Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2018 | OriginalPaper | Chapter

17. Hyper-heuristics

Authors: Michael G. Epitropakis, Edmund K. Burke

Published in: Handbook of Heuristics

Publisher: Springer International Publishing

share
SHARE

Abstract

This chapter presents a literature review of the main advances in the field of hyper-heuristics, since the publication of a survey paper in 2013. The chapter demonstrates the most recent advances in hyper-heuristic foundations, methodologies, theory, and application areas. In addition, a simple illustrative selection hyper-heuristic framework is developed as a case study. This is based on the well-known Iterated Local Search algorithm and is presented to provide a tutorial style introduction to some of the key basic issues. A brief discussion about the implementation process in addition to the decisions that had to be made during the implementation is presented. The framework implements an action selection model that operates on the perturbation stage of the Iterated Local Search algorithm to adaptively select among various low-level perturbation heuristics. The performance and efficiency of the developed framework is evaluated across six well-known real-world problem domains.
Literature
7.
go back to reference Akar E, Topcuoglu HR, Ermis M (2014) Hyper-heuristics for online UAV path planning under imperfect information. In: Esparcia-Alcázar AI, Mora AM (eds) Applications of evolutionary computation. Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 741–752 Akar E, Topcuoglu HR, Ermis M (2014) Hyper-heuristics for online UAV path planning under imperfect information. In: Esparcia-Alcázar AI, Mora AM (eds) Applications of evolutionary computation. Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 741–752
12.
go back to reference Allen J (2014) A framework for hyper-heuristic optimisation of conceptual aircraft structural designs. Doctoral, Durham University Allen J (2014) A framework for hyper-heuristic optimisation of conceptual aircraft structural designs. Doctoral, Durham University
15.
go back to reference Anwar K, Khader AT, Al-Betar MA, Awadallah MA (2014) Development on harmony search hyper-heuristic framework for examination timetabling problem. In: Tan Y, Shi Y, Coello CAC (eds) Advances in swarm intelligence. Lecture notes in computer science, vol 8795. Springer International Publishing, Cham, pp 87–95 Anwar K, Khader AT, Al-Betar MA, Awadallah MA (2014) Development on harmony search hyper-heuristic framework for examination timetabling problem. In: Tan Y, Shi Y, Coello CAC (eds) Advances in swarm intelligence. Lecture notes in computer science, vol 8795. Springer International Publishing, Cham, pp 87–95
18.
go back to reference Asta S, Özcan E (2014) A tensor-based approach to nurse rostering. In: 10th international conference on the practice and theory of automated timetabling (PATAT 2014), pp 442–445 Asta S, Özcan E (2014) A tensor-based approach to nurse rostering. In: 10th international conference on the practice and theory of automated timetabling (PATAT 2014), pp 442–445
20.
go back to reference Asta S, Özcan E, Parkes AJ (2013) Batched mode hyper-heuristics. In: Nicosia G, Pardalos P (eds) Learning and intelligent optimization. Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 404–409 Asta S, Özcan E, Parkes AJ (2013) Batched mode hyper-heuristics. In: Nicosia G, Pardalos P (eds) Learning and intelligent optimization. Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 404–409
21.
go back to reference Asta S, Özcan E, Parkes AJ, Etaner-Uyar S A (2013) Generalizing hyper-heuristics via apprenticeship learning. In: Middendorf M, Blum C (eds) Evolutionary computation in combinatorial optimization. Lecture notes in computer science, vol 7832. Springer, Berlin/Heidelberg, pp 169–178 Asta S, Özcan E, Parkes AJ, Etaner-Uyar S A (2013) Generalizing hyper-heuristics via apprenticeship learning. In: Middendorf M, Blum C (eds) Evolutionary computation in combinatorial optimization. Lecture notes in computer science, vol 7832. Springer, Berlin/Heidelberg, pp 169–178
23.
go back to reference Bäck T, Fogel DB, Michalewicz Z (eds) (1997) Handbook of evolutionary computation. Oxford University Press, New York Bäck T, Fogel DB, Michalewicz Z (eds) (1997) Handbook of evolutionary computation. Oxford University Press, New York
24.
go back to reference Banerjea-Brodeur M (2013) Selection hyper-heuristics for healthcare scheduling. PhD thesis, University of Nottingham Banerjea-Brodeur M (2013) Selection hyper-heuristics for healthcare scheduling. PhD thesis, University of Nottingham
26.
go back to reference Bartz-Beielstein T, Lasarczyk C, Preuss M (2010) The sequential parameter optimization toolbox. In: Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M (eds) Experimental methods for the analysis of optimization algorithms. Springer, Berlin/Heidelberg, pp 337–362, 00031 Bartz-Beielstein T, Lasarczyk C, Preuss M (2010) The sequential parameter optimization toolbox. In: Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M (eds) Experimental methods for the analysis of optimization algorithms. Springer, Berlin/Heidelberg, pp 337–362, 00031
28.
go back to reference Battiti R, Protasi M (2001) Reactive local search for the maximum clique problem. Algorithmica 29(4):610–637 Battiti R, Protasi M (2001) Reactive local search for the maximum clique problem. Algorithmica 29(4):610–637
29.
go back to reference Battiti R, Brunato M, Mascia F (2009) Reactive search and intelligent optimization. Operations research/computer science interfaces series, vol 45. Springer, Boston, 00000 Battiti R, Brunato M, Mascia F (2009) Reactive search and intelligent optimization. Operations research/computer science interfaces series, vol 45. Springer, Boston, 00000
30.
32.
go back to reference Burke EK, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-heuristics: an emerging direction in modern search technology. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. International series in operations research & management science, vol 57. Springer, Boston, pp 457–474 Burke EK, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-heuristics: an emerging direction in modern search technology. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. International series in operations research & management science, vol 57. Springer, Boston, pp 457–474
33.
go back to reference Burke EK, Hyde MR, Kendall G, Ochoa G, Özcan E, Woodward JR (2009) Exploring hyper-heuristic methodologies with genetic programming. In: Mumford CL, Jain LC (eds) Computational intelligence. Intelligent systems reference library, vol 1. Springer, Berlin/Heidelberg, pp 177–201 Burke EK, Hyde MR, Kendall G, Ochoa G, Özcan E, Woodward JR (2009) Exploring hyper-heuristic methodologies with genetic programming. In: Mumford CL, Jain LC (eds) Computational intelligence. Intelligent systems reference library, vol 1. Springer, Berlin/Heidelberg, pp 177–201
34.
go back to reference Burke EK, Hyde M, Kendall G, Ochoa G, Özcan E, Woodward JR (2010) A classification of hyper-heuristic approaches. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics. International series in operations research & management science, vol 146. Springer, Boston, pp 449–468 Burke EK, Hyde M, Kendall G, Ochoa G, Özcan E, Woodward JR (2010) A classification of hyper-heuristic approaches. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics. International series in operations research & management science, vol 146. Springer, Boston, pp 449–468
38.
go back to reference Chakhlevitch K, Cowling P (2008) Hyperheuristics: recent developments. In: Cotta C, Sevaux M, Sorensen K (eds) Adaptive and multilevel metaheuristics. Studies in computational intelligence, vol 136. Springer, Berlin/Heidelberg, pp 3–29 Chakhlevitch K, Cowling P (2008) Hyperheuristics: recent developments. In: Cotta C, Sevaux M, Sorensen K (eds) Adaptive and multilevel metaheuristics. Studies in computational intelligence, vol 136. Springer, Berlin/Heidelberg, pp 3–29
39.
go back to reference Consoli PA, Minku LL, Yao X (2014) Dynamic selection of evolutionary algorithm operators based on online learning and fitness landscape metrics. In: Dick G, Browne WN, Whigham P, Zhang M, Bui LT, Ishibuchi H, Jin Y, Li X, Shi Y, Singh P, Tan KC, Tang K (eds) Simulated evolution and learning. Lecture notes in computer science, vol 8886. Springer International Publishing, Cham, pp 359–370, 00000 Consoli PA, Minku LL, Yao X (2014) Dynamic selection of evolutionary algorithm operators based on online learning and fitness landscape metrics. In: Dick G, Browne WN, Whigham P, Zhang M, Bui LT, Ishibuchi H, Jin Y, Li X, Shi Y, Singh P, Tan KC, Tang K (eds) Simulated evolution and learning. Lecture notes in computer science, vol 8886. Springer International Publishing, Cham, pp 359–370, 00000
40.
go back to reference Cowling P, Kendall G, Soubeiga E (2001) A hyperheuristic approach to scheduling a sales summit. In: Burke EK, Erben W (eds) Practice and theory of automated timetabling III. Lecture notes in computer science, vol 2079. Springer, Berlin/Heidelberg, pp 176–190 Cowling P, Kendall G, Soubeiga E (2001) A hyperheuristic approach to scheduling a sales summit. In: Burke EK, Erben W (eds) Practice and theory of automated timetabling III. Lecture notes in computer science, vol 2079. Springer, Berlin/Heidelberg, pp 176–190
41.
go back to reference Crowston WBS (1963) Probabilistic and parametric learning combinations of local job shop scheduling rules. Carnegie Institute of Technology and Graduate School of Industrial Administration, Pittsburgh Crowston WBS (1963) Probabilistic and parametric learning combinations of local job shop scheduling rules. Carnegie Institute of Technology and Graduate School of Industrial Administration, Pittsburgh
43.
go back to reference Drake JH, Özcan E, Burke EK (2015) Modified choice function heuristic selection for the multidimensional knapsack problem. In: Sun H, Yang CY, Lin CW, Pan JS, Snasel V, Abraham A (eds) Genetic and evolutionary computing. Advances in intelligent systems and computing, vol 329. Springer International Publishing, Cham, pp 225–234 Drake JH, Özcan E, Burke EK (2015) Modified choice function heuristic selection for the multidimensional knapsack problem. In: Sun H, Yang CY, Lin CW, Pan JS, Snasel V, Abraham A (eds) Genetic and evolutionary computing. Advances in intelligent systems and computing, vol 329. Springer International Publishing, Cham, pp 225–234
44.
go back to reference Eiben AE, Smit SK (2011) Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol Comput 1(1):19–31 Eiben AE, Smit SK (2011) Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol Comput 1(1):19–31
45.
go back to reference Epitropakis MG, Plagianakos VP, Vrahatis MN (2009) Evolutionary adaptation of the differential evolution control parameters. In: IEEE congress on evolutionary computation (CEC’09), pp 1359–1366 Epitropakis MG, Plagianakos VP, Vrahatis MN (2009) Evolutionary adaptation of the differential evolution control parameters. In: IEEE congress on evolutionary computation (CEC’09), pp 1359–1366
46.
go back to reference Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2012) Tracking differential evolution algorithms: an adaptive approach through multinomial distribution tracking with exponential forgetting. In: Maglogiannis I, Plagianakos V, Vlahavas I (eds) Artificial intelligence: theories and applications. Lecture notes in computer science, vol 7297. Springer, Berlin/Heidelberg, pp 214–222 Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2012) Tracking differential evolution algorithms: an adaptive approach through multinomial distribution tracking with exponential forgetting. In: Maglogiannis I, Plagianakos V, Vlahavas I (eds) Artificial intelligence: theories and applications. Lecture notes in computer science, vol 7297. Springer, Berlin/Heidelberg, pp 214–222
47.
go back to reference Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2012) Tracking particle swarm optimizers: an adaptive approach through multinomial distribution tracking with exponential forgetting. In: 2012 IEEE congress on evolutionary computation (CEC), pp 1–8 Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2012) Tracking particle swarm optimizers: an adaptive approach through multinomial distribution tracking with exponential forgetting. In: 2012 IEEE congress on evolutionary computation (CEC), pp 1–8
50.
go back to reference Fialho A (2010) Adaptive operator selection for optimization. Ph.D. thesis, Université Paris-Sud XI, Orsay Fialho A (2010) Adaptive operator selection for optimization. Ph.D. thesis, Université Paris-Sud XI, Orsay
52.
go back to reference Fisher H, Thompson GL (1963) Probabilistic learning combinations of local job-shop scheduling rules. In: Muth JF, Thompson GL (eds) Industrial scheduling. Prentice-Hall, Englewood Cliffs, pp 225–251 Fisher H, Thompson GL (1963) Probabilistic learning combinations of local job-shop scheduling rules. In: Muth JF, Thompson GL (eds) Industrial scheduling. Prentice-Hall, Englewood Cliffs, pp 225–251
53.
go back to reference Gong W, Fialho A, Cai Z (2010) Adaptive strategy selection in differential evolution. In: Proceedings of the 12th annual conference on genetic and evolutionary computation (GECCO’10). ACM, New York, pp 409–416 Gong W, Fialho A, Cai Z (2010) Adaptive strategy selection in differential evolution. In: Proceedings of the 12th annual conference on genetic and evolutionary computation (GECCO’10). ACM, New York, pp 409–416
56.
go back to reference Güney IA, Küçük G, Özcan E (2013) Hyper-heuristics for performance optimization of simultaneous multithreaded processors. In: Gelenbe E, Lent R (eds) Information sciences and systems 2013. Lecture notes in electrical engineering, vol 264. Springer International Publishing, Cham, pp 97–106, 00001 Güney IA, Küçük G, Özcan E (2013) Hyper-heuristics for performance optimization of simultaneous multithreaded processors. In: Gelenbe E, Lent R (eds) Information sciences and systems 2013. Lecture notes in electrical engineering, vol 264. Springer International Publishing, Cham, pp 97–106, 00001
57.
go back to reference Hart E, Sim K (2014) On the life-long learning capabilities of a NELLI*: a hyper-heuristic optimisation system. In: Bartz-Beielstein T, Branke J, Filipč B, Smith J (eds) Parallel problem solving from nature – PPSN XIII. Lecture notes in computer science, vol 8672. Springer International Publishing, Cham, pp 282–291 Hart E, Sim K (2014) On the life-long learning capabilities of a NELLI*: a hyper-heuristic optimisation system. In: Bartz-Beielstein T, Branke J, Filipč B, Smith J (eds) Parallel problem solving from nature – PPSN XIII. Lecture notes in computer science, vol 8672. Springer International Publishing, Cham, pp 282–291
58.
go back to reference Hildebrandt T, Goswami D, Freitag M (2014) Large-scale simulation-based optimization of semiconductor dispatching rules. In: Proceedings of the 2014 winter simulation conference (WSC’14). IEEE Press, Piscataway, pp 2580–2590, 00000 Hildebrandt T, Goswami D, Freitag M (2014) Large-scale simulation-based optimization of semiconductor dispatching rules. In: Proceedings of the 2014 winter simulation conference (WSC’14). IEEE Press, Piscataway, pp 2580–2590, 00000
59.
go back to reference Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statistical methods, 3rd edn. Wiley, Hoboken Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statistical methods, 3rd edn. Wiley, Hoboken
60.
go back to reference Hoos H, Stützle T (2004) Stochastic local search: foundations & applications. Morgan Kaufmann Publishers Inc., San Francisco, 01275 Hoos H, Stützle T (2004) Stochastic local search: foundations & applications. Morgan Kaufmann Publishers Inc., San Francisco, 01275
61.
go back to reference Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: Coello CAC (ed) Learning and intelligent optimization. Lecture notes in computer science, vol 6683. Springer, Berlin/Heidelberg, pp 507–523, 00149 Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: Coello CAC (ed) Learning and intelligent optimization. Lecture notes in computer science, vol 6683. Springer, Berlin/Heidelberg, pp 507–523, 00149
65.
go back to reference Karafotias G, Eiben E, Hoogendoorn M (2014) Generic parameter control with reinforcement learning. In: Genetic and evolutionary computation conference (GECCO’14), Vancouver, 12–16 July 2014, pp 1319–1326 Karafotias G, Eiben E, Hoogendoorn M (2014) Generic parameter control with reinforcement learning. In: Genetic and evolutionary computation conference (GECCO’14), Vancouver, 12–16 July 2014, pp 1319–1326
66.
go back to reference Karafotias G, Hoogendoorn M, Eiben A (2014) Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans Evol Comput PP(99):1–1 Karafotias G, Hoogendoorn M, Eiben A (2014) Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans Evol Comput PP(99):1–1
73.
go back to reference Lassouaoui M, Boughaci D (2014) A choice function hyper-heuristic for the winner determination problem. In: Terrazas G, Otero FEB, Masegosa AD (eds) Nature inspired cooperative strategies for optimization (NICSO 2013). Studies in computational intelligence, vol 512. Springer International Publishing, Cham, pp 303–314 Lassouaoui M, Boughaci D (2014) A choice function hyper-heuristic for the winner determination problem. In: Terrazas G, Otero FEB, Masegosa AD (eds) Nature inspired cooperative strategies for optimization (NICSO 2013). Studies in computational intelligence, vol 512. Springer International Publishing, Cham, pp 303–314
77.
go back to reference Li S (2013) Hyper-heuristic cooperation based approach for bus driver scheduling. Ph.D. thesis, Université de Technologie de Belfort-Montbeliard Li S (2013) Hyper-heuristic cooperation based approach for bus driver scheduling. Ph.D. thesis, Université de Technologie de Belfort-Montbeliard
79.
go back to reference Lobo F, Lima C, Michalewicz Z (eds) (2007) Parameter setting in evolutionary algorithms. Studies in computational intelligence, vol 54. Springer, Berlin/Heidelberg Lobo F, Lima C, Michalewicz Z (eds) (2007) Parameter setting in evolutionary algorithms. Studies in computational intelligence, vol 54. Springer, Berlin/Heidelberg
81.
go back to reference López-Ibáñez M, Dubois-Lacoste J, Stützle T, Birattari M (2011) The irace package, iterated race for automatic algorithm configuration. Technical report. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles López-Ibáñez M, Dubois-Lacoste J, Stützle T, Birattari M (2011) The irace package, iterated race for automatic algorithm configuration. Technical report. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles
82.
go back to reference Lourenço HR, Martin O, Stützle T (2003) Iterated local search, handbook of meta-heuristics. Springer, Berlin/Heidelberg Lourenço HR, Martin O, Stützle T (2003) Iterated local search, handbook of meta-heuristics. Springer, Berlin/Heidelberg
85.
go back to reference Marmion ME, Mascia F, López-Ibáñez M, Stützle T (2013) Automatic design of hybrid stochastic local search algorithms. In: Blesa MJ, Blum C, Festa P, Roli A, Sampels M (eds) Hybrid metaheuristics. Lecture notes in computer science, vol 7919. Springer, Berlin/Heidelberg, pp 144–158 Marmion ME, Mascia F, López-Ibáñez M, Stützle T (2013) Automatic design of hybrid stochastic local search algorithms. In: Blesa MJ, Blum C, Festa P, Roli A, Sampels M (eds) Hybrid metaheuristics. Lecture notes in computer science, vol 7919. Springer, Berlin/Heidelberg, pp 144–158
86.
go back to reference Marshall RJ, Johnston M, Zhang M (2014) A comparison between two evolutionary hyper-heuristics for combinatorial optimisation. In: Dick G, Browne WN, Whigham P, Zhang M, Bui LT, Ishibuchi H, Jin Y, Li X, Shi Y, Singh P, Tan KC, Tang K (eds) Simulated evolution and learning, Lecture notes in computer science, vol 8886. Springer International Publishing, Cham, pp 618–630 Marshall RJ, Johnston M, Zhang M (2014) A comparison between two evolutionary hyper-heuristics for combinatorial optimisation. In: Dick G, Browne WN, Whigham P, Zhang M, Bui LT, Ishibuchi H, Jin Y, Li X, Shi Y, Singh P, Tan KC, Tang K (eds) Simulated evolution and learning, Lecture notes in computer science, vol 8886. Springer International Publishing, Cham, pp 618–630
87.
go back to reference Marshall RJ, Johnston M, Zhang M (2014) Developing a hyper-heuristic using grammatical evolution and the capacitated vehicle routing problem. In: Dick G, Browne WN, Whigham P, Zhang M, Bui LT, Ishibuchi H, Jin Y, Li X, Shi Y, Singh P, Tan KC, Tang K (eds) Simulated evolution and learning, Lecture notes in computer science, vol 8886. Springer International Publishing, Cham, pp 668–679 Marshall RJ, Johnston M, Zhang M (2014) Developing a hyper-heuristic using grammatical evolution and the capacitated vehicle routing problem. In: Dick G, Browne WN, Whigham P, Zhang M, Bui LT, Ishibuchi H, Jin Y, Li X, Shi Y, Singh P, Tan KC, Tang K (eds) Simulated evolution and learning, Lecture notes in computer science, vol 8886. Springer International Publishing, Cham, pp 668–679
88.
91.
93.
go back to reference Misir M, Lau HC (2014) Diversity-oriented bi-objective hyper-heuristics for patrol scheduling. In: 10th international conference on the practice and theory of automated timetabling (PATAT 2014) Misir M, Lau HC (2014) Diversity-oriented bi-objective hyper-heuristics for patrol scheduling. In: 10th international conference on the practice and theory of automated timetabling (PATAT 2014)
97.
go back to reference Ochoa G, Burke EK (2014) Hyperils: an effective iterated local search hyper-heuristic for combinatorial optimisation. In: 10th international conference on the practice and theory of automated timetabling (PATAT 2014) Ochoa G, Burke EK (2014) Hyperils: an effective iterated local search hyper-heuristic for combinatorial optimisation. In: 10th international conference on the practice and theory of automated timetabling (PATAT 2014)
98.
go back to reference Ochoa G, Hyde M, Curtois T, Vazquez-Rodriguez JA, Walker J, Gendreau M, Kendall G, McCollum B, Parkes AJ, Petrovic S, Burke EK (2012) HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao JK, Middendorf M (eds) Evolutionary computation in combinatorial optimization. Lecture notes in computer science, vol 7245. Springer, Berlin/Heidelberg, pp 136–147 Ochoa G, Hyde M, Curtois T, Vazquez-Rodriguez JA, Walker J, Gendreau M, Kendall G, McCollum B, Parkes AJ, Petrovic S, Burke EK (2012) HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao JK, Middendorf M (eds) Evolutionary computation in combinatorial optimization. Lecture notes in computer science, vol 7245. Springer, Berlin/Heidelberg, pp 136–147
101.
go back to reference Park J, Nguyen S, Johnston M, Zhang M (2013) Evolving stochastic dispatching rules for order acceptance and scheduling via genetic programming. In: Cranefield S, Nayak A (eds) AI 2013: advances in artificial intelligence. Lecture notes in computer science, vol 8272. Springer International Publishing, Berlin, pp 478–489, 00001 Park J, Nguyen S, Johnston M, Zhang M (2013) Evolving stochastic dispatching rules for order acceptance and scheduling via genetic programming. In: Cranefield S, Nayak A (eds) AI 2013: advances in artificial intelligence. Lecture notes in computer science, vol 8272. Springer International Publishing, Berlin, pp 478–489, 00001
103.
go back to reference Poli R, Graff M (2009) There is a free lunch for hyper-heuristics, genetic programming and computer scientists. Springer, Berlin/Heidelberg, pp 195–207 Poli R, Graff M (2009) There is a free lunch for hyper-heuristics, genetic programming and computer scientists. Springer, Berlin/Heidelberg, pp 195–207
106.
go back to reference Ross P (2005) Hyper-heuristics. In: Burke EK, Kendall G (eds) Search methodologies, 1st edn. Springer, New York, pp 529–556 Ross P (2005) Hyper-heuristics. In: Burke EK, Kendall G (eds) Search methodologies, 1st edn. Springer, New York, pp 529–556
107.
go back to reference Ross P (2014) Hyper-heuristics. In: Burke EK, Kendall G (eds) Search methodologies, 2nd edn. Springer, New York, pp 611–638 Ross P (2014) Hyper-heuristics. In: Burke EK, Kendall G (eds) Search methodologies, 2nd edn. Springer, New York, pp 611–638
109.
go back to reference Sá AGCd, Pappa GL (2014) A hyper-heuristic evolutionary algorithm for learning Bayesian network classifiers. In: Bazzan ALC, Pichara K (eds) Advances in artificial intelligence – IBERAMIA 2014. Lecture notes in computer science. Springer International Publishing, Cham, pp 430–442 Sá AGCd, Pappa GL (2014) A hyper-heuristic evolutionary algorithm for learning Bayesian network classifiers. In: Bazzan ALC, Pichara K (eds) Advances in artificial intelligence – IBERAMIA 2014. Lecture notes in computer science. Springer International Publishing, Cham, pp 430–442
114.
123.
go back to reference Smit SK, Eiben AE (2009) Comparing parameter tuning methods for evolutionary algorithms. In: IEEE congress on evolutionary computation (CEC’09), pp 399–406 Smit SK, Eiben AE (2009) Comparing parameter tuning methods for evolutionary algorithms. In: IEEE congress on evolutionary computation (CEC’09), pp 399–406
127.
go back to reference Sutton RS, Barto AG (1998) Introduction to reinforcement learning, 1st edn. MIT Press, Cambridge, 02767 Sutton RS, Barto AG (1998) Introduction to reinforcement learning, 1st edn. MIT Press, Cambridge, 02767
130.
go back to reference Thierens D (2005) An adaptive pursuit strategy for allocating operator probabilities. In: Proceedings of the 7th annual conference on genetic and evolutionary computation (GECCO’05). ACM, New York, pp 1539–1546 Thierens D (2005) An adaptive pursuit strategy for allocating operator probabilities. In: Proceedings of the 7th annual conference on genetic and evolutionary computation (GECCO’05). ACM, New York, pp 1539–1546
131.
go back to reference Thierens D (2007) Adaptive strategies for operator allocation. In: Lobo F, Lima C, Michalewicz Z (eds) Parameter setting in evolutionary algorithms. Studies in computational intelligence, vol 54. Springer, Berlin/Heidelberg, pp 77–90, 00042 Thierens D (2007) Adaptive strategies for operator allocation. In: Lobo F, Lima C, Michalewicz Z (eds) Parameter setting in evolutionary algorithms. Studies in computational intelligence, vol 54. Springer, Berlin/Heidelberg, pp 77–90, 00042
Metadata
Title
Hyper-heuristics
Authors
Michael G. Epitropakis
Edmund K. Burke
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-07124-4_32

Premium Partner