel, C. M., Henderson, E. J., & Veinot, J. G. (2006). Hydrogen silsesquioxane: A molecular precursor for nanocrystalline Si-SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chemistry of Materials, 18(26), 6139–6146. https://doi.org/10.1021/cm0602803.CrossRef Hessel, C. M., Henderson, E. J., & Veinot, J. G. (2006). Hydrogen silsesquioxane: A molecular precursor for nanocrystalline Si-SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chemistry of Materials, 18(26), 6139–6146. https://​doi.​org/​10.​1021/​cm0602803.CrossRef
go back to reference Hessel, C. M., Reid, D., Panthani, M. G., Rasch, M. R., Goodfellow, B. W., Wei, J., Fujii, H., Akhavan, V., & Korgel, B. A. (2011). Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chemistry of Materials, 24(2), 393–401. https://doi.org/10.1021/cm2032866.CrossRef Hessel, C. M., Reid, D., Panthani, M. G., Rasch, M. R., Goodfellow, B. W., Wei, J., Fujii, H., Akhavan, V., & Korgel, B. A. (2011). Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chemistry of Materials, 24(2), 393–401. https://​doi.​org/​10.​1021/​cm2032866.CrossRef
go back to reference Homrighausen, C. L., & Keller, T. M. (2002). Synthesis of hydroxy-terminated, oligomeric poly(silarylene disiloxane)s via rhodium-catalyzed dehydrogenative coupling and their use in the aminosilane-disilanol polymerization reaction. Journal of Polymer Science Part A: Polymer Chemistry, 40(9), 1334–1341. https://doi.org/10.1002/pola.10110.CrossRef Homrighausen, C. L., & Keller, T. M. (2002). Synthesis of hydroxy-terminated, oligomeric poly(silarylene disiloxane)s via rhodium-catalyzed dehydrogenative coupling and their use in the aminosilane-disilanol polymerization reaction. Journal of Polymer Science Part A: Polymer Chemistry, 40(9), 1334–1341. https://​doi.​org/​10.​1002/​pola.​10110.CrossRef
go back to reference Homrighausen, C. L., Kennedy, B. J., & Schutte, E. J. (2005). Poly(silarylene-siloxane) polyimides from allyl-terminated oligoimides and hydride-functional silarylene-siloxanes via hydrosilylation polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 43(20), 4922–4932. https://doi.org/10.1002/pola.20962.CrossRef Homrighausen, C. L., Kennedy, B. J., & Schutte, E. J. (2005). Poly(silarylene-siloxane) polyimides from allyl-terminated oligoimides and hydride-functional silarylene-siloxanes via hydrosilylation polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 43(20), 4922–4932. https://​doi.​org/​10.​1002/​pola.​20962.CrossRef
go back to reference Huhn, K, & Kaufmann, R. (1986). Preparation and use of polyorganosiloxanes containing silicon-bound hydrogen and epoxy groups. German Pat. DE 3,431,075. Huhn, K, & Kaufmann, R. (1986). Preparation and use of polyorganosiloxanes containing silicon-bound hydrogen and epoxy groups. German Pat. DE 3,431,075.
go back to reference Husemann, E., & Greber, G. (1962), German Pat. 1,140,348. Husemann, E., & Greber, G. (1962), German Pat. 1,140,348.
go back to reference Hybrid Plastics™, POSS® Chemical catalog 2008 V. 1.0. Hybrid Plastics™, POSS® Chemical catalog 2008 V. 1.0.
go back to reference Karlin, A. V., Reikhsfeld, V. O., Kagan, E. G., Lobkov, V. D., Yużelevskiy, Y. A., & Grintsevich, I. G. (1973). In V. O. Reiksfeld (Ed.), Khimia i Technologia Kriemniejorganicheskich elastomerov. Leningrad: Khimia. Karlin, A. V., Reikhsfeld, V. O., Kagan, E. G., Lobkov, V. D., Yużelevskiy, Y. A., & Grintsevich, I. G. (1973). In V. O. Reiksfeld (Ed.), Khimia i Technologia Kriemniejorganicheskich elastomerov. Leningrad: Khimia.
go back to reference Kickelbick, G., Miller, P. J., & Matyjaszewski, K. (1998). Polymer Preprints, 39(1), 284. Kickelbick, G., Miller, P. J., & Matyjaszewski, K. (1998). Polymer Preprints, 39(1), 284.
go back to reference Kim, J. S., Yang, S. C., Kwak, S. Y., Choi, Y., Paik, K. W., & Bae, B. S. (2012). High performance encapsulant for light-emitting diodes (LEDs) by a sol–gel derived hydrogen siloxane hybrid. Journal of Materials Chemistry, 22(16), 7954–7960. https://doi.org/10.1039/c2jm16907j.CrossRef Kim, J. S., Yang, S. C., Kwak, S. Y., Choi, Y., Paik, K. W., & Bae, B. S. (2012). High performance encapsulant for light-emitting diodes (LEDs) by a sol–gel derived hydrogen siloxane hybrid. Journal of Materials Chemistry, 22(16), 7954–7960. https://​doi.​org/​10.​1039/​c2jm16907j.CrossRef
go back to reference Klosowski, J. M. (1989). Chapter 6. Silicone sealants. In M. Dekker (Ed.), Sealants in construction (pp. 265–297). New York. Klosowski, J. M. (1989). Chapter 6. Silicone sealants. In M. Dekker (Ed.), Sealants in construction (pp. 265–297). New York.
go back to reference Kluge, M., Misske, A., & Wagner, N. (2003). German Pat. DE 10216233 A1. Kluge, M., Misske, A., & Wagner, N. (2003). German Pat. DE 10216233 A1.
go back to reference Kobayashi, Y. (1998). Jap. Pat., 10, 087,530. Kobayashi, Y. (1998). Jap. Pat., 10, 087,530.
go back to reference Kollefrath, R., Nuyken, O., & Voit, B. (1996). Polymer Preprints, 37(2), 407. Kollefrath, R., Nuyken, O., & Voit, B. (1996). Polymer Preprints, 37(2), 407.
go back to reference Kong, J., Fan, X., Si, Q., Zhang, G., Wang, S., & Wang, X. (2006). Hyperbranched polycarbosiloxane with dendritic boron cores: Synthesis, characterization, and structure regulation. Journal of Polymer Science Part A: Polymer Chemistry, 44(12), 3930–3941. https://doi.org/10.1002/pola.21474.CrossRef Kong, J., Fan, X., Si, Q., Zhang, G., Wang, S., & Wang, X. (2006). Hyperbranched polycarbosiloxane with dendritic boron cores: Synthesis, characterization, and structure regulation. Journal of Polymer Science Part A: Polymer Chemistry, 44(12), 3930–3941. https://​doi.​org/​10.​1002/​pola.​21474.CrossRef
go back to reference Kurian, P., Kasibhatla, B., Daum, J., Burns, C. A., Moosa, M., Rosenthal, K. S., & Kennedy, J. P. (2003). Synthesis, permeability and biocompatibility of tricomponent membranes containing polyethylene glycol, polydimethylsiloxane and polypentamethylcyclopentasiloxane domains. Biomaterials, 24(20), 3493–3503. https://doi.org/10.1016/s0142-9612(03)00189-3.CrossRefPubMed Kurian, P., Kasibhatla, B., Daum, J., Burns, C. A., Moosa, M., Rosenthal, K. S., & Kennedy, J. P. (2003). Synthesis, permeability and biocompatibility of tricomponent membranes containing polyethylene glycol, polydimethylsiloxane and polypentamethylcyclopentasiloxane domains. Biomaterials, 24(20), 3493–3503. https://​doi.​org/​10.​1016/​s0142-9612(03)00189-3.CrossRefPubMed
go back to reference Lasocki, Z., Chruściel, J., Graczyk, T., Kulpiński, J., & Piechucki, S. (1974) Einige probleme der hetero-polykondensation von organohydroxysilanen mit organohydrogensilanen. Acta Chim. Acad. Hung. 81(2–3), 223–231. Lasocki, Z., Chruściel, J., Graczyk, T., Kulpiński, J., & Piechucki, S. (1974) Einige probleme der hetero-polykondensation von organohydroxysilanen mit organohydrogensilanen. Acta Chim. Acad. Hung. 81(2–3), 223–231.
go back to reference Lefort, M., & Parasko N. (1966). French Pat. 1,438,344. Lefort, M., & Parasko N. (1966). French Pat. 1,438,344.
go back to reference Leibfried, R. L. (1995). US Pat., 5, 451–637. Leibfried, R. L. (1995). US Pat., 5, 451–637.
go back to reference Łęszczak, K., Szubert, K., & Marciniec, B. (2007). XIII Polish organosilicon symposium (p. 78). Chmielno: Abstracts. Łęszczak, K., Szubert, K., & Marciniec, B. (2007). XIII Polish organosilicon symposium (p. 78). Chmielno: Abstracts.
go back to reference Lewis, C. M., & Mathias, L. J. (1993). Synthesis of polymers via the hydrosilation of diallyl bisphenol A. Polymer Preprints (USA), 34(1), 491–492. Lewis, C. M., & Mathias, L. J. (1993). Synthesis of polymers via the hydrosilation of diallyl bisphenol A. Polymer Preprints (USA), 34(1), 491–492.
go back to reference Li, Y., & Kawakami, Y. (1998). Synthesis and polymerization of an optically active bifunctional disiloxane. 1. Preparation of optically active and highly stereoregular poly[{(1S)-1-(1-naphthyl)-1-phenyl-3,3-dimethyldisiloxane-1,3-diyl}ethylene] by poly-addition via hydrosilylation. Macromolecules, 31(17), 5592–5597. https://doi.org/10.1021/ma980463d.CrossRef Li, Y., & Kawakami, Y. (1998). Synthesis and polymerization of an optically active bifunctional disiloxane. 1. Preparation of optically active and highly stereoregular poly[{(1S)-1-(1-naphthyl)-1-phenyl-3,3-dimethyldisiloxane-1,3-diyl}ethylene] by poly-addition via hydrosilylation. Macromolecules, 31(17), 5592–5597. https://​doi.​org/​10.​1021/​ma980463d.CrossRef
go back to reference Li, Z., & McGarry, F. J. (2001). Polymer Preprints, 42(1), 95. Li, Z., & McGarry, F. J. (2001). Polymer Preprints, 42(1), 95.
go back to reference Liang, G. Z., Zhang, B. J., Gu, A. J., & L. Yuan L. (2009). China Pat. CN 10,181,369.6. Liang, G. Z., Zhang, B. J., Gu, A. J., & L. Yuan L. (2009). China Pat. CN 10,181,369.6.
go back to reference Liao, W. P., & Nye, S. A. (2008). Eur. Pat. Appl. EP 838547. Liao, W. P., & Nye, S. A. (2008). Eur. Pat. Appl. EP 838547.
go back to reference Lower, L. D., & Klosowski, J. M. (1994). Chapter 32 Silicone adhesives and sealants. In A. Pizzi & K. L. Mittal (Eds.), Handbook of adhesive technology (pp. 521–529). New York/Basel-Hong Kong: Marcel Dekker. Lower, L. D., & Klosowski, J. M. (1994). Chapter 32 Silicone adhesives and sealants. In A. Pizzi & K. L. Mittal (Eds.), Handbook of adhesive technology (pp. 521–529). New York/Basel-Hong Kong: Marcel Dekker.
go back to reference Ma, B., Xie, M., & Yang, C. (2007). Synthesis of polysilicone containing epoxy group by hydrosilylation. Thermosetting Resin (China), 22(2), 16–18. Ma, B., Xie, M., & Yang, C. (2007). Synthesis of polysilicone containing epoxy group by hydrosilylation. Thermosetting Resin (China), 22(2), 16–18.
go back to reference Maciejewski, H., Dąbek, I., Szubert, K., & Marciniec, B. (2006). Synteza jonowych środków powierzchniowoczynnych w oparciu o epoksyfunkcyjne (poli)siloksany. Przemysł Chemiczny, 85(8–9), 946–949. Maciejewski, H., Dąbek, I., Szubert, K., & Marciniec, B. (2006). Synteza jonowych środków powierzchniowoczynnych w oparciu o epoksyfunkcyjne (poli)siloksany. Przemysł Chemiczny, 85(8–9), 946–949.
go back to reference Maciejewski, H., Szubert, K., & Marciniec, B. (2009). Technologies of Functionalized Polysiloxanes Preparation. Polimery, 54(10), 706–711.CrossRef Maciejewski, H., Szubert, K., & Marciniec, B. (2009). Technologies of Functionalized Polysiloxanes Preparation. Polimery, 54(10), 706–711.CrossRef
go back to reference Madec, P. J., & Maréchal, E. (1993). Polymer Preprints, 34(1), 814. Madec, P. J., & Maréchal, E. (1993). Polymer Preprints, 34(1), 814.
go back to reference Madhavan, K., & Reddy, B. S. R. (2006). Synthesis and characterization of poly(dimethylsiloxane-urethane) elastomers: Effect of hard segments of polyurethane on morphological and mechanical properties. Journal of Polymer Science Part A: Polymer Chemistry, 44(9), 2980–2989. https://doi.org/10.1002/pola.21401.CrossRef Madhavan, K., & Reddy, B. S. R. (2006). Synthesis and characterization of poly(dimethylsiloxane-urethane) elastomers: Effect of hard segments of polyurethane on morphological and mechanical properties. Journal of Polymer Science Part A: Polymer Chemistry, 44(9), 2980–2989. https://​doi.​org/​10.​1002/​pola.​21401.CrossRef
go back to reference Majoros, I., Marsalkó, T. M., & Kennedy, J. P. (1997). Synthesis and characterization of novel well-defined stars consisting of eight polyisobutylene arms emanating from an octa(dimethylsiloxy) octasilsesquioxane core. Polymer Bulletin, 38(1), 15–22. https://doi.org/10.1007/s002890050013.CrossRef Majoros, I., Marsalkó, T. M., & Kennedy, J. P. (1997). Synthesis and characterization of novel well-defined stars consisting of eight polyisobutylene arms emanating from an octa(dimethylsiloxy) octasilsesquioxane core. Polymer Bulletin, 38(1), 15–22. https://​doi.​org/​10.​1007/​s002890050013.CrossRef
go back to reference Manami, H., & Nishizaki, S. (1958). Journal of the Chemical Society of Japan, 79, 60. Manami, H., & Nishizaki, S. (1958). Journal of the Chemical Society of Japan, 79, 60.
go back to reference Marciniec B., Maciejewski H., Pietraszuk C., Pawluć P. (2009) (a) Chapter 1: “Hydrosilylation of Alkenes and Their Derivatives”, pp. 3–51; (b) Chapter 5: “Functionalisation and Cross-Linking of Organosilicon Polymers”, pp. 159–188; (c) Chapter 6: “Hydrosilylation Polymerization”, pp. 191–214; (d) Chapter 7: “Functionalized (Poly)silsesquioxanes and Silicon-Containing Dendrimers”, pp. 215–240; (e) Chapter 8: “Organosilicon – Organic Hybrid Polymers and Materials”, pp. 241–286; in: Marciniec B. (ed.), Hydrosilylation, Advances in Silicon Science, Springer Science+Business Media B.V. Marciniec B., Maciejewski H., Pietraszuk C., Pawluć P. (2009) (a) Chapter 1: “Hydrosilylation of Alkenes and Their Derivatives”, pp. 3–51; (b) Chapter 5: “Functionalisation and Cross-Linking of Organosilicon Polymers”, pp. 159–188; (c) Chapter 6: “Hydrosilylation Polymerization”, pp. 191–214; (d) Chapter 7: “Functionalized (Poly)silsesquioxanes and Silicon-Containing Dendrimers”, pp. 215–240; (e) Chapter 8: “Organosilicon – Organic Hybrid Polymers and Materials”, pp. 241–286; in: Marciniec B. (ed.), Hydrosilylation, Advances in Silicon Science, Springer Science+Business Media B.V.
go back to reference Marciniec, B. (1974). Roczniki Chemii, 48, 163. Marciniec, B. (1974). Roczniki Chemii, 48, 163.
go back to reference Marciniec, B. (1975). Roczniki Chemii, 49, 1565. Marciniec, B. (1975). Roczniki Chemii, 49, 1565.
go back to reference Marciniec, B. (1985). Wybrane zagadnienia chemii krzemu: wykłady plenarne wygłoszone na VI Ogólnopolskim Sympozjum Związków Krzemoorganicznych w Dymaczewie k. Poznania, 5–8 czerwca 1983 roku (No. 47). Uniwersytet im. Adama Mickiewicza w Poznaniu. Marciniec, B. (1985). Wybrane zagadnienia chemii krzemu: wykłady plenarne wygłoszone na VI Ogólnopolskim Sympozjum Związków Krzemoorganicznych w Dymaczewie k. Poznania, 5–8 czerwca 1983 roku (No. 47). Uniwersytet im. Adama Mickiewicza w Poznaniu.
go back to reference Marciniec, B., Błażejewska-Chadyniak, P., & Kubicki, M. (2003a). Synthesis, first structures, and catalytic activity of the monomeric rhodium(I)-siloxide phosphine complexes. Canadian Journal of Chemistry, 81(11), 1292–1298. https://doi.org/10.1139/v03-145.CrossRef Marciniec, B., Błażejewska-Chadyniak, P., & Kubicki, M. (2003a). Synthesis, first structures, and catalytic activity of the monomeric rhodium(I)-siloxide phosphine complexes. Canadian Journal of Chemistry, 81(11), 1292–1298. https://​doi.​org/​10.​1139/​v03-145.CrossRef
go back to reference Marciniec, B., Błażejewska-Chadyniak, P., Walczak-Guściora, E., & Kujawa-Welten, M. (2007a). Pat. PL 194667. Marciniec, B., Błażejewska-Chadyniak, P., Walczak-Guściora, E., & Kujawa-Welten, M. (2007a). Pat. PL 194667.
go back to reference Marciniec, B., Chadyniak, D., Pawluć, P, Maciejewski, H., & Błażejewska-Chadyniak, P. (2007b). Pat. PL 194672. Marciniec, B., Chadyniak, D., Pawluć, P, Maciejewski, H., & Błażejewska-Chadyniak, P. (2007b). Pat. PL 194672.
go back to reference Marciniec, B., Chadyniak, D., Pawluć, P., Maciejewski, H., & Błażejewska-Chadyniak, P. (2007c). Pat. PL 194668. Marciniec, B., Chadyniak, D., Pawluć, P., Maciejewski, H., & Błażejewska-Chadyniak, P. (2007c). Pat. PL 194668.
go back to reference Marciniec, B., Guliński, J., Urbaniak, W., & Kornetka, Z. W. (1992). In B. Marciniec (Ed.), Comprehensive handbook on hydrosilylation. Oxford-New York-Seoul-Tokyo: Pergammon Press. Marciniec, B., Guliński, J., Urbaniak, W., & Kornetka, Z. W. (1992). In B. Marciniec (Ed.), Comprehensive handbook on hydrosilylation. Oxford-New York-Seoul-Tokyo: Pergammon Press.
go back to reference Marciniec, B., Kownacki, I., Kubicki, M., Krzyżanowski, P., Walczuk, E., & Błażejewska-Chadyniak, P. (2003b). Perspectives in organometallic chemistry (p. 253). Cambridge: RSC. Marciniec, B., Kownacki, I., Kubicki, M., Krzyżanowski, P., Walczuk, E., & Błażejewska-Chadyniak, P. (2003b). Perspectives in organometallic chemistry (p. 253). Cambridge: RSC.
go back to reference Marciniec, B., & Tran, S. (1981a). Polish Journal of Chemical, 55, 327. Marciniec, B., & Tran, S. (1981a). Polish Journal of Chemical, 55, 327.
go back to reference Marciniec, B., & Tran, S. (1981b). Polish Journal of Chemical, 55, 827. Marciniec, B., & Tran, S. (1981b). Polish Journal of Chemical, 55, 827.
go back to reference Marcos, A. G., Pusel, T. M., Thomann, R., Pakula, T., Okrasa, L., Geppert, S., Gronski, W., & Frey, H. (2006). Linear-hyperbranched block copolymers consisting of polystyrene and dendritic poly(carbosilane) block. Macromolecules, 39(3), 971–977. https://doi.org/10.1021/ma051526c.CrossRef Marcos, A. G., Pusel, T. M., Thomann, R., Pakula, T., Okrasa, L., Geppert, S., Gronski, W., & Frey, H. (2006). Linear-hyperbranched block copolymers consisting of polystyrene and dendritic poly(carbosilane) block. Macromolecules, 39(3), 971–977. https://​doi.​org/​10.​1021/​ma051526c.CrossRef
go back to reference Markó, I. E., Stérin, S., Buisine, O., Berthon, G., Michaud, G., Tinant, B., & Declercq, J. P. (2004). Highly active and selective platinum (0)-carbene complexes. Efficient, catalytic hydrosilylation of functionalised olefins. Advanced Synthesis & Catalysis, 346(12), 1429–1434. https://doi.org/10.1002/adsc.200404048.CrossRef Markó, I. E., Stérin, S., Buisine, O., Berthon, G., Michaud, G., Tinant, B., & Declercq, J. P. (2004). Highly active and selective platinum (0)-carbene complexes. Efficient, catalytic hydrosilylation of functionalised olefins. Advanced Synthesis & Catalysis, 346(12), 1429–1434. https://​doi.​org/​10.​1002/​adsc.​200404048.CrossRef
go back to reference Markovic, E., Constantopolous, K., & Matisons, J. G. (2011). Polyhedral oligomeric silsesquioxanes: From early and strategic development through to materials application. In C. Hartmann-Thompson (Ed.), Applications of polyhedral oligomeric silsesquioxanes (Vol. 3, pp. 1–46). Dordrecht: Springer. https://doi.org/10.1007/978-90-481-3787-9_1.CrossRef Markovic, E., Constantopolous, K., & Matisons, J. G. (2011). Polyhedral oligomeric silsesquioxanes: From early and strategic development through to materials application. In C. Hartmann-Thompson (Ed.), Applications of polyhedral oligomeric silsesquioxanes (Vol. 3, pp. 1–46). Dordrecht: Springer. https://​doi.​org/​10.​1007/​978-90-481-3787-9_​1.CrossRef
go back to reference Masatoshi, A. (1988). Chemical Abstracts, 108, 6610u. Masatoshi, A. (1988). Chemical Abstracts, 108, 6610u.
go back to reference Masatoshi, A., Tatusumori, F., Takeo, I., & Shinishi, S. (1986). Chemical Abstracts, 104, 69008s. Masatoshi, A., Tatusumori, F., Takeo, I., & Shinishi, S. (1986). Chemical Abstracts, 104, 69008s.
go back to reference Matsushita, T., & Shigehisa, Y. (1994). Pat. EP 590,595. Matsushita, T., & Shigehisa, Y. (1994). Pat. EP 590,595.
go back to reference Matyjaszewski, K. (1998). Chapter 7: “Polimery nieorganiczne i organometaliczne”. In Z. Florańczyk & S. Penczek (Eds.), Chemia polimerów (Vol. III). Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej. Matyjaszewski, K. (1998). Chapter 7: “Polimery nieorganiczne i organometaliczne”. In Z. Florańczyk & S. Penczek (Eds.), Chemia polimerów (Vol. III). Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
go back to reference Matyjaszewski, K., Miller, P. J., Pyun, J., Kickelbick, G., & Diamanti, S. (1999). Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic/organic multifunctional initiators. Macromolecules, 32(20), 6526–6535. https://doi.org/10.1021/ma9904823.CrossRef Matyjaszewski, K., Miller, P. J., Pyun, J., Kickelbick, G., & Diamanti, S. (1999). Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic/organic multifunctional initiators. Macromolecules, 32(20), 6526–6535. https://​doi.​org/​10.​1021/​ma9904823.CrossRef
go back to reference Michalska, Z. M., Rózga-Wijas, K., Chojnowski, J., Fortuniak, W., & Ścibiorek, M. (2004). Synthesis and catalytic activity of the transition metal complex catalysts supported on the branched functionalized polysiloxanes grafted on silica. Journal of Molecular Catalysis A: Chemical, 208(1–2), 187–194. https://doi.org/10.1016/j.molcata.2003.07.009.CrossRef Michalska, Z. M., Rózga-Wijas, K., Chojnowski, J., Fortuniak, W., & Ścibiorek, M. (2004). Synthesis and catalytic activity of the transition metal complex catalysts supported on the branched functionalized polysiloxanes grafted on silica. Journal of Molecular Catalysis A: Chemical, 208(1–2), 187–194. https://​doi.​org/​10.​1016/​j.​molcata.​2003.​07.​009.CrossRef
go back to reference Miller, P., Matyjaszewski, K., Pyun, J., Kickelbick, G., & Diamanti, S. (1999). Polymer Preprints, 40(2), 424–425. Miller, P., Matyjaszewski, K., Pyun, J., Kickelbick, G., & Diamanti, S. (1999). Polymer Preprints, 40(2), 424–425.
go back to reference Miravet, J. F., & Frechet, J. M. J. (1997). Polym. Mat. Sci. And Eng., Fall Meeting, Sept. 8–11, 1997, Las Vegas (Nevada), Proceeding of the Am. Chem. Soc. Division of PMSE, 77, 141. Miravet, J. F., & Frechet, J. M. J. (1997). Polym. Mat. Sci. And Eng., Fall Meeting, Sept. 8–11, 1997, Las Vegas (Nevada), Proceeding of the Am. Chem. Soc. Division of PMSE, 77, 141.
go back to reference Miravet, J. F., & Frechet, J. M. J. (1999). Polymer Material Science Engineering, 80, 139. Miravet, J. F., & Frechet, J. M. J. (1999). Polymer Material Science Engineering, 80, 139.
go back to reference Moitra, N., Ichii, S., Kamei, T., Kanamori, K., Zhu, Y., Kazuyuki, K., Nakanishi, K., Shimada, T. (2014). Surface Functionalization of Silica by Si–H Activation of Hydrosilanes. J Amer Chem Soc 136(33):11570–11573. https://doi.org/10.1021/ja504115d Moitra, N., Ichii, S., Kamei, T., Kanamori, K., Zhu, Y., Kazuyuki, K., Nakanishi, K., Shimada, T. (2014). Surface Functionalization of Silica by Si–H Activation of Hydrosilanes. J Amer Chem Soc 136(33):11570–11573. https://​doi.​org/​10.​1021/​ja504115d
go back to reference Moran, M., Casado, C. M., Cuadrado, I., & Losada, J. (1993). Ferrocenyl substituted octakis(dimethylsiloxy) octasilsesquioxanes: A new class of supramolecular organometallic compounds. Synthesis, characterization, and electrochemistry. Organometallics, 12(11), 4327–4333. https://doi.org/10.1021/om00035a018S.CrossRef Moran, M., Casado, C. M., Cuadrado, I., & Losada, J. (1993). Ferrocenyl substituted octakis(dimethylsiloxy) octasilsesquioxanes: A new class of supramolecular organometallic compounds. Synthesis, characterization, and electrochemistry. Organometallics, 12(11), 4327–4333. https://​doi.​org/​10.​1021/​om00035a018S.CrossRef
go back to reference Muskus, R., & Ganicz, T. (2007). XIII polish Organosilicon symposium (p. 38). Chmielno: Abstracts. Muskus, R., & Ganicz, T. (2007). XIII polish Organosilicon symposium (p. 38). Chmielno: Abstracts.
go back to reference Nadkarni, D. V., & Fry, J. L. (1993). Demonstration of a novel method for the controlled deposition of metals onto surfaces by preparation of a Pd-Hg/SiO2 catalyst for the selective hydrogenation of alkynes to alkenes. Journal of the Chemical Society, Chemical Communications, 12, 997–998. https://doi.org/10.1039/c39930000997.CrossRef Nadkarni, D. V., & Fry, J. L. (1993). Demonstration of a novel method for the controlled deposition of metals onto surfaces by preparation of a Pd-Hg/SiO2 catalyst for the selective hydrogenation of alkynes to alkenes. Journal of the Chemical Society, Chemical Communications, 12, 997–998. https://​doi.​org/​10.​1039/​c39930000997.CrossRef
go back to reference Naga, N., Kihara, Y., Miyanaga, T., & Furukawa, H. (2009). Synthesis of organic-inorganic hybrid gels from siloxane or silsesquioxane and α, ω-nonconjugated dienes by means of a photo hydrosilylation reaction. Macromolecules, 42(10), 3454–3462. https://doi.org/10.1021/ma802745x.CrossRef Naga, N., Kihara, Y., Miyanaga, T., & Furukawa, H. (2009). Synthesis of organic-inorganic hybrid gels from siloxane or silsesquioxane and α, ω-nonconjugated dienes by means of a photo hydrosilylation reaction. Macromolecules, 42(10), 3454–3462. https://​doi.​org/​10.​1021/​ma802745x.CrossRef
go back to reference Naga, N., Oda, E., Toyota, A., & Furukawa, H. (2007). Mesh size control of organic-inorganic hybrid gels by means of a hydrosilylation co-gelation of siloxane or silsesquioxane and α,ω-non-conjugated dienes. Macromolecular Chemistry and Physics, 208(21), 2331–2338. https://doi.org/10.1002/macp.200700184.CrossRef Naga, N., Oda, E., Toyota, A., & Furukawa, H. (2007). Mesh size control of organic-inorganic hybrid gels by means of a hydrosilylation co-gelation of siloxane or silsesquioxane and α,ω-non-conjugated dienes. Macromolecular Chemistry and Physics, 208(21), 2331–2338. https://​doi.​org/​10.​1002/​macp.​200700184.CrossRef
go back to reference Nakagawa, Y., Miller, P., Pacis, C., & Matyjaszewski, K. (1997). Polymer Preprints, 38(1), 701. Nakagawa, Y., Miller, P., Pacis, C., & Matyjaszewski, K. (1997). Polymer Preprints, 38(1), 701.
go back to reference Nennendal, T., Aguirre-Kaufmann, E., Binder, W., Knaus, S., & Gruber, H. (1999). Equilibration control of poly(dimethylsiloxane)-co-(hydromethylsiloxane). Zeszyty Naukowe. Chemia/Politechnika Śląska, (140), 115–119. Nennendal, T., Aguirre-Kaufmann, E., Binder, W., Knaus, S., & Gruber, H. (1999). Equilibration control of poly(dimethylsiloxane)-co-(hydromethylsiloxane). Zeszyty Naukowe. Chemia/Politechnika Śląska, (140), 115–119.
go back to reference Nennendal, T., Knaus, S., & Gruber, H. (2000). World Polymer Congress, 38th Macromolecular IUPAC Symposium, Warsaw, 9–14 July 2000, Book of Abstracts, vol. 1, p. 479. Nennendal, T., Knaus, S., & Gruber, H. (2000). World Polymer Congress, 38th Macromolecular IUPAC Symposium, Warsaw, 9–14 July 2000, Book of Abstracts, vol. 1, p. 479.
go back to reference Neumann, D., Fisher, M., Tran, L., & Matisons, J. G. (2002). Synthesis and characterization of an isocyanate functionalized polyhedral oligosilsesquioxane and the subsequent formation of an organic-inorganic hybrid polyurethane. Journal of the American Chemical Society, 124(47), 13998–13999. https://doi.org/10.1021/ja0275921.CrossRefPubMed Neumann, D., Fisher, M., Tran, L., & Matisons, J. G. (2002). Synthesis and characterization of an isocyanate functionalized polyhedral oligosilsesquioxane and the subsequent formation of an organic-inorganic hybrid polyurethane. Journal of the American Chemical Society, 124(47), 13998–13999. https://​doi.​org/​10.​1021/​ja0275921.CrossRefPubMed
go back to reference Noll, W. (1968). Chemie und Technologie der Silikone, 2 Aufl. Weinheim: Verlag Chemie, GmbH. Noll, W. (1968). Chemie und Technologie der Silikone, 2 Aufl. Weinheim: Verlag Chemie, GmbH.
go back to reference Orlov, N. F., & Dolgov, B. N. (1959). Novye metody sinteza organosiloksanov. Doklady Akademii Nauk SSSR, 125(4), 817–820. Orlov, N. F., & Dolgov, B. N. (1959). Novye metody sinteza organosiloksanov. Doklady Akademii Nauk SSSR, 125(4), 817–820.
go back to reference Pan, G., Mark, J. E., & Schaefer, D. W. (2003). Synthesis and characterization of fillers of controlled structure based on polyhedral oligomeric silsesquioxane cages and their use in reinforcing siloxane elastomers. Journal of Polymer Science Part B: Polymer Physics, 41(24), 3314–3323. https://doi.org/10.1002/polb.10695.CrossRef Pan, G., Mark, J. E., & Schaefer, D. W. (2003). Synthesis and characterization of fillers of controlled structure based on polyhedral oligomeric silsesquioxane cages and their use in reinforcing siloxane elastomers. Journal of Polymer Science Part B: Polymer Physics, 41(24), 3314–3323. https://​doi.​org/​10.​1002/​polb.​10695.CrossRef
go back to reference Pancer, K., Maciejewski, K., & Marciniec, B. (2007). XIII Polish qrganosilicon symposium (p. 79). Chmielno: Abstracts. Pancer, K., Maciejewski, K., & Marciniec, B. (2007). XIII Polish qrganosilicon symposium (p. 79). Chmielno: Abstracts.
go back to reference Pavlyuchenko, V. N., Sorochinskaya, O. V., Ivanchev, S. S., Khaikin, S. Y., Trounov, V. A., Lebedev, V. T., Sosnov, E. A., & Gofman, I. V. (2009). New silicone hydrogels based on interpenetrating polymer networks comprising polysiloxane and poly(vinyl alcohol) networks. Polymers for Advanced Technologies, 20(4), 367–377. https://doi.org/10.1002/pat.1234.CrossRef Pavlyuchenko, V. N., Sorochinskaya, O. V., Ivanchev, S. S., Khaikin, S. Y., Trounov, V. A., Lebedev, V. T., Sosnov, E. A., & Gofman, I. V. (2009). New silicone hydrogels based on interpenetrating polymer networks comprising polysiloxane and poly(vinyl alcohol) networks. Polymers for Advanced Technologies, 20(4), 367–377. https://​doi.​org/​10.​1002/​pat.​1234.CrossRef
go back to reference Percec, V., & Hahn, B. (1989). Liquid crystalline polymers containing heterocycloalkanediyl groups as mesogens. 7. Molecular weightand composition effects on the phase transitions of poly(methylsiloxane)s and poly(methylsiloxane-co-dimethylsiloxane)s containing 2-[4-(2(s)-methyl-1-butoxy)-phenyl]-5-(11-undecanyl)-1,3,2-dioxaborinane side groups. Macromolecules, 22(4), 1588–1599. https://doi.org/10.1021/ma00194a014.CrossRef Percec, V., & Hahn, B. (1989). Liquid crystalline polymers containing heterocycloalkanediyl groups as mesogens. 7. Molecular weightand composition effects on the phase transitions of poly(methylsiloxane)s and poly(methylsiloxane-co-dimethylsiloxane)s containing 2-[4-(2(s)-methyl-1-butoxy)-phenyl]-5-(11-undecanyl)-1,3,2-dioxaborinane side groups. Macromolecules, 22(4), 1588–1599. https://​doi.​org/​10.​1021/​ma00194a014.CrossRef
go back to reference Percec, V., & Wang, C. S. (1992). Synthesis and characterization of polymethacrylates, polyacrylates, and poly(methylsiloxane)s containing 4-[s(−)-2-methyl-1-butoxy]-4′-(ω-alkanyl-1-OXY)-α-methylstilbene side groups. Journal of Macromolecular Science-Pure and Applied Chemistry, 29(2), 99–121. https://doi.org/10.1080/10101329208052155.CrossRef Percec, V., & Wang, C. S. (1992). Synthesis and characterization of polymethacrylates, polyacrylates, and poly(methylsiloxane)s containing 4-[s(−)-2-methyl-1-butoxy]-4′-(ω-alkanyl-1-OXY)-α-methylstilbene side groups. Journal of Macromolecular Science-Pure and Applied Chemistry, 29(2), 99–121. https://​doi.​org/​10.​1080/​1010132920805215​5.CrossRef
go back to reference Pielichowski, K., Njuguna, J., Janowski, B., & Pielichowski, J. (2006). Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers. In Supramolecular polymers polymeric betains oligomers (pp. 225–296). Berlin/Heidelberg: Springer. https://doi.org/10.1007/12_077.CrossRef Pielichowski, K., Njuguna, J., Janowski, B., & Pielichowski, J. (2006). Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers. In Supramolecular polymers polymeric betains oligomers (pp. 225–296). Berlin/Heidelberg: Springer. https://​doi.​org/​10.​1007/​12_​077.CrossRef
go back to reference Polmanteer, K. E., Talcott, T. D., & Willing, D. N. (1971). Ger. Pat. 2,041,633. Polmanteer, K. E., Talcott, T. D., & Willing, D. N. (1971). Ger. Pat. 2,041,633.
go back to reference Pratt, M., Smid, J., & Khan, I. M. (1994). Polymer Preprints, 35(2), 643. Pratt, M., Smid, J., & Khan, I. M. (1994). Polymer Preprints, 35(2), 643.
go back to reference Pujol, J. M., Frances, J. M., & Letoffe, M. (1995). Organosilicon Chemistry, Proceedings of the Xth International Symposium, Poznan, 1993, Marciniec, B., & Chojnowski, J. (Ed.), Gordon & Breach Sci. Publ., pp. 503–521. Pujol, J. M., Frances, J. M., & Letoffe, M. (1995). Organosilicon Chemistry, Proceedings of the Xth International Symposium, Poznan, 1993, Marciniec, B., & Chojnowski, J. (Ed.), Gordon & Breach Sci. Publ., pp. 503–521.
go back to reference Pyun, J., Miller, P., & Matyjaszewski, K. (1999). Polymer Preprints, 41(1), 536–537. Pyun, J., Miller, P., & Matyjaszewski, K. (1999). Polymer Preprints, 41(1), 536–537.
go back to reference Quirk, R. P., Janoski, J., Chowdhury, S. R., Wesdemiotis, C., & Dabney, D. E. (2008). Anionic synthesis of chain-end and in-chain, cyano-functionalized polystyrenes by hydrosilylation of allyl cyanide with silyl hydride-functionalized polystyrenes. Macromolecules, 42(2), 494–501. https://doi.org/10.1021/ma8022525.CrossRef Quirk, R. P., Janoski, J., Chowdhury, S. R., Wesdemiotis, C., & Dabney, D. E. (2008). Anionic synthesis of chain-end and in-chain, cyano-functionalized polystyrenes by hydrosilylation of allyl cyanide with silyl hydride-functionalized polystyrenes. Macromolecules, 42(2), 494–501. https://​doi.​org/​10.​1021/​ma8022525.CrossRef
go back to reference Quirk, R. P., Janoski, J., Olechnowicz, M., Kim, H., Dabney, D. E., & Wesdemiotis, C. (2009). Anionic syntheses of chain-end and in-chain functionalized polymers by silyl hydride functionalization and hydrosilylation chemistry. Macromolecular Symposia, 283-284(1), 78–87. https://doi.org/10.1002/masy.200950911.CrossRef Quirk, R. P., Janoski, J., Olechnowicz, M., Kim, H., Dabney, D. E., & Wesdemiotis, C. (2009). Anionic syntheses of chain-end and in-chain functionalized polymers by silyl hydride functionalization and hydrosilylation chemistry. Macromolecular Symposia, 283-284(1), 78–87. https://​doi.​org/​10.​1002/​masy.​200950911.CrossRef
go back to reference Quirk, R. P., Kim, H., Polce, M. J., & Wesdemiotis, C. (2005). Anionic synthesis of primary amine functionalized polystyrenes via hydrosilation of allylamines with silyl hydride functionalized polystyrenes. Macromolecules, 38(19), 7895–7906. https://doi.org/10.1021/ma0513261.CrossRef Quirk, R. P., Kim, H., Polce, M. J., & Wesdemiotis, C. (2005). Anionic synthesis of primary amine functionalized polystyrenes via hydrosilation of allylamines with silyl hydride functionalized polystyrenes. Macromolecules, 38(19), 7895–7906. https://​doi.​org/​10.​1021/​ma0513261.CrossRef
go back to reference Reed-Mundell, J. J., Nadkarni, D. V., Kunz, J. M., Jr., Fry, C. W., & Fry, J. L. (1995). Formation of new materials with thin metal layers through “directed” reduction of ions at surface-immobilized silyl hydride functional groups. Silver on silica. Chemistry of Materials, 7(9), 1655–1660. https://doi.org/10.1021/cm00057a012.CrossRef Reed-Mundell, J. J., Nadkarni, D. V., Kunz, J. M., Jr., Fry, C. W., & Fry, J. L. (1995). Formation of new materials with thin metal layers through “directed” reduction of ions at surface-immobilized silyl hydride functional groups. Silver on silica. Chemistry of Materials, 7(9), 1655–1660. https://​doi.​org/​10.​1021/​cm00057a012.CrossRef
go back to reference Rościszewski, P. (1964). Zastosowanie silikonów. Warszawa: WNT. Rościszewski, P. (1964). Zastosowanie silikonów. Warszawa: WNT.
go back to reference Rościszewski, P., & Zielecka, M. (2002). Silikony, właściwości i zastosowanie. Warszawa: WNT. ISBN: 83-204-2612-X. Rościszewski, P., & Zielecka, M. (2002). Silikony, właściwości i zastosowanie. Warszawa: WNT. ISBN: 83-204-2612-X.
go back to reference Rościszewski, P., Jagielska, E., & Bartosiak, K. (1974). Pat. PL 92,926. Rościszewski, P., Jagielska, E., & Bartosiak, K. (1974). Pat. PL 92,926.
go back to reference Rościszewski, P., Witlib, R., & Książek, M. (1975). Pat. PL 92,637. Rościszewski, P., Witlib, R., & Książek, M. (1975). Pat. PL 92,637.
go back to reference Rossi, N. A. A., Zhang, Z., Wang, Q., Amine, K., & West, R. (2005). Oligo(ethylene oxide)-functionalized siloxanes: Decreasing viscosity and increasing conductivity. Polymer Preprints, 46(1), 723–724. Rossi, N. A. A., Zhang, Z., Wang, Q., Amine, K., & West, R. (2005). Oligo(ethylene oxide)-functionalized siloxanes: Decreasing viscosity and increasing conductivity. Polymer Preprints, 46(1), 723–724.
go back to reference Rubinsztajn, S., & Cella, J. A. (2004). Polymer Preprint, 45(1), 635–636. Rubinsztajn, S., & Cella, J. A. (2004). Polymer Preprint, 45(1), 635–636.
go back to reference Ruder, S., Embrey, D. L., Allen, S. D., & Wnek, G. E. (1998). Polymer Preprints, 39(1), 294. Ruder, S., Embrey, D. L., Allen, S. D., & Wnek, G. E. (1998). Polymer Preprints, 39(1), 294.
go back to reference Rühlmann, K., & Jansen, I. (1985). Olefin-cyclosiloxan-copolymere mit stabilisator-gruppen. In B. Marciniec (Ed.), Wybrane zagadnienie chemii krzemu (pp. 37–58). Poznań: A. Mickiewicz Univ. Press. Rühlmann, K., & Jansen, I. (1985). Olefin-cyclosiloxan-copolymere mit stabilisator-gruppen. In B. Marciniec (Ed.), Wybrane zagadnienie chemii krzemu (pp. 37–58). Poznań: A. Mickiewicz Univ. Press.
go back to reference Sargent, J. R., & Weber, W. P. (1999). End group analysis accounts for the low molecular weight observed in the 1,3-divinyltetramethyldisiloxane-Pt complex catalyzed hydrosilylation copolymerization of α,ω-dienes and 1,3-dihydridotetramethyldisiloxane. Macromolecules, 32(9), 2826–2829. https://doi.org/10.1021/ma981461w.CrossRef Sargent, J. R., & Weber, W. P. (1999). End group analysis accounts for the low molecular weight observed in the 1,3-divinyltetramethyldisiloxane-Pt complex catalyzed hydrosilylation copolymerization of α,ω-dienes and 1,3-dihydridotetramethyldisiloxane. Macromolecules, 32(9), 2826–2829. https://​doi.​org/​10.​1021/​ma981461w.CrossRef
go back to reference Sargent, J. R., & Weber, W. P. (2000). Polymer Preprints, 41, 604. Sargent, J. R., & Weber, W. P. (2000). Polymer Preprints, 41, 604.
go back to reference Schadebrodt, J., Ludwig, S., Abetz, V., & Stadler, R. (1999). New thermoreversible and combined networks via hydrosilylation with neutral Pt(II)-complexes. Kautschuk Gummi Kunststoffe, 52(9), 555–562. Schadebrodt, J., Ludwig, S., Abetz, V., & Stadler, R. (1999). New thermoreversible and combined networks via hydrosilylation with neutral Pt(II)-complexes. Kautschuk Gummi Kunststoffe, 52(9), 555–562.
go back to reference Schätz, M. (1975), Silikonovy kauchuk., Leningrad. Schätz, M. (1975), Silikonovy kauchuk., Leningrad.
go back to reference Schaudel, B., Guermeur, C., Sanchez, C., Nakatani, K., & Delaire, J. A. (1997). Spirooxazine-and spiropyran-doped hybrid organic-inorganic matrices with very fast photochromic responses. Journal of Materials Chemistry, 7(1), 61–65. https://doi.org/10.1039/a606859f.CrossRef Schaudel, B., Guermeur, C., Sanchez, C., Nakatani, K., & Delaire, J. A. (1997). Spirooxazine-and spiropyran-doped hybrid organic-inorganic matrices with very fast photochromic responses. Journal of Materials Chemistry, 7(1), 61–65. https://​doi.​org/​10.​1039/​a606859f.CrossRef
go back to reference Schmid, G. M., Carpenter, L. E., & Liddle, J. A. (2004). Nonaqueous development of silsesquioxane electron beam resist. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 22(6), 3497–3502. https://doi.org/10.1116/1.1825014.CrossRef Schmid, G. M., Carpenter, L. E., & Liddle, J. A. (2004). Nonaqueous development of silsesquioxane electron beam resist. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 22(6), 3497–3502. https://​doi.​org/​10.​1116/​1.​1825014.CrossRef
go back to reference Servaty, S., Köhler, W., Meyer, W. H., Rosenauer, C., Spickermann, J., Räder, H. J., Wegner, G., & Weier, A. (1998). MALDI-TOF-MS copolymer analysis: Characterization of a poly(dimethylsiloxane)-co-poly(hydromethylsiloxane) as a precursor of a functionalized silicone graft copolymer. Macromolecules, 31(8), 2468–2474. https://doi.org/10.1021/ma970710y.CrossRef Servaty, S., Köhler, W., Meyer, W. H., Rosenauer, C., Spickermann, J., Räder, H. J., Wegner, G., & Weier, A. (1998). MALDI-TOF-MS copolymer analysis: Characterization of a poly(dimethylsiloxane)-co-poly(hydromethylsiloxane) as a precursor of a functionalized silicone graft copolymer. Macromolecules, 31(8), 2468–2474. https://​doi.​org/​10.​1021/​ma970710y.CrossRef
go back to reference Shermann, M. A., & Kennedy, J. P. (1997). Polymeric Materials Science and Engineering, 77, 521. Shermann, M. A., & Kennedy, J. P. (1997). Polymeric Materials Science and Engineering, 77, 521.
go back to reference Shibaev, V. (2016). Chapter: Liquid crystalline polymers. In S. Hashmi (Ed.), Reference module in materials science and materials engineering (pp. 1–46). Oxford: Elsevier. ISBN: 978-0-12-803581-8. Shibaev, V. (2016). Chapter: Liquid crystalline polymers. In S. Hashmi (Ed.), Reference module in materials science and materials engineering (pp. 1–46). Oxford: Elsevier. ISBN: 978-0-12-803581-8.
go back to reference Shim, J. S., Asthana, S., Omura, N., & Kennedy, J. P. (1998). Polymer Preprints, 39(1), 196. Shim, J. S., Asthana, S., Omura, N., & Kennedy, J. P. (1998). Polymer Preprints, 39(1), 196.
go back to reference Shirazi, Y., Ghadimi, A., & Mohammadi, T. (2012). Recovery of alcohols from water using polydimethylsiloxane-silica nanocomposite membranes: Characterization and pervaporation performance. Journal of Applied Polymer Science, 124(4), 2871–2882. https://doi.org/10.1002/app.35313.CrossRef Shirazi, Y., Ghadimi, A., & Mohammadi, T. (2012). Recovery of alcohols from water using polydimethylsiloxane-silica nanocomposite membranes: Characterization and pervaporation performance. Journal of Applied Polymer Science, 124(4), 2871–2882. https://​doi.​org/​10.​1002/​app.​35313.CrossRef
go back to reference Si, Q.-F., Fan, X.-D., Liu, Y. Y., Kong, J., Wang, S.-J., & Qiao, W.-Q. (2006). Synthesis and characterization of hyperbranched-poly(siloxysilane)-based polymeric photoinitiators. Journal of Polymer Science Part A: Polymer Chemistry, 44(10), 3261–3270. https://doi.org/10.1002/pola.21439.CrossRef Si, Q.-F., Fan, X.-D., Liu, Y. Y., Kong, J., Wang, S.-J., & Qiao, W.-Q. (2006). Synthesis and characterization of hyperbranched-poly(siloxysilane)-based polymeric photoinitiators. Journal of Polymer Science Part A: Polymer Chemistry, 44(10), 3261–3270. https://​doi.​org/​10.​1002/​pola.​21439.CrossRef
go back to reference Siliniakova, I. B., Budkevitsch, G. B., & Nejmark, I. J. (1964). Doklady Akademii Nauk SSSR, 154, 692–694. Siliniakova, I. B., Budkevitsch, G. B., & Nejmark, I. J. (1964). Doklady Akademii Nauk SSSR, 154, 692–694.
go back to reference Siliniakova, I. B., Budkevitsch, G. B., & Nejmark, I. J. (1965). Koloid Zhurn., 27, 758–764. Siliniakova, I. B., Budkevitsch, G. B., & Nejmark, I. J. (1965). Koloid Zhurn., 27, 758–764.
go back to reference Sokołow, N. N. (1961). Metody syntezy poliorganosiloksanów. Warsaw: PWN. Sokołow, N. N. (1961). Metody syntezy poliorganosiloksanów. Warsaw: PWN.
go back to reference Stober, M. R., Musolf, M. C., & Speier, J. L. (1965). The addition of silicon hydrides to olefinic double bonds. XI. Exchange of methyl and trimethylsiloxy groups in bistrimethylsiloxymethylsilane. The Journal of Organic Chemistry, 30(5), 1651–1652. https://doi.org/10.1021/jo01016a506.CrossRef Stober, M. R., Musolf, M. C., & Speier, J. L. (1965). The addition of silicon hydrides to olefinic double bonds. XI. Exchange of methyl and trimethylsiloxy groups in bistrimethylsiloxymethylsilane. The Journal of Organic Chemistry, 30(5), 1651–1652. https://​doi.​org/​10.​1021/​jo01016a506.CrossRef
go back to reference Sun, F., Castner, D. G., Mao, G., Wang, W., McKeown, P., & Grainger, D. W. (1996). Spontaneous polymer thin film assembly and organization using mutually immiscible side chains. Journal of the American Chemical Society, 118(8), 1856–1866. https://doi.org/10.1021/ja952225t.CrossRef Sun, F., Castner, D. G., Mao, G., Wang, W., McKeown, P., & Grainger, D. W. (1996). Spontaneous polymer thin film assembly and organization using mutually immiscible side chains. Journal of the American Chemical Society, 118(8), 1856–1866. https://​doi.​org/​10.​1021/​ja952225t.CrossRef
go back to reference Takago, T., Sato, S., Koike, N., & Matsuda T. (1993). Silicone rubber compositions and cured products. Pat. EP 549,214. Takago, T., Sato, S., Koike, N., & Matsuda T. (1993). Silicone rubber compositions and cured products. Pat. EP 549,214.
go back to reference Takamura, N., Viculis, L., Zhang, C., & Laine, R. M. (2007). Completely discontinuous organic/inorganic hybrid nanocomposites by self-curing of nanobuilding blocks constructed from reactions of [HMe2SiOSiO1.5]8 with vinylcyclohexene. Polymer International, 56(11), 1378–1391. https://doi.org/10.1002/pi.2281.CrossRef Takamura, N., Viculis, L., Zhang, C., & Laine, R. M. (2007). Completely discontinuous organic/inorganic hybrid nanocomposites by self-curing of nanobuilding blocks constructed from reactions of [HMe2SiOSiO1.5]8 with vinylcyclohexene. Polymer International, 56(11), 1378–1391. https://​doi.​org/​10.​1002/​pi.​2281.CrossRef
go back to reference Thomas, B. (2001). Euro-Fillers’01 Conference, 9–12 July 2001, Łódź, Poland. Extended Abstracts, C-06. Thomas, B. (2001). Euro-Fillers’01 Conference, 9–12 July 2001, Łódź, Poland. Extended Abstracts, C-06.
go back to reference Uritani, P., & Kishita, H. (2002). Liquid perfluoroether elastomer. High performance elastomers. In Polymers in aerospace applications (pp. 139–150. Report 192). Cologne: Ismithers Rapra Publ. Uritani, P., & Kishita, H. (2002). Liquid perfluoroether elastomer. High performance elastomers. In Polymers in aerospace applications (pp. 139–150. Report 192). Cologne: Ismithers Rapra Publ.
go back to reference Vasilenko, N. G., Rebrov, E. A., Myakushev, V. D., Muzafarov, A. M., Cray, S. E., Okawa, T., & Mikami, R. (1998) Polym Prepr 39(1):603. Vasilenko, N. G., Rebrov, E. A., Myakushev, V. D., Muzafarov, A. M., Cray, S. E., Okawa, T., & Mikami, R. (1998) Polym Prepr 39(1):603.
go back to reference Ventura-Espinosa, D., Carretero-Cerdán, A., Baya, M., García, H., & Mata, J. A. (2017). Catalytic dehydrogenative coupling of hydrosilanes with alcohols for the production of hydrogen on-demand: Application of a silane/alcohol pair as a liquid organic hydrogen carrier. Chemistry-A European Journal, 23(45), 10815–10821. https://doi.org/10.1002/chem.201700243.CrossRefPubMed Ventura-Espinosa, D., Carretero-Cerdán, A., Baya, M., García, H., & Mata, J. A. (2017). Catalytic dehydrogenative coupling of hydrosilanes with alcohols for the production of hydrogen on-demand: Application of a silane/alcohol pair as a liquid organic hydrogen carrier. Chemistry-A European Journal, 23(45), 10815–10821. https://​doi.​org/​10.​1002/​chem.​201700243.CrossRefPubMed
go back to reference Wan, Y., Xu, L. E. I., Ren, L., & Zhang, L. (1998). Synthesis and mesomorphic properties of fishshbone-like liquid crystalline polysilsesquioxanes V. Pd-coordinating, fishbone-like azo-based liquid crystalline polysilsesquioxanes. Liquid Crystals, 24(6), 871–876. https://doi.org/10.1080/026782998206696.CrossRef Wan, Y., Xu, L. E. I., Ren, L., & Zhang, L. (1998). Synthesis and mesomorphic properties of fishshbone-like liquid crystalline polysilsesquioxanes V. Pd-coordinating, fishbone-like azo-based liquid crystalline polysilsesquioxanes. Liquid Crystals, 24(6), 871–876. https://​doi.​org/​10.​1080/​026782998206696.CrossRef
go back to reference Wang, J. W., Meng, F. B., Li, Y. H., & Zhang, B. Y. (2009). Synthesis and characterization of side-chain cholesteric liquid-crystalline polysiloxanes containing different space groups. Journal of Applied Polymer Science, 111(4), 2078–2084. https://doi.org/10.1002/app.29214.CrossRef Wang, J. W., Meng, F. B., Li, Y. H., & Zhang, B. Y. (2009). Synthesis and characterization of side-chain cholesteric liquid-crystalline polysiloxanes containing different space groups. Journal of Applied Polymer Science, 111(4), 2078–2084. https://​doi.​org/​10.​1002/​app.​29214.CrossRef
go back to reference Wang, M., Gan, D., & Wooley, K. L. (2000). Polymer Preprints, 41(2), 1338. Wang, M., Gan, D., & Wooley, K. L. (2000). Polymer Preprints, 41(2), 1338.
go back to reference West, R., Oka, K., Miller, M. A., Takahashi, H., & Skrupky, R. L. (2009). XXVI Silicon Symposium, 26–27.03.1993., Indianapolis, Indiana, USA, Lecture Abstracts, C-1. West, R., Oka, K., Miller, M. A., Takahashi, H., & Skrupky, R. L. (2009). XXVI Silicon Symposium, 26–27.03.1993., Indianapolis, Indiana, USA, Lecture Abstracts, C-1.
go back to reference West, R., Oka, K., Takahashi, H., Miller, M., & Gunji, T. (1994). Some silicon polymers of C60 (buckminsterfullerene). In P. Wisian-Neilson, H. R. Allcock, & K. J. Wynne (Eds.), Inorganic and organometallic polymers II. Advanced materials and intermediates (ACS symposium series) (Vol. 572, pp. 92–101). https://doi.org/10.1021/bk-1994-0572.ch009.CrossRef West, R., Oka, K., Takahashi, H., Miller, M., & Gunji, T. (1994). Some silicon polymers of C60 (buckminsterfullerene). In P. Wisian-Neilson, H. R. Allcock, & K. J. Wynne (Eds.), Inorganic and organometallic polymers II. Advanced materials and intermediates (ACS symposium series) (Vol. 572, pp. 92–101). https://​doi.​org/​10.​1021/​bk-1994-0572.​ch009.CrossRef
go back to reference White, J. W. (1995). Recent achievements in industrial silicon polymer science. In B. Marciniec & J. Chojnowski (Eds.), Progress in Organosilicon chemistry (pp. 363–386). Gordon & Breach Sci. Publ. White, J. W. (1995). Recent achievements in industrial silicon polymer science. In B. Marciniec & J. Chojnowski (Eds.), Progress in Organosilicon chemistry (pp. 363–386). Gordon & Breach Sci. Publ.
go back to reference Wilczek, L., & Sun, Y. (1994). XXVII Organosilicon Symposium, 18–19.03.1994. Troy, New York, USA, Lecture Abstracts, B-30. Wilczek, L., & Sun, Y. (1994). XXVII Organosilicon Symposium, 18–19.03.1994. Troy, New York, USA, Lecture Abstracts, B-30.
go back to reference Wu, S., Hayakawa, T., Kikuchi, R., Grunzinger, S. J., Kakimoto, M. A., & Oikawa, H. (2007). Synthesis and characterization of semiaromatic polyimides containing POSS in main chain derived from double-decker-shaped silsesquioxane. Macromolecules, 40(16), 5698–5705. https://doi.org/10.1021/ma070547z.CrossRef Wu, S., Hayakawa, T., Kikuchi, R., Grunzinger, S. J., Kakimoto, M. A., & Oikawa, H. (2007). Synthesis and characterization of semiaromatic polyimides containing POSS in main chain derived from double-decker-shaped silsesquioxane. Macromolecules, 40(16), 5698–5705. https://​doi.​org/​10.​1021/​ma070547z.CrossRef
go back to reference Xie, P., Wan, Y., Zhou, B., Hou, J., Dai, D., Li, Z., Liu, D., & Zhang, R. (1996). Synthesis and mesomorphic properties of fishbone-like liquid crystalline polysilsesquioxanes, 3. Fishbone-like, azo-based liquid crystalline polysilsesquioxane. Macromolecular Chemistry and Physics, 197(2), 745–752. https://doi.org/10.1002/macp.1996.021970227.CrossRef Xie, P., Wan, Y., Zhou, B., Hou, J., Dai, D., Li, Z., Liu, D., & Zhang, R. (1996). Synthesis and mesomorphic properties of fishbone-like liquid crystalline polysilsesquioxanes, 3. Fishbone-like, azo-based liquid crystalline polysilsesquioxane. Macromolecular Chemistry and Physics, 197(2), 745–752. https://​doi.​org/​10.​1002/​macp.​1996.​021970227.CrossRef
go back to reference Yamamoto, Y., & Matsuda, T. (1991). Pat. EP 435,654. Yamamoto, Y., & Matsuda, T. (1991). Pat. EP 435,654.
go back to reference Zhang, B., Gu, A., Liang, G., Hu, J. T., Zhuo, D., & Yuan, L. (2011). Solventless silicone hybrids based on polyhedral oligomeric silsesquioxane and hyperbranched polysiloxane for vacuum pressure impregnation process. Polymers for Advanced Technologies, 22(12), 2415–2423. https://doi.org/10.1002/pat.1778.CrossRef Zhang, B., Gu, A., Liang, G., Hu, J. T., Zhuo, D., & Yuan, L. (2011). Solventless silicone hybrids based on polyhedral oligomeric silsesquioxane and hyperbranched polysiloxane for vacuum pressure impregnation process. Polymers for Advanced Technologies, 22(12), 2415–2423. https://​doi.​org/​10.​1002/​pat.​1778.CrossRef
go back to reference Zhang, B., Zhuo, D., Gu, A., Liang, G., Hu, J. T., & Yuan, L. (2012a). Preparation and properties of addition curable silicone resins with excellent dielectric properties and thermal resistance. Polymer Engineering & Science, 52(2), 259–267. https://doi.org/10.1002/pen.22077.CrossRef Zhang, B., Zhuo, D., Gu, A., Liang, G., Hu, J. T., & Yuan, L. (2012a). Preparation and properties of addition curable silicone resins with excellent dielectric properties and thermal resistance. Polymer Engineering & Science, 52(2), 259–267. https://​doi.​org/​10.​1002/​pen.​22077.CrossRef
go back to reference Zhang, C., Babonneau, F., Bonhomme, C., Laine, R. M., Soles, C. L., Hristov, H. A., & Yee, A. F. (1998). Highly porous polyhedral silsesquioxane polymers. Synthesis and characterization. Journal of the American Chemical Society, 120(33), 8380–8391. https://doi.org/10.1021/ja9808853.CrossRef Zhang, C., Babonneau, F., Bonhomme, C., Laine, R. M., Soles, C. L., Hristov, H. A., & Yee, A. F. (1998). Highly porous polyhedral silsesquioxane polymers. Synthesis and characterization. Journal of the American Chemical Society, 120(33), 8380–8391. https://​doi.​org/​10.​1021/​ja9808853.CrossRef
go back to reference Zhang, W. B., Sun, B., Li, H., Ren, X., Janoski, J., Sahoo, S., Dabney, D. E., Wesdemiotis, C., Quirk, R. P., & Cheng, S. Z. D. (2009). Synthesis of in-chain-functionalized polystyrene-block-poly(dimethylsiloxane) diblock copolymers by anionic polymerization and hydrosilylation using dimethyl-[4-(1-phenylvinyl)phenyl]silane. Macromolecules, 42(19), 7258–7262. https://doi.org/10.1021/ma901506d.CrossRef Zhang, W. B., Sun, B., Li, H., Ren, X., Janoski, J., Sahoo, S., Dabney, D. E., Wesdemiotis, C., Quirk, R. P., & Cheng, S. Z. D. (2009). Synthesis of in-chain-functionalized polystyrene-block-poly(dimethylsiloxane) diblock copolymers by anionic polymerization and hydrosilylation using dimethyl-[4-(1-phenylvinyl)phenyl]silane. Macromolecules, 42(19), 7258–7262. https://​doi.​org/​10.​1021/​ma901506d.CrossRef
go back to reference Zhou, H., Venumbaka, S. R., Fitch, J. W., & Cassidy, P. E. (2008). Siloxane/silane-crosslinked systems from supercritical carbon dioxide: II. Pendant phenyl poly(carbosilane/siloxane)s. Polymers for Advanced Technologies, 19(7), 734–738. https://doi.org/10.1002/pat.1048.CrossRef Zhou, H., Venumbaka, S. R., Fitch, J. W., & Cassidy, P. E. (2008). Siloxane/silane-crosslinked systems from supercritical carbon dioxide: II. Pendant phenyl poly(carbosilane/siloxane)s. Polymers for Advanced Technologies, 19(7), 734–738. https://​doi.​org/​10.​1002/​pat.​1048.CrossRef
go back to reference Zielecka, M., & Rościszewski, P. (1994). Method for obtaining a silicone electroinsulating gel. Pat. PL 164929. Zielecka, M., & Rościszewski, P. (1994). Method for obtaining a silicone electroinsulating gel. Pat. PL 164929.
go back to reference Zielecka, M., Cyruchin, K., & Sobkowiak, D. (2000). Pat. PL 177972. Zielecka, M., Cyruchin, K., & Sobkowiak, D. (2000). Pat. PL 177972.
Metadata
Title
Hydrosilyl-Functional Polysiloxanes: Synthesis, Reactions and Applications
Author
Jerzy J. Chruściel
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-43403-8_14

Premium Partners